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Abstract

The identification of molecular pathways driving cancer progression is a fundamental unsolved problem in
tumorigenesis, which can substantially further our understanding of cancer mechanisms and inform the de-
velopment of targeted therapies. Most current approaches to address this problem use primarily somatic
mutations, not fully exploiting additional layers of biological information. Here, we describe ModulOmics,
a method to de novo identify cancer driver pathways, or modules, by integrating multiple data types
(protein-protein interactions, mutual exclusivity of mutations or copy number alterations, transcriptional
co-regulation, and RNA co-expression) into a single probabilistic model. To efficiently search the expo-
nential space of candidate modules, ModulOmics employs a two-step optimization procedure that combines
integer linear programming with stochastic search. Across several cancer types, ModulOmics identifies highly
functionally connected modules enriched with cancer driver genes, outperforming state-of-the-art methods.
For breast cancer subtypes, the inferred modules recapitulate known molecular mechanisms and suggest
novel subtype-specific functionalities. These findings are supported by an independent patient cohort, as
well as independent proteomic and phosphoproteomic datasets.
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Introduction

Rapid advancements in sequencing technologies led to an unprecedented increase in the generation and
availability of high-resolution DNA, RNA, and protein cancer data. These large datasets are analyzed with
mathematical and computational tools, unveiling mechanistic and predictive insights into cancer progression
and treatment [5, 7, 8]. Key to achieving these goals is the identification of molecular alterations that drive
tumorigenesis, or drivers, such as single nucleotide variants (SNVs), copy number alterations (CNAs), changes
in the transcriptional activity of genes, or changes in protein concentration. Groups of such functionally
connected genetic alterations, also termed cancer driver modules or pathways, activate mechanisms that drive
tumorigenesis and gradually contribute to triggering the hallmarks of cancer, conferring fitness advantages
to the tumors [54, 22]. Driver module elucidation can further our understanding of cancer initiation and
progression, as well as inform the development of targeted therapies.
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Figure 1: Overview of ModulOmics. A) Four different data sources, corresponding to four different models M1, . . . ,M4

(see Methods), contribute to the computation of the ModulOmics score: PPI connectivity (protein level), mutual exclusivity
(DNA level), transcriptional co-regulation (regulatory connections and RNA level) and co-expression (RNA level). The four
colors correspond to four different genes; full squares in the matrix for model M2 encode the presence of alterations, while empty
squares encode their absence. In M3, genes 1 and 2 are regulated by a common transcription factor. In M4, the different color
intensities depict different expression intensities. B) Potential mechanism leading to a driver module exhibiting patterns of
PPI connectivity, mutual exclusivity, co-regulation and co-expression. C) The ILP optimization identifies modules with highest
sum of pairwise ModulOmics scores, computed as the average of the four scores corresponding to models M1, . . . ,M4, further
z-scored and normalized to [0, 1]. D) The stochastic search optimization uses the modules identified by ILP, depicted in panel
C, as seeds, and aims to improve their scores and identify the global optimal solution. The space of initial solutions is clustered
and genes are exchanged between clusters in order to identify modules with high global scores. While the scores for models
M1, . . . ,M4 of the modules in panel C were approximated as the average pairwise scores, here they are computed explicitly for
the entire module. E) The webserver tool computes the ModulOmics score of any chosen gene set, based on any of the TCGA
datasets analyzed in this study. For each data source employed by ModulOmics, the tool plots the single omics scores of the
top 50 modules, highlighting the score of the chosen gene set.

It has been observed that members of cancer pathways often display specific alteration patterns across
tumor samples, most notably co-occurrence and mutual exclusivity [12, 11, 30, 2]. Finding groups of mutually
exclusive genes is an efficient way to identify cancer modules fulfilling the same biological function, since,
once a single member of the group is altered, the tumor gains a significant selective advantage, and the fitness
of the tumor is not expected to increase with the alteration of additional group members. However, most
existing mutual exclusivity methods rely only on DNA-level data, particularly SNVs, failing to fully exploit
the complex interactions involving RNA or protein molecules potentially driving tumorigenesis [14, 19]. To
this end, data integration strategies have the potential to unravel previously unknown cancer driver modules.

An additional important data source for identifying interactions among cancer drivers is protein-protein
interaction (PPI) networks, cataloged in databases such as HIPPIE [43], STRING [48], or BioGRID [46].
Studies that exploit this data source include HotNet2 [29], which uses PPI networks of genetic alterations to
identify significantly altered subnetworks connecting recurrently mutated genes; EnrichNet [20], which identi-
fies functional gene sets based on PPI proximity calculated similarly to HotNet2, MEMo [11], which identifies
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mutually exclusive gene sets on the basis of PPI-filtered pairwise connections, and MEMCover, which inte-
grates mutual exclusivity among genetic alterations with connectivity derived from PPI networks [27]. These
methods however do not include additional layers of biological information directly into their model, such as
RNA regulation or gene expression. Few approaches address the problem of integrating such additional data
sources, among which TieDIE [37], which finds one large PPI subnetwork connecting DNA, RNA and regu-
latory signals. A separate class of data integration methods aiming to identify dysregulation in cancer focus
on individual driver genes, without also connecting the drivers into modules, such as DriverNet [3], which
combines mutations and gene expression, or DawnRank [25], which integrates mutations, gene expression
and protein interactions.

Here, we describe ModulOmics, a method for the de novo identification of cancer driver modules based
on the integration of PPI networks, mutual exclusivity of DNA alterations (SNVs and CNAs), and RNA-
level co-regulation and co-expression, into a single probabilistic score (Figure 1). We identify modules
that maximize this score by performing a two-step optimization procedure that combines Integer Linear
Programming (ILP) with stochastic search. We apply ModulOmics on three large-scale TCGA datasets of
breast cancer [5], glioblastoma (GBM) [6] and ovarian cancer [7], and show that it accurately identifies known
cancer driver genes and pathways. Moreover, ModulOmics outperforms three state-of-the-art methods to
detect cancer modules, namely the DNA-centric method TiMEx [12], the PPI-based method HotNet2 [29]
and the DNA and PPI integration method MEMCover [27].

We further use ModulOmics to identify modules that characterize breast cancer subtypes. The highest
scoring modules are enriched with cancer drivers, and reliably separate cancerous from normal tissues in
an independent patient cohort [40, 51]. Moreover, the modules characterizing aggressive subtypes, such
as Her2 and Basal, are further enriched with Gene Ontology (GO) terms related to cell proliferation. In
the triple negative (TN) subtype, we identify functional connections among multiple down-regulated tumor
suppressors, including TP53, BRCA1, RB1 and PTEN. This pattern is also supported by reverse phase
protein array (RPPA) data [5]. In Luminal A, high scoring modules containing PTEN suggest two potential
functionalities of this protein: a canonical one as part of the PI3K pathway, and a non-canonical one as a
regulator of cell proliferation.

ModulOmics is freely available in two forms, as an open-source R code for the identification of cancer
driver modules from a cohort of cancer samples (https://github.com/danasilv/ModulOmics), and as a
webserver for the evaluation of any set of genes of interest using the TCGA data processed in this study
(http://anat.cs.tau.ac.il/ModulOmicsServer/).

Results

ModulOmics identifies driver modules on the basis on DNA and RNA cancer patient data, integrated with
PPI networks and known regulatory connections. Each candidate module is scored according to the degree
of mutual exclusivity among DNA alterations in its members across the patient cohort, the correlation of
the RNA expression of its members across the cohort, the probability that its gene members are connected
in the PPI network, and the fraction of its members that are co-regulated by a common active transcription
factor. As the number of candidate groups grows exponentially with maximal group size, ModulOmics uses
a heuristic two-step optimization procedure to first find good initial solutions by linearly approximating the
scoring function and then refining these solutions via stochastic search (see STAR Methods). Each module
is assigned an empirical p-value by comparing its score to the scores of 1, 000 random modules of altered
genes of the same size. All top modules identified by ModulOmics were significant (corrected Bonferroni
p-value < 0.05).

We applied ModulOmics on three large TCGA cancer datasets: breast cancer, GBM, and ovarian cancer.
On these datasets, we compared ModulOmics to four simplified similar approaches, in which the score of
a group is computed using only single omic data sources, namely PPI connectivity, mutual exclusivity,
co-regulation or co-expression, as well as to three state-of-the-art methods for the identification of driver
modules: MEMCover, HotNet2 and TiMEx. We additionally assessed the contribution of each of the single
omic data sources to the ModulOmics score by only using subsets of three omics, and removing each single
omic at a time.

We found that modules of sizes 3 and 4 generally have higher ModulOmics scores than pairs (Figure
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S1), and no single omic data source dominates the score for any given module size (Tables S1-S3). Sen-
sitivity analyses showed that the performance of ModulOmics is robust under different parameter choices
(Supplementary Information, Figures S2-S3 and Tables S4-S5).

Driver modules are enriched with cancer drivers
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Figure 2: The driver modules inferred by ModulOmics are enriched with cancer driver genes. A) The average
driver enrichment (red heatmaps) and non-driver enrichment (blue heatmaps) across the top 10 scoring modules inferred by
each method in the three cancer types studied. The enrichment was calculated as the fraction of gene members in each module
that are also part of each control list, averaged across the top 10 modules. The modules were ranked by their score, regardless
of their sizes (the inferred groups consisted of two, three or four gene members). ME stands for mutual exclusivity, CoReg for
co-regulation, and CoExp for co-expression single omic scores. NCG5, PosAGO, PosUnionAll, PosSomatic, PosUniprotKB,
PosTextMine, PosTrans are the positive control lists, while NegAgoClean, NegAgoFull and NegDavoli are the negative control
ones (see STAR Methods). B) Detailed driver and non-driver enrichment scores for the positive driver list PosUnionAll and
the negative driver list NegAGOClean for the seven methods assessed, across the three cancer types, for the top scoring 5, 10,
15, 20 and 30 modules. Table S6 shows the scores for 2B.

To assess the performance of ModulOmics, we calculated the enrichment of the highest scoring driver
modules with known driver genes (positive controls) and known non-driver genes (negative controls). To
this end, we used the gene lists introduced in [23], complied from different sources: the Network of Cancer
Genes (NCG) [1], Cancer Gene Census version 73 (CGC) [17], the Atlas of Genetics and Cytogenetics in
Oncology and Hematology (AGO) [26], UniprotKB [53], DISEASES [39] and MSigDB [47] (Supplementary
Information). The enrichment was calculated as the fraction of gene members in each module that were
also part of each control list, averaged across the top modules considered. The top 10 modules inferred
by ModulOmics generally outperformed the top 10 modules identified with the four single omic approaches
and with MEMCover, HotNet2 and TiMEx across the seven positive and three negative control lists tested
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(Figure 2A). Specifically, ModulOmics achieved an enrichment score of close to 1 across all three cancer
types in the three largest positive control lists: the manually curated resource NCG5, the positive AGO list
(PosAGO), and the Union All list (PosUnionAll), consisting of between 1, 429 and 2, 144 known drivers.
Importantly, the modules inferred by ModulOmics scored close to 0 in all three negative control list assessed,
namely the complete negative AGO list (NegAgoFull), the curated negative AGO list (NegAGOClean), and
the negative list introduced in [15] (NegDavoli), consisting of between 3, 272 and 9, 457 known non-driver
genes.

In addition, ModulOmics also outperformed the other methods when evaluating the highest scoring 5,
10, 15, 20, or 30 modules of any size (Figure 2B), or when separately evaluating modules of fixed sizes
(Figure S4). Among the competing methods, PPI-based and co-regulation-based scorings exhibited good
performances, MEMCover performed well only in the case of certain group sizes, while co-expression, mutual
exclusivity, HotNet2 and TiMEx generally performed poorly on both positive and negative control metrics.
We further evaluated the contribution of each single omic data source to the driver genes enrichment by
computing reduced versions of the ModulOmics score, each time with a single omic removed. We found that
integrating all four omics data sources improves the enrichment, as compared to using subsets of three omics,
in 90% of the evaluated cases (92% of the positive control lists and 86% of the negative lists). Nevertheless,
the performance of ModulOmics remained fairly robust when using only three omics sources, suggesting that
the method can also be applied in cases when one data source is missing (Figure S5).

One of the features of ModulOmics is that each gene can participate in multiple pathways, hence the
reported modules often overlap (Figure S6). Biologically, this feature is justified by the fact that the known
driver genes are likely network hubs, expected to be functionally connected to multiple other less-known
driver genes into different modules. In order to assess the performance of ModulOmics also in the absence of
overlap among groups, we repeated the driver evaluation while considering the first 20 unique appearances of
genes in the top modules. Consistent with the previous results, ModulOmics outperformed the three other
competitive methods tested (Figure S7).

Driver modules are functionally coherent

An additional metric for evaluating the relevance of the inferred modules concerns their functional coherence,
which we assessed via their enrichment with curated pathways from KEGG [33] (Supplementary Information).
ModulOmics identified key cancer-related pathways, such as pathways in cancer, across all three cancer
types (Figure 3A), without showing preferential enrichment for particular module sizes (Figure S8). In
contrast, HotNet2 identified this pathway only in the GBM and ovarian cancer datasets, and MEMCover
and TiMEx did not identify it at all. Additional highly enriched pathways included apoptosis, cell cycle,
TP53 signaling, mTOR signaling, and the angiogenesis-related VEGF pathway. Interestingly, the set of
enriched pathways also included pathways characterizing other cancers types, indicating shared mechanisms
among malignancies.

To quantify the pathway enrichment performance of ModulOmics, MEMCover, TiMEx and HotNet2, we
counted the number of pathways significantly enriched (Bonferroni-corrected p-value ≤ 0.05) in each of the
top 5, 10 and 15 highest scoring modules (Figure 3B), and computed their average enrichment factor (Fig-
ure 3C). Enrichment p-values and factors were computed with Expander [52] (Supplementary Information).
Overall, ModulOmics identified modules enriched with more general pathways and cancer-related pathways
than the three competing methods, and was the only method for which all highest scoring 10 modules were
enriched with at least one pathway. A high percentage of the genes identified by ModulOmics participated
in known KEGG pathways, reaching an average of 78% across all three cancer types, compared to 43%, as
identified by MEMCover, 39% by HotNet2, and 13% by TiMEx (Table S7). In contrast, less than 5 out
of the 1, 000 random modules generated for computing module significance were significantly enriched with
any known pathway. Finally, we tested the contribution of each omic to pathway enrichment and found that
using all four data sources improves the identification of functionally coherent modules in 92% of the tested
cases (Figure S9).

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2018. ; https://doi.org/10.1101/288399doi: bioRxiv preprint 

https://doi.org/10.1101/288399
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

2

4

6

8

10

12

A

B

C

#
S
ig

n
if
ic

an
tl
y 

 
 e

n
ri
ch

ed
 p

at
h
w

ay
s

Breast GBM Ovarian

-ln(p-value)

 E
n
ri
ch

m
en

t 
fa

ct
o
r

top 5 top 10 top 15

8.6
7.8

9.4

6.2

3.2

2.3
1.8

1.0 0.7
0.2 0.1 0.3

top 5 top 10 top 15

8.0
8.8

8.3

4.2

2.8
2.1

7.8

4.3 4.3

0.0 0.0 0.0

top 5 top 10 top 15

8.0
7.4

6.5

0.4
0.8 0.5

2.7 2.7 2.7
2.2 2.0

1.3

top 5 top 10 top 15

231
207 199

77

54 52
41

28
1827

13

39

top 5 top 10 top 15

170 176 160

197

154
134

83

128 131

0 0 0

ModulOmics MEMCover HotNet2 TiMEx

top 5 top 10 top 15

194 186
170

22 26 17

44 44 44

67 63
42

Modul
Omics

MEM
Cover HotNet2 TiMEx

p53 signaling pathway
Wnt signaling pathway

VEGF signaling pathway
Ubiquitin mediated proteolysis

Tight junction
Thyroid cancer

T cell receptor signaling pathway
Small cell lung cancer
Renal cell carcinoma

Regulation of actin cytoskeleton
Prostate cancer

Progesterone mediated oocyte maturation
Phosphatidylinositol signaling system

Pathways in cancer
Pancreatic cancer

Non small cell lung cancer
Neurotrophin signaling pathway

Neuroactive ligand receptor interaction
Natural killer cell mediated cytotoxicity

Melanoma
MAPK signaling pathway
Insulin signaling pathway

Inositol phosphate metabolism
GnRH signaling pathway

Glioma
Fc epsilon RI signaling pathway

ErbB signaling pathway
Endometrial cancer

Colorectal cancer
Chronic myeloid leukemia

Chemokine signaling pathway
Cell cycle

Cell adhesion molecules (CAMs)
Bladder cancer

B cell receptor signaling pathway
Apoptosis

Acute myeloid leukemia

Breast

Modul
Omics

MEM
Cover HotNet2 TiMEx

p53 signaling pathway
mTOR signaling pathway
VEGF signaling pathway
Type II diabetes mellitus

Toll like receptor signaling pathway
Taste transduction

T cell receptor signaling pathway
Small cell lung cancer
Renal cell carcinoma

Regulation of actin cytoskeleton
Prostate cancer

Progesterone mediated oocyte maturation
Phosphatidylinositol signaling system

Pathways in cancer
Pancreatic cancer

Non small cell lung cancer
Melanoma

Leukocyte transendothelial migration
Jak STAT signaling pathway

Inositol phosphate metabolism
Glioma

Focal adhesion
Fc gamma R mediated phagocytosis

Fc epsilon RI signaling pathway
ErbB signaling pathway

Endometrial cancer
Cytokine cytokine receptor interaction

Colorectal cancer
Chronic myeloid leukemia

Cell cycle
Bladder cancer

B cell receptor signaling pathway
Arginine and proline metabolism

Apoptosis
Acute myeloid leukemia

GBM

Modul
Omics

MEM
Cover HotNet2 TiMEx

p53 signaling pathway

VEGF signaling pathway

Tight junction

Thyroid cancer

Small cell lung cancer

Prostate cancer

oocyte maturation

Pathways in cancer

Pancreatic cancer

Non small cell lung cancer

Neurotrophin signaling pathway

Melanoma

Glioma

Focal adhesion

Fc gamma R mediated phagocytosis

Fc epsilon RI signaling pathway

ErbB signaling pathway

Endometrial cancer

Colorectal cancer

Chronic myeloid leukemia

Cell cycle

Bladder cancer

Acute myeloid leukemia

Ovarian

Progesterone mediated

Figure 3: The driver modules inferred by ModulOmics are enriched with cancer driver pathways. A) Mean
hyper-geometric p-value of the KEGG pathways significantly enriched in the top 10 modules identified by ModulOmics (red),
HotNet2 (purple) and TiMEx (light blue). B) Average number of KEGG pathways significantly enriched in the top modules,
indicated above the bars. The opaque bars indicate cancer-related pathways only. C) Average enrichment factors for top
modules. The numbers displayed in panels B and C are normalized per module. Enrichment p-values and factors were
computed with Expander [52].

Driver modules in breast cancer subtypes recapitulate known mechanisms and
suggest novel functionalities

Next, we applied ModulOmics on molecularly defined subtypes of breast cancer, classified using the mRNA
PAM50 classification [36] into Basal (125 patients), Her2 (61), Luminal A (364) and Luminal B (174) (Table
S8 and Figure S10). Across all subtypes, the genes in the top 20 modules (Figure 4A) were highly enriched
with cancer drivers (66% were part of the NCG5 positive control list and 70% were part of the UnionAll
positive list, while only 4% were part of the AGOClean negative control list) and KEGG pathways (44
enriched pathways, 24 of which were directly related to cancer, average p-value 0.0063). The top drivers
identified by ModulOmics included TP53, AKT1, mTOR and PTEN, as well as subtype-signature genes such
as BRCA1 and BRCA2 for Basal [49, 50], CDH1 for Luminal A and B [24], MAP3K1 for Luminal B [5] and
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Figure 4: Modules inferred in mRNA-classified breast cancer subtypes reflect various levels of subtype ag-
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of genes in the top 20 modules, we computed their occurrence frequency in the top 20 modules, as well as their SNV and
CNA alteration frequencies across the patient cohort. These genes are enriched with known cancer drivers and pathways, and
could not have been identified if relying on SNV and CNA alteration frequencies alone. White corresponds to absent genes
(0% frequency). B) Detailed PPI network view of the subset of genes in panel A that are either known drivers, or part of
KEGG pathways. The displayed physical protein interactions underline cancer-related functional associations, such as the role
of the PIK3A pathway in Luminal A tumors. C) Selected list of significantly enriched GO pathways across the top 20 modules
(Figure S11 displays the full list), reflecting the aggressiveness of the Basal and Her2 subtypes, compared to Luminal A and
Luminal B. Enrichment hyper-geometric p-values were computed with Expander [52]. White corresponds to absent pathways.
D) Module scores for top Luminal A modules suggesting two different biological roles of the tumor suppressor PTEN. E) The
highest ranking Luminal A module in an independent mass spectrometry proteomics dataset separates cancerous from healthy
patient tissues. TP53 loss is measured by its downstream regulated protein CDC2, CDH1 loss is measured by its downstream
regulated protein CTNNB1, and FOXA1 gain is measured directly.

EGFR for Her2 [32]. An alternative strategy to ModulOmics for identifying relevant drivers would have been
selecting genes with highest SNV or CNA alteration frequencies [54]. However, in that case, a substantial
portion of the enriched gene list identified by ModulOmics would have been overlooked, as 34% fall below
the SNV median frequency per gene and 40% fall below the CNA median frequency per gene (Figure 4A).
Therefore, integrative approaches such as ModulOmics are essential to this end.

A detailed PPI network view of the genes identified by ModulOmics showed that TP53 is a key player in
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tumor progression for all subtypes, while subtype-specific key players included EGFR for Her2 and BRCA1
for Basal (Figure 4B). The network view highlighted the higher rate of PPI-connected established tumor
suppressors in the Basal subtype, as compared to Luminal A, matching the aggressive nature of these tumors.
In addition, Luminal A modules were characterized by a higher occurrence of PI3K pathway members, such as
PIK3R1, AKT1, mTOR and PTEN, as previously observed [5]. The top modules identified by ModulOmics
were further highly enriched with functional relations, highlighting different GO annotations for each subtype
(Figure 4C). These results captured the increased pathway activity of key pathways required for tumor
progression, such as apoptosis, cell cycle process or cell proliferation, as well as the known aggressiveness of
Basal and Her2 tumors, reflected in their higher pathway enrichment.

The highest ranking module for both Luminal A and Luminal B was TP53 and CDH1, two known
functionally associated drivers in the Luminal subtypes [5, 4]. The top Her2 modules were characterized by
the recurrent appearance of the nuclear export gene XPO1 together with TP53, which is one of its known
targets [18, 9]. Interestingly, the mechanism of TP53 nuclear export by XPO1 is well characterized [16],
yet no pivotal role was suggested specifically in Her2 breast cancer. The highest ranking module of the Basal
subtype consisted of RB1, BRCA1, NF1, and CREBBP. CREBBP is a BRCA1 activator [35] and, since
both BRCA1 and CREBBP are involved in DNA repair, this module potentially reflects the altered DNA
damage repair mechanism specific to Basal tumors [34].

One of the frequently occurring genes in the top Luminal A modules was the tumor suppressor PTEN,
occurring both in modules reflecting its canonical PI3K pathway role, and in modules suggesting a non-
canonical role (Figure 4D). The canonical PTEN module also included PIK3R1 and AKT, thus supporting
the known mutual exclusivity pattern of mutations within the PI3K pathway [42]. The module suggesting
the non-canonical role of PTEN also included CDH1 and TP53, supporting the hypothesis that PTEN
regulates cell proliferation by increasing the binding of CDH1 to APC\C, a complex known for its tumor-
suppressive function, and by increasing TP53 acetylation following DNA damage [44]. Indeed, according
to the TRRUST database [21], PTEN and CDH1 are co-regulated by two common transcription factors,
namely STAT3 and NFKB1.

In order to further explore the clinical relevance of the highest scoring driver modules, we examined how
well they can distinguish healthy tissues from cancerous ones in an independent omic data source. To this
end, we used a recently published proteomics dataset consisting of 62 samples of Luminal A and healthy
tissues [40, 51], and focused on the two highest scoring Luminal A modules: TP53 and CDH1, and FOXA1
and TP53, respectively. These top two modules significantly separated the Luminal A cancerous tissues from
the healthy ones (p-value 1.6e−06 and p-value 6.2e−06 respectively, KolmogorovSmirnov (KS) test, Figure
4E). For comparison, neither GATA3 or PIK3CA, the most frequently mutated genes in Luminal A, nor
TP53, the most frequently mutated gene in breast cancer, were able to significantly separate the two types
of tissue (p-value 0.065, p-value 0.054, and p-value 0.69, respectively, KS test). Similarly, random modules
of the same size did not significantly separate the tissues (p-value 0.14, averaged over 1, 000 random modules
generated by sampling subsets of proteins from the proteomics dataset, KS test).

An alternative way to study breast cancer progression is by stratifying patients according to immunohis-
tochemistry results assessing the HER2, ER and PR receptors (Supplementary Information). To this end,
we separated our patient cohort into the following subtypes: TN (116 patients), Her2-enriched (30), Lumi-
nal A (477) and Luminal B (88), and used ModulOmics to infer modules for each subtype (Table S9 and
Figure S12). Similarly to the mRNA-based classification, the genes part of the highest scoring 20 modules
were enriched with cancer drivers (67% were part of the NCG5 positive control list and 59% were part of
the UnionAll positive list, while only 2% were part of the AGOClean negative control list) and with known
cancer pathways (46 enriched pathways, 25 of which were directly related to cancer, average p-value 0.01,
Figure S13A). Across subtypes, the highest scoring modules highlighted a unique alteration pattern for the
tumor suppressor TP53. In Luminal A, Luminal B and Her2-enriched, TP53 was mutually exclusive with
other tumor suppressors, such as PTEN and BRCA1 in Luminal B, or BRCA2 in Luminal A, which led to
ModulOmics inferring these groups as high scoring modules. However, in TN, TP53 was mutually exclusive
with BRCA2, but not with other key TN drivers, such as BRCA1, PTEN or RB1, as both the pairwise
and the group mutual exclusivity scores of TP53 and these three drivers were 0 (Figure S13B). This sug-
gests a TN-specific concerted down-regulation of multiple tumor suppressors, namely TP53, BRCA1, RB1
and PTEN, potentially contributing to the bad prognosis of this subtype. Taken together, these results
imply that the level of mutual exclusivity in tumor suppressors might reflect the aggressiveness of the tumor
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subtype [38, 45, 5, 14].
Finally, we used an independent omic data source (RPPA) to further evaluate the functional connectivity

among the tumor suppressors PTEN, BRCA1, RB1, and TP53. In general, evaluating protein measure-
ments limits automatic and exhaustive analyses, since loss of function can lead to missing data, requiring
the identification of downstream regulated proteins that can serve as surrogates. PTEN was found to be
downregulated, while phosphorylated AKT, which is suppressed by PTEN, was upregulated. BRCA1 loss
was accounted for by its downstream regulated protein CYCLIN B1, which was highly expressed. RB1
showed an overall low expression in most samples, while the RB1-related CYCLIN-D1 was lowly expressed
mostly in TN tumors (Figure S13C). TP53 loss was accounted for by its target CDK1, which was also highly
expressed. CDK1, CYCLIN B1 and AKT, the tumor promoters regulated by TP53, BRCA1 and PTEN,
were significantly upregulated in TN tissues compared to the other subtypes (p-value 1.2e−16, KS test),
while the tumor suppressors PTEN, RB1, and BRCA2 were significantly downregulated (p-value 2.9e−09,
KS test, Figure S13D). These results suggest that these two groups of genes can be used to separate TN
from the other subtypes.

Discussion

ModulOmics is a novel method to de novo identify molecular cancer driver pathways, based on the in-
tegration of connectivity within protein-protein interaction networks, mutual exclusivity among SNV or
CNA alterations, transcriptional co-regulation, and RNA co-expression, into a single probabilistic score.
ModulOmics uses an efficient two-step optimization procedure to first find good initial solutions using linear
approximation, and then refine these solutions with stochastic search. We demonstrate the performance of
ModulOmics in identifying modules enriched with known cancer driver genes and pathways in three large-
scale multi-omics TCGA datasets: breast cancer, GBM, and ovarian cancer. We further investigate breast
cancer subtypes and find that some of the highest scoring modules are known to be involved in cancer-
related molecular mechanisms, while others suggest novel functionalities. We evaluate these results using
an independent patient cohort and independent proteomic and phosphoproteomic datasets. In addition, we
show that the top modules inferred by ModulOmics can be used to reliably separate cancerous from normal
tissues in Luminal A samples, as well as to distinguish TN samples from the other subtypes.

ModulOmics is a freely available open-source software. The framework is designed to be flexible, such
that any of the four sources of evidence employed here can be excluded or replaced with new sources of
evidence. In addition, since ModulOmics integrates independent sources of information, newly added data
can also originate from different patient cohorts, such that single omic datasets from other cancer studies
can be readily integrated. Moreover, the webserver implementation of ModulOmics can be used to evaluate
the ModulOmics score of any user-defined gene set, on the basis of any of the TCGA datasets analyzed here.
This application can be very useful in situations when gene sets were deduced from separate biological or
computational analyses.

Some of the modules identified by ModulOmics may merit further experimental investigation. For exam-
ple, on the basis of the highest ranking Basal module (RB1, BRCA1, NF1, and CREBBP), we propose that
further validation experiments could evaluate the clinical implications of using the CREBBP inhibitor in
BRCA1 patients, similarly to PARP1, another DNA repair agent successfully used in treatment [28]. Based
on the recurrent joint occurrence of XPO1 and TP53 in top Her2 modules, we propose to further evalu-
ate the role of the export mechanism of XPO1 leading to TP53 depletion in the nucleus, thus decreasing
its tumor suppression capability. The role of XPO1 in tumor progression was previously investigated in a
preclinical context of TN treatment [10, 31]. Here, we suggest it may also play a role in the Her2 subtype.
Additionally, in the future, once high-throughput single-cell profiling of tumors becomes routinely performed
in the clinic, ModulOmics can be used to identify functional connections derived from multiple tumor cells of
single cancer patients, rather than a patient cohort. In this way, the design of personalized cancer therapies
based on the tumor heterogeneity of each patient can be facilitated.

A unique feature of ModulOmics is that its scoring function not only uses different types of data, but
also integrates different types of statistical tests distinctly designed for each data type (such as the mutual
exclusivity test for mutational data, or the proximity-based PPI score). In contrast, previous approaches
generally apply the same methodological framework to all data types [37]. Integrating different statistical

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2018. ; https://doi.org/10.1101/288399doi: bioRxiv preprint 

https://doi.org/10.1101/288399
http://creativecommons.org/licenses/by-nc-nd/4.0/


tests is empowered by online normalizing each score throughout the search, as well as by optimizing the
different scores simultaneously, rather than sequentially. In addition, the weights of the different scores can
be optimized from the data, with the aim of identifying groups representative of a functional phenotype
of interest. To exemplify this, we inferred optimal omics weights by training a classifier to identify groups
enriched with the Cell Cycle GO term from the breast cancer top modules reported by ModulOmics. The
classifier assigned the weight 0.61 to the ME score, 3.61 to the PPI score, 1.83 to the co-regulation score and
1.93 to the co-expression score. All the four data sources were hence found to contribute to the classification
of modules associated with the GO term, with the scores reflecting physical interactions carrying more
weight, as would be expected in the case of phenotypes related to biological processes.

ModulOmics can be extended beyond finding modules in cancer. For example, the PPI, co-regulation
and co-expression scores can be used to detect protein complexes. As a proof-of-concept, we collected 1, 112
known biological complexes from CORUM [41] (see details in the Supplementary Information) of sizes 2,
3 and 4, as well as equal number of random protein groups and calculate their ModulOmics scores. We
trained a classifier to distinguish known complexes from random groups based on the three scores, reaching
an AUPR of 0.84 for all module sizes (Figure S14) and of up to 0.9 for modules of size 4. These results
indicate that the ModulOmics scores are informative in identifying new biological connections outside the
scope of cancer, making the tool broadly applicable.

STAR Methods

Model

Given a set G = {G1, . . . , Gn} of genes and a collection M = {M1, . . .Mm} of models for different data
types, we are interested in computing SG, the ModulOmics probabilistic score of the set G, reflecting how
likely are the genes in G to be functionally connected. SG is computed as the mean of m probabilistic scores
P (G |Mk). Each of these m scores represents how strongly functionally connected the genes in G are, under
different models:

SG =
1

m

m∑
k=1

P (G |Mk) (1)

The models we consider here are: connectivity among protein-protein interactions (M1), mutual exclusivity
among point mutations or copy number alterations (M2), transcriptional co-regulation (M3), and gene co-
expression (M4).

PPI Connectivity

Model M1 assesses the functional connectivity of the set G at the protein level, by computing the probability
of G being connected in the PPI network. Starting with a fully-connected literature-based PPI network
(HIPPIE) and its associated interaction probabilities, we define, for each pair of genes (Gi, Gj), con (Gi, Gj)
as the probability of the most likely path connecting Gi and Gj , i.e., the product of the probabilities of the
path’s edges. The computation of con(Gi, Gj) for all Gi, Gj ∈ G yields a complete graph on G, denoted
G(G). If we denote the edge set corresponding to any graph H by E(H), then the connectivity of the set G
is defined as the sum of the probabilities over all connected subgraphs spanning G, as follows:

P (G |M1) =
∑

c∈C(G)

∏
(Gi,Gj)∈E(c)

con(Gi, Gj)
∏

(Gi,Gj)∈E(G(G))\E(c)

(1− con(Gi, Gj)) (2)

where C(G) is the collection of connected subgraphs spanning G(G).

Mutual exclusivity

Model M2 estimates the degree with which DNA alterations support the functional connectivity of the genes
in G. Following the mutual exclusivity framework defined in the context of waiting times to alteration
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introduced in TiMEx [12] and pathTiMEx [13], P (G |M2) is computed as the degree of mutual exclusivity
of the set G, as follows:

P (G |M2) =

{
µG if p-value ≤ 0.05

0 otherwise
(3)

where both µG and p-value are reported by TiMEx. The TiMEx probabilistic graphical model estimates
µG, which is the mutual exclusivity intensity of the group G, via a nested likelihood ratio test between an
independence model and an alternative, mutual exclusivity model. The independence model assumes that
the genes evolve independently during disease progression, whereas the mutual exclusivity model assumes
that only the gene with the shortest waiting time in a functionally connected group of genes will fixate.
The parameter µG represents the probability that a group of genes is perfectly mutually exclusive, i.e.,
that no two genes in G share alterations in the same patient. Therefore, µG = 1 corresponds to perfect
mutual exclusivity, and µG = 0 corresponds to independence. The p-value in Equation 3 is the probability
of observing a given alteration pattern of the set G under the null hypothesis of independence, as described
in [12] and [13].

Co-regulation

Model M3 assesses the functional connectivity of the genes in G on the basis of their transcriptional regula-
tion. The co-regulation score P (G |M3) is defined as the fraction of genes in G which are co-regulated by
at least one common active transcription factor,

P (G |M3) =
|Gco-reg|
|G|

(4)

where Gco-reg ⊆ G is the maximal set in which all genes are regulated by at least one common active
transcription factor. A transcription factor is considered active if it is differentially expressed (z-score of fold
change is either > 1 or < −1) in at least 25% of samples. Alternatively, other operators such as the average
could be used, however choosing the maximal set reflects the co-regulation of the entire group, rather than
particular subgroups.

Co-expression

Model M4 evaluates the functional connectivity of the genes in G based on their transcriptional profiles. Let
a gene be defined as expressed if its expression averaged across all samples is above the kth q-quantile, and
let Gexp ⊂ G be the set of all expressed genes. Then, the co-expression score of G is defined as the mean
among all pairwise Spearman correlations of the expression profiles of the genes in Gexp, and 0 corresponding
to the remaining pairs, in which at least one of the genes is not expressed,

P (G |M4) =

∑
Gi,Gj∈Gexp

|cor (Ei, Ej) |(|G|
2

) (5)

where Ei is the continuous expression level of gene Gi across all samples, and cor(Ei, Ej) is the Spearman
correlation among the expression profiles of Gi and Gj . For this application, we chose k = 2 and q = 4, i.e.,
the 2nd quartile. The choice of Spearman correlation is justified by not necessarily assuming a linear relation
between expression profiles. Missing expression data can be handled by assigning the respective genes null
expression profiles, leading to their consideration as unexpressed genes.

Optimization procedure

Given a large cancer dataset, identifying groups of functionally connected genes is challenging, as the number
of candidate groups increases exponentially with maximal group size. Therefore, we employ a two-step
procedure to optimize the global ModulOmics score in equation 1. First, in order to identify a large set of
good initial solutions, we formulate the optimization problem as an ILP, and optimize a linear approximation
of the global ModulOmics score. Second, we perform a stochastic search starting from these initial solutions
and using the global score.
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ILP

The first step of our optimization procedure linearly approximates the exact scores of the set G under each
of the four models Mk, by decomposing them into pairwise scores. For each model Mk, the score of each
pair of genes (Gi, Gj) is denoted by wk

GiGj
and equals to P ((Gi, Gj) |Mk), further z-scored and normalized

to [0, 1]. The goal of the optimization routine is to identify candidate subsets G with high total scores wG,
computed as:

wG =
m∑

k=1

∑
Gi,Gj;i<j∈G

wk
GiGj

(6)

The ILP retrieves sets G of fixed size K with maximal wG score. Thus, G is the maximal weight subgraph
of size K in a weighted complete graph with vertices V , corresponding to a large set of genes, and edges
Ei,j = {wViVj

| Vi, Vj ∈ V }. The ILP consists of the following set of binary vertex variables V(i) denoting
the inclusion of vertex Vi in a set G, and edge variables E(i,j), denoting the inclusion of edge Ei,j in G:

V(i) ∈ {0, 1} ∀ Vi ∈ V (7)

E(i,j) ∈ {0, 1} ∀ Vi, Vj ∈ V, i < j (8)

and the objective function:

maximize
∑

Vi,Vj∈V, i<j

wViVj · E(i,j) (9)

under the constraints:

E(i,j) − V(i) ≤ 0 (10)

E(i,j) − V(j) ≤ 0 (11)

V(i) + V(j) − E(i,j) ≤ 1 (12)∑
Vi∈V

V(i) = K (13)

∑
Vi,Vj∈V,i<j

E(i,j) =
K × (K − 1)

2
(14)

∀ Vi, Vj ∈ V, i < j. Constraints 10, 11, and 12 ensure that the retrieved set is a clique, and constraints
13 and 14 ensure that the clique is of size K. Let us note that identical solutions would be retrieved by
discarding either constraint 13 or 14, yet we include both for efficiency considerations. With each candidate
set G found, we add constraint 15 to prevent the ILP to choose the entire set G again:∑

i∈G
V(i) ≤ K − 1 (15)

Stochastic search

We use 200 high-ranking modules identified by the ILP as seeds for a stochastic search that expands the
search space and optimizes directly the exact score of the modules, rather than their pairwise approximations.
The stochastic search uses the seed modules as starting points and aims to find the modules with global
optimal score by offering possible exchanges of module members. The seed modules are clustered into 10
clusters using k -means, and a search cycle starts independently from each cluster, in order to increase the
chances of finding modules with global optimal scores. Each of these 10 cycles iterates among the modules
in its cluster and tries to improve each one by suggesting 20 possible exchanges of a random module member
with another random gene. If the score improves, then the exchange is accepted and the module is updated
accordingly. Each cycle reports its 5 highest scoring modules. The modules reported by all 10 cycles
are finally aggregated and re-ranked. Sensitivity analyses show that the performance of ModulOmics is
robust under different parameter choices (Supplementary Information). Each run of the ILP followed by the
stochastic search yields optimal modules of fixed size K. To retrieve the top modules in a range of sizes we
run the tool with K ranges from 2 to 4, aggregate the results and retrieve the top modules regardless of
their size.
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