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ABSTRACT 17 
 18 
One of the main causes for failure in the drug development pipeline or withdrawal post 19 
approval is the unexpected occurrence of severe drug adverse events. Even though such 20 
events should be detected by in vitro, in vivo, and human trials, they continue to 21 
unexpectedly arise at different stages of drug development causing costly clinical trial 22 
failures and market withdrawal. Inspired by the “moneyball” approach used in baseball to 23 
integrate diverse features to predict player success, we hypothesized that a similar 24 
approach could leverage existing adverse event and tissue-specific toxicity data to learn 25 
how to predict adverse events. We introduce MAESTER, a data-driven machine learning 26 
approach that integrates information on a compound’s structure, targets, and phenotypic 27 
effects with tissue-wide genomic profiling and our toxic target database to predict the 28 
probability of a compound presenting with different types of tissue-specific adverse 29 
events. When tested on 6 different types of adverse events MAESTER maintains a high 30 
accuracy, sensitivity, and specificity across both the training data and new test sets. 31 
Additionally, MAESTER scores could flag a number of drugs that were approved, but later 32 
withdrawn due to unknown adverse events - highlighting its potential to identify events 33 
missed by traditional methods. MAESTER can also be used to identify toxic targets for 34 
each tissue type. Overall MAESTER provides a broadly applicable framework to identify 35 
toxic targets and predict specific adverse events and can accelerate the drug 36 
development pipeline and drive the design of new safer compounds.    37 
 38 
INTRODUCTION 39 
  40 
Drug adverse events are currently one of the main causes of failure in drug development 41 
and are one of the top 10 causes of death in the developed world1, 2. Toxicity issues 42 
remain a leading cause for the rising clinical trial attrition rates3, 4. Even after a drug has 43 
been approved, adverse drug reactions remain a large burden on the medical system 44 
with the costs amounting to as much as $30 billion dollars annually in the USA5. 45 
Furthermore the identification of the serious adverse events associated with drugs 46 
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frequently does not occur until after FDA approval, with as many as 50% of adverse 47 
events going undetected during human trials6 . Due to the prevalence and impact of this 48 
problem, the U.S. Food and Drug Administration (FDA) has established the US FDA 49 
Adverse Event Reporting System (FAERS).   50 
 51 
Most adverse event detection experiments are carried out in pre-clinical phases based 52 
on animal results or during early clinical trials. However not all adverse events are 53 
detected, due to several factors including limited relevance of animal models to human 54 
physiology, limited sample sizes during trials, and patient populations that may not be 55 
representative of the overall population5. Further complications may include the low 56 
frequency or late onset of some adverse events5. As a result, retrospective studies are 57 
currently an important method for further characterization of the side effects associated 58 
with drugs. However this requires a large number of patients to be treated first and is 59 
dependent on voluntary reporting, which is especially problematic as only 10% of all drug 60 
adverse events are reported post-approval7.  61 
 62 
Ideally possible adverse events would be detected during the pre-clinical phases of drug 63 
development, even before animal studies. Cell lines and reporter assays may help detect 64 
unwanted side effects early, but are often imprecise. Computational screening methods 65 
are also critical components of current drug development pipelines for evaluating pre-66 
clinical toxicity. In particular, drug-likeness measures, which use molecular features to 67 
estimate oral bioavailability as a proxy for drug toxicity, have been widely adopted. 68 
Examples of drug-likeness methods include Lipinski’s Rule of Five8 and the Quantitative 69 
Estimate for Drug Likeness9. More recently machine learning based methods have been 70 
proposed for predicting drug toxicity, including previous work from our group (PrOCTOR) 71 
which integrates established molecular properties with target-based features to directly 72 
predict broad clinical trial toxicity10. Other groups have developed diverse methods 73 
focused on predicting toxicity specific to the liver11. However no method has yet been 74 
developed with the granularity to predict multiple specific adverse events across different 75 
tissue types, such as heart attacks or neutropenia, for a specific drug.  Better methods 76 
for predicting such adverse events could improve fast-fail procedures and facilitate better 77 
trial design. To address this problem, we introduce MAESTER, a new machine-learning 78 
platform for the prediction of tissue-specific drug adverse events. We show that for a set 79 
of 6 serious adverse events MAESTER achieves unprecedented accuracy while 80 
maintaining high specificity and sensitivity. Additionally we demonstrate how MAESTER 81 
could have identified drug adverse events that were missed by traditional screening 82 
methodologies but led to costly market withdrawal.  83 
 84 
RESULTS 85 
 86 
Identifying determinants of tissue-specific toxicities and adverse events 87 
We first sought to identify drugs or compounds that are specifically toxic within individual 88 
tissues and compare them with compounds with no reported toxicities in these tissues. 89 
We focused on a set of six tissues whose corresponding AEs are correlated with clinical 90 
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trial failures: liver, kidney, blood, heart, lung, and pancreas (Fig.S1A). We used the 91 
SIDER database of drug side effects to identify subsets of drugs that are associated with 92 
tissue-specific adverse events (TSAEs) (Table 1)12. For example we identified all drugs 93 
that have been associated with liver toxicities. For each tissue, we also established a 94 
“safe” set of drugs for comparisons identifying any drugs not associated with those TSAEs 95 
or other AEs highly correlated with fatalities in openFDA (https://open.fda.gov/)  defined 96 
as having a fatality frequency > 13% (Fig.1A). For each drug, we compiled structural 97 
representations in the format of SMILES from DrugBank, differential gene expression 98 
profiles from the Broad Institute’s Connectivity Map (CMAP)13, growth inhibition patterns 99 
across the NCI60 cell lines (NCI60) from the NCI’s Developmental Therapeutics 100 
Program14, and bioassay data from PubChem15.  101 
 102 
For each tissue we then investigated how these safe and toxic drugs compare to each 103 
other. For each pair of drugs, we calculated a similarity score for each of the considered 104 
data types (Methods). We found that in all tissues, tissue-specific toxic drugs were most 105 
structurally similar to each other (Fig.1B).  Additionally, toxic drugs tended to also be most 106 
similar to other toxic drugs in terms of differential gene expression profiles (Fig.1C), 107 
growth inhibition screens (Fig.1D) and bioassays (Fig.1E). Interestingly we found distinct 108 
patterns across the different tissue types – for instance, growth inhibition was best able 109 
to separate out drugs with blood specific adverse events, whereas gene expression 110 
changes had the greatest utility in the liver. These patterns could be incredibly valuable 111 
for adverse event prediction as they highlight how we can model the diversity across 112 
drugs with a given side effect. For example high structural similarity between a new 113 
compound and compounds known to be toxic in the heart could indicate potential cardiac 114 
toxicity for that new compound. Additionally high similarity between the compound-115 
induced expression changes of a new compound with expression changes of compounds 116 
with known liver toxicity could suggest liver toxicity for the new compound. 117 
 118 
We next examined how expression of a drug’s targets could be used to predict TSAEs. 119 
For this analysis we integrated tissue-specific expression data measured by the GTEX 120 
database. For each toxic or safe drug in a given tissue set (Fig.1A), we quantified the 121 
expression of all of that drug’s targets in the specific tissue. Overall drugs with adverse 122 
events in a specific tissue tended to also have higher target expression in that tissue than 123 
their safe drug counterparts (Fig.2A-E). This information helps illustrate how it is 124 
important to consider target based features and tissue-specific expression when 125 
predicting adverse events. This analysis also confirms that high expression of a drug’s 126 
target in a given tissue can help predict toxicity in that tissue. 127 
 128 
Distinct Patterns of Tissue-Specific Toxic and Safe Target Sets 129 
Due to the significant relationship between drug target expression and related tissue 130 
adverse events, we next sought to define a set of tissue-specific “toxic targets”– proteins 131 
that are only targeted by drugs with known toxicity in that tissue – and “safe targets” – 132 
proteins only targeted by drugs with no related tissue toxicities. To do this, we begin by 133 
taking the safe and toxic drug sets described in Fig.1A and identifying any targets 134 
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exclusive to each drug subset (Fig.2F). Interestingly we found that though there was a 135 
significant degree of overlap between the toxic and safe gene sets across multiple 136 
tissues, there were a number of proteins identified that were specifically associated with 137 
toxicity or non-toxicity in a single tissue (Fig.2G-H). For instance, ABL1 was flagged as a 138 
toxic target in all six tissues, whereas KCNJ3 and KCNJ6 – proteins involved in voltage 139 
gated potassium channels and the regulation of heartbeats – were only marked as toxic 140 
targets in the heart.  141 
 142 
To further investigate features of tissue-specific toxic targets we expanded the procedure 143 
described in Fig.2F to generate toxic and safe targets for 30 different tissue types – 144 
including the 6 prior tested tissues. For each target, we computed a number of features, 145 
including tissue-specific expression, network properties (betweenness and degree), loss 146 
of function (LoF) mutation frequency, and essentiality status. We found that toxic gene 147 
sets tend to be more connected in an aggregated protein-protein interaction network 148 
(Fig.3A-B), be more intolerant for LoF mutations (Fig.3C), and be enriched for essential 149 
genes (Fig.3D). Finally, we used the ConsensusPathDB framework16 to measure for GO 150 
term enrichment and observed that for toxic gene sets the most commonly enriched terms 151 
had to due with cell death, receptor signaling, and apoptotic processes (Fig.3E) – 152 
pathways one would expect to be related to toxicity – whereas safe targets did not appear 153 
to be related to any toxicity related processes (Fig.3F) – likely due to the diverse nature 154 
and function of safe targets. Altogether these results suggest that tissue-specific toxic 155 
targets have specific recognizable features and that such features may be used to predict 156 
whether a new compound whose targets are known is likely to be toxic in a given tissue. 157 
 158 
Computational approach predicts likelihood of specific adverse events 159 
To utilize these findings and more directly address the problem of adverse event 160 
prediction, we developed MAESTER (a Moneyball Approach for Estimating Specific 161 
Tissue adverse Events using Random forests) to compute the probability of a compound 162 
presenting with a specific adverse event (Fig.4A). To do this, we expanded upon the 163 
framework of our previously published work on predicting broad clinical trial toxicities, 164 
PrOCTOR 10, and narrowed down the classification task to a set of specific adverse 165 
events that are correlated with clinical toxicity and have high reported frequencies of 166 
fatality in openFDA: drug-induced liver injury (DILI), nephrotoxicity, neutropenia, heart 167 
attack, pleural effusion, and pancreatitis (Fig.S1A). We began by using the framework 168 
described in Fig.1A to define a training set of safe and toxic drugs for each adverse event 169 
and its corresponding tissue. For the toxic drugs, we directly queried the database for 170 
drugs that are linked to each adverse event or its synonyms. We then took drugs that are 171 
not associated with any adverse event in the related tissue or any other severe adverse 172 
events to be the set of safe drugs (Fig.S1B). The set of keywords used to construct these 173 
training sets are described in Table 1.  174 
 175 
Building upon the framework of PrOCTOR, MAESTER integrates 13 structural features, 176 
35 target and tissue features, and 8 drug similarity properties to produce a suite of 177 
classifiers that are able to predict the likelihood of each adverse event (Fig.4A). Given 178 
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the established validity of drug-likeness measures in capturing toxicity, we also included 179 
properties considered by the Lipinski8, Veber17, and Ghose18 rules, and the Quantitative 180 
estimate for Drug-Likeness (Q.E.D.)9 as well as the measures themselves. For tissue-181 
based features, we considered the number of known drug targets that fall in the 182 
associated tissue-specific safe and toxic gene sets we created earlier. We also included 183 
the above described tissue expression features from GTEx19, network properties 184 
(connectivity and degree), and loss of function mutation frequency20. Finally we integrated 185 
the different similarity scores (structural, CMAP, NCI60, and bioassay) through two 186 
different measures. The first similarity metric represents whether the drug is more similar 187 
to known safe or toxic molecules by using a signed Kolmogorov-Smirnov D-statistic. The 188 
second similarity metric is a count of the number of highly similar drugs with known 189 
TSAEs. 190 
 191 
The classifiers were evaluated using 10-fold cross validation. All adverse events achieved 192 
significant predictive performances with an average accuracy of 72% and area-under-193 
the-receiver-operator curve (AUC) of .81 (Fig.4B, Table 2). Focusing specifically on 194 
neutropenia – a major cause of clinical trial failure and mortality in cancer and 195 
immunocompromised patients21– MAESTER achieved an AUC, accuracy, specificity, and 196 
sensitivity of 0.8843, 0.7839, 0.7778 and 0.7891 respectively (Fig.4C, Table 2) – to our 197 
knowledge the highest reported results for the computational prediction of neutropenia.  198 
 199 
MAESTER identifies adverse events in independent test sets 200 
We further assessed MAESTER’s performance using an independent validation test set. 201 
For liver toxicity, the FDA has curated the Liver Toxicity Knowledge Base (LTKB) that 202 
classifies a number of compounds based on their risk of causing liver toxicity. We found 203 
that MAESTER can significantly distinguish drugs that are of DILI-concern from those 204 
classified as no concern using this independent database (Fig.4D) (p < 2.2e-16, Mann-205 
Whitney U test). For heart attacks, pleural effusion, and neutropenia we turned to FDA 206 
drug label warnings as reported in openFDA. We found that MAESTER correctly identified 207 
76.3% of drugs with heart attack risk (p=0.04589, Binomial test), 75.0% with pleural 208 
effusion risk (p=0.01474, Binomial test), and 87.5% with neutropenia risk (p=0.0782, 209 
Binomial test) (Fig.4E). These tested compounds did not have their specific adverse 210 
events listed in SIDER and thus were not in our original training set, further highlighting 211 
MAESTER’s potential to predict adverse events for new compounds. 212 
 213 
A feature importance analysis revealed that there is a subset of features that were 214 
consistently predictive across all of MAESTER’s adverse event models (Fig.S2A). The 215 
toxic and safe gene sets, structural and bioassay similarity features, polar surface area, 216 
and expression of the drug target in mature B cells are important in a majority of models. 217 
We also identified a subset of features that are uniquely predictive in specific models. For 218 
example, target expression in digestive organs (e.g., colon, small intestine, stomach) 219 
were highly important in the prediction of DILI (Fig.S2B), expression in immune-related 220 
cells (centroblasts, T cells, spleen) were important for neutropenia prediction (Fig.S2C), 221 
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and the network degree of the drug target was the most important feature in prediction of 222 
pleural effusion (Fig.S2D).  223 
 224 
We then compared the predictions for drugs across all models (Fig.S3A). We found that 225 
there were subsets of drugs that are predicted to be safe or toxic by most or all models. 226 
We found that drugs predicted to have many TSAEs tended to have higher predicted 227 
toxicity levels (measured by the PrOCTOR score) (Fig.S3B) than drugs that were 228 
predicted to have one or less TSAEs (Fig.S3C, p=1.178e-06, Mann-Whitney U test).  229 
 230 
MAESTER predicts specific adverse events for withdrawn drugs 231 

To test MAESTER’s ability to detect adverse events that may have been missed by 232 
traditional approaches, we next focused on drugs that been approved but were later 233 
withdrawn due to toxicity concerns. This is especially relevant because cardiotoxicity and 234 
hepatotoxicity – two of MAESTER’s adverse event models – are the largest causes of 235 
toxicity related withdrawal 22. We began by focusing on two well-known cases of drug 236 
withdrawal – Vioxx and Avandia, both withdrawn for cardiac toxicity– and found that 237 
MAESTER scored each as highly likely to cause cardiac toxicity (Fig.5A-B). In fact, 238 
comparing Avandia (Rosiglitazone) to a less toxic analog (Pioglitazone) we observed that 239 
the difference in reported toxicities corresponded to a difference in their MAESTER 240 
scores. We found that these predictions did not change substantially when we removed 241 
both drugs (and their analogs) from the original training set, retrained MAESTER’s 242 
underlying model, and rescored each compound.  To further expand this analysis we 243 
curated a list of withdrawn drugs (that were not part of MAESTER’s original training set) 244 
and their reason for withdrawal (Methods). For each drug we computed a MAESTER 245 
probability corresponding to the specific reason for withdrawal (Table 3). We found that 246 
for 87.5% of the withdrawn drugs MAESTER predicted that specific adverse event with a 247 
probability greater than 0.5 – significantly more than would have been expected by 248 
random chance (p =0.0003, Fisher’s exact test). To further evaluate MAESTER’s ability 249 
to flag withdrawn drugs, we compared MAESTER probabilities of withdrawn drugs against 250 
probabilities for drugs of similar indications that were never withdrawn and were not 251 
known to have the reported adverse event (Fig.5C-F). We found that withdrawn drugs 252 
had significantly higher MAESTER adverse event probabilities than approved drugs of 253 
the same indication (p =0.0027 and 0.0424, Fisher’s exact test). Overall these results 254 
highlight MAESTER’s ability to specifically identify compounds with adverse events that 255 
were missed by traditional approaches.  256 

DISCUSSION 257 
 258 
Pre-clinical toxicity screening is one of the most important parts of drug development. 259 
Existing experimental methods are cumbersome and often do not translate to clinical 260 
results. Computational methods for predicting toxicity can complement and perhaps guide 261 
experimentation to evaluate toxicities. However prior methods have for the most part 262 
focused only on molecular properties and predicting broad clinical toxicities rather than 263 
specific adverse events. We have proposed MAESTER, a data-driven machine learning 264 
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approach that integrates information on a compound’s structure, targets, and downstream 265 
effects to predict the probability of a compound presenting with different adverse events. 266 
When trained on drugs with known adverse events, MAESTER performs at high 267 
accuracy, sensitivity, and specificity across six different prediction tasks. Additionally 268 
MAESTER performs with high accuracy on external FDA test sets and drug warning 269 
labels, and could accurately identify adverse events for withdrawn drugs that may have 270 
been missed during traditional analyses.   271 
 272 
We have identified sets of toxic and safe drugs and genes that are associated with 273 
adverse events in specific tissues. We found that tissue-specific toxic drugs tend to be 274 
more similar to each other than known safe drugs and that their associated targets are 275 
more highly expressed in corresponding tissues. We found tissue-specific toxic targets 276 
tend to be enriched for apoptosis and cell death related biological processes, more 277 
connected in protein-protein interaction networks, and are classified as more essential. 278 
Leveraging this data, we developed MAESTER to combine compound and target 279 
properties to predict the likelihood of specific adverse events. Because it is trained on 280 
drugs with known adverse events, MAESTER can directly predict clinical effects 281 
compared to cell or animal screening methods whose toxicity predictions may not 282 
translate to the clinic. 283 
 284 
One of the strengths of our big data approach is that it can consider a large number of 285 
features without prior bias. This will become especially powerful in the coming years as 286 
more large pharmacogenomics datasets become available to integrate. Analysis of these 287 
features can aid in future drug design by providing insight into what types of drugs are 288 
likely to be toxic and feeding this information back to the chemists. Additionally, while 289 
toxicity is often modeled as a broad feature, often times it is a patient specific effect. As 290 
more patient specific data becomes available MAESTER can be improved to predict 291 
patient specific adverse events. This could be used to guide clinical trial design by 292 
specifically selecting patients unlikely to present with toxic effects and radically change 293 
how people approach precision medicine.   294 
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295 
Figure 1 – A) Schematic describing the process by which we selected our toxic and 296 
safe drugs for each specific tissue. B) Similarities of across all toxic drugs pairs, safe 297 
drug pairs, and all combinations of toxic and safe drugs for drug structures, C) gene 298 
expression changes, D) growth efficacies, and E) bioassays. P values were calculated 299 
using a Wilcoxon Rank Sum test.   300 
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 301 
Figure 2 – A–E) Distribution of target expression in a specific tissue for drugs  302 
with and without any tissue-specific adverse events (in that given tissue). P values and 303 
D statistic calculated using a KS test. F) Schematic for the selection of toxic and safe 304 
targets. G)UpSetR plot highlighting the overlap across tissue types for their respective 305 
toxic and H) safe targets. 306 
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307 
Figure 3 – A-D) Distribution of features across multiple tissues for their individual toxic 308 
and safe targets. E) Number of tissues whose respective toxic or F) safe targets are 309 
enriched for a specific Gene Ontology category.   310 
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 311 
Figure 4 – A) Schematic of MAESTER’s method of integrating multiple feature types to 312 
predict tissue-specific adverse events. B) Performance metrics for multiple MAESTER 313 
prediction models. C) Area under the receiver-operating curve for MAESTER’s 314 
Neutropenia model. D) Distribution of MAESTER DILI probabilities for drugs marked as 315 
“DILI Concern” or “Safe” by the FDA Liver Toxicity Knowledge base. E) MAESTER 316 
Predictions for drugs with FDA warning labels for heart attacks, neutropenia, or pleural 317 
effusion.   318 
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 319 
Figure 5 – A) Distributions of MAESTER scores for all drugs known to cause heart attacks 320 
and those considered safe. MAESTER scores for Vioxx, B) Rosiglitazone, and 321 
Pioglitazone are indicated with arrows. C-D) MAESTER scores for drugs withdrawn for 322 
cardiac toxicity compared to approved drugs of the same class with no known cardiac 323 
toxicities. E-F) MAESTER scores for drugs withdrawn for liver toxicity compared to 324 
approved drugs of the same class with no known liver toxicities. All p values were 325 
calculated using a Wilcoxon rank sum test.   326 
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Table 1 – MAESTER Training Set Definitions. Table of the 6 major adverse event 327 
categories. In addition to the given adverse event, certain synonymous adverse events 328 
were also included and any drugs with containing an adverse event in the “other 329 
removed terms” category were removed excluded from the safe set. 330 

Adverse Event Synonyms Tissue Other Removed 
Terms 

DILI Liver Disease, Liver Injury, Liver 
Damage 

Liver "Nephro*" 

Heart Attack Myocardial Infarction Heart "Immun" 
Renal Failure Kidney Failure Kidney   
Neutropenia - Blood   
Pleural 
Effusion 

- Lung - 

Pancreatitis - Pancreas - 
  331 
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Table 2 – MAESTER Model Performances. AUROC, Accuracy, Specificity, and 332 
Sensitivity values for each of MAESTER’s underlying models.  333 

Adverse Event # safe 
drugs 

# toxic 
drugs 

AUROC Accuracy Specificity Sensitivity 

DILI 105 268 0.8079 0.7373 0.7333 0.7388 
Heart Attack 113 166 0.7552 0.6882 0.6283 0.7289 
Renal Failure 127 165 0.8198 0.7329 0.7087 0.7515 
Neutropenia 108 128 0.8843 0.7839 0.7778 0.7891 

Pleural  
Effusion 

128 59 0.7761 0.6631 0.6562 0.678 

Pancreatitis 126 153 0.7967 0.7348 0.7302 0.7386 
  334 
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Table 3 – MAESTER Performance on Withdrawn Drugs. List of withdrawn drugs, 335 
their reason for withdrawal, and the corresponding MAESTER score. 336 

Drug Specific MAESTER Probability* Reason for Withdrawal 
Sitaxentan 0.83 Hepatotoxicity 

Sparfloxacin 0.822 Cardiotoxicity 
Flecainide 0.772 Cardiotoxicity 
Nialamide 0.76 Hepatotoxicity 

Dexfenfluramine 0.738 Cardiotoxicity 
Acetohexamide 0.734 Hepatotoxicity 

Cisapride 0.716 Cardiotoxicity 
Tegaserod 0.716 Cardiotoxicity 

Bepridil 0.714 Cardiotoxicity 
Tolrestat 0.708 Hepatotoxicity 

Alprenolol 0.682 Cardiotoxicity 
Fenfluramine 0.664 Cardiotoxicity 

Encainide 0.654 Cardiotoxicity 
Nimesulide 0.624 Hepatotoxicity 
Sertindole 0.62 Cardiotoxicity 

Nomifensine 0.616 Hepatotoxicity 
Hexylcaine 0.614 Cardiotoxicity 
Mibefradil 0.588 Cardiotoxicity 

Astemizole 0.53 Cardiotoxicity 
Zimelidine 0.53 Hepatotoxicity 

Prenylamine 0.512 Cardiotoxicity 
Terfenadine 0.47 Cardiotoxicity 

Ximelagatran 0.394 Hepatotoxicity 
Dextropropoxyphen

e 0.252 Cardiotoxicity 
 337 
* = Probability corresponds to probability of presenting with either cardiac or 338 
hepatotoxicity depending on the reason for withdrawal 339 
  340 
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