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Abstract 
 
Recent global progress in scaling up malaria control interventions has revived the goal of 
complete elimination in many countries. Decreasing transmission intensity generally leads to 
increasingly patchy spatial patterns of malaria transmission, however, and control programs must 
accurately identify remaining foci in order to target interventions efficiently. In particular, 
mosquito control interventions like bed nets and insecticide spraying are best targeted to 
transmission hotspots, and the role of connectivity between different pockets of local 
transmission becomes increasingly important since humans are able to move parasites beyond 
the limits of mosquito dispersal and re-introduce parasites to previously malaria-free regions. 
Quantifying the connectivity between regions due to human travel, measuring malaria 
transmission intensity in different areas, and monitoring parasite spatial spread are therefore key 
issues for policy-makers because they underpin the feasibility of elimination and inform the path 
to its attainment. To this end, recent efforts have been made to develop new approaches to 
incorporating human mobility into spatial epidemiological models, for example using mobile 
phone data, and there has been a surge of interest in collecting spatially informative parasite 
samples to measure the genomic signatures of parasite connectivity. Due to their complicated 
life-cycles, Plasmodium parasites pose unique challenges to researchers in this respect and new 
methods that move beyond traditional phylogenetic and population genetic tools must be 
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developed to harness genetic information effectively. Here, we discuss the spatial epidemiology 
of malaria in the context of transmission-reduction interventions, and the challenges and 
promising directions for the development of integrated mapping, modeling, and genomic 
approaches that leverage disparate data sets to measure both connectivity and transmission.  
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Main Text 
 
The spatial dimensions of malaria control and elimination strategies  
 
Assessing variation in the spatial and temporal distribution of infection, or in the distribution of a 
particular pathogen phenotype like drug resistance, is an important prerequisite for any infectious 
disease control effort. For malaria, these considerations are critical across the range of 
transmission settings (Figure 1). In pre-elimination settings for example (e.g. E-2020 countries 
including Swaziland, Costa Rica, China, and South Africa [1]) surveillance programs must locate 
and keep track of imported infections, conduct contact tracing, and ensure that onward 
transmission resulting from importation events are extinguished rapidly. For countries with 
intermediate transmission (e.g. Bangladesh, Namibia, Kenya), control programs must identify 
the transmission foci contributing to infections in the rest of the country and locate importation 
hotspots, since these will require different levels of transmission reduction versus surveillance 
and treatment efforts. Even in high transmission settings (e.g. Uganda, Nigeria, Democratic 
Republic of Congo, Myanmar), which have traditionally focused on monitoring clinical cases 
and scaling up control and treatment strategies across the country, the renewed interest in 
measuring transmission has also raised the possibility of more effective program evaluation, to 
assess the impact of interventions on transmission in different regions. Of particular importance, 
in moderate to high transmission settings, coordination between different regions is likely to be 
important when human mobility between them is frequent.  
 
Epidemiological models of malaria spatial epidemiology 
 
A variety of modeling approaches have been used to characterize the spatial dynamics of malaria 
[2] and to allocate resources effectively. On the one hand, geostatistical modeling approaches 
have been used to generate maps of various epidemiological quantities, such as parasite 
prevalence [3] and intervention impact [4]. These maps derive from methods that interpolate 
across spatially idiosyncratic data sources, providing a spatially smoothed estimate of 
epidemiological metrics that are relevant for spatial targeting of interventions. On the other hand, 
there are important aspects of spatial malaria epidemiology that interpolation methods cannot 
capture. First, different assumptions about connectivity can lead to differences between the areas 
that are identified as hotspots for incidence and those that are hotspots for transmission [5], with 
the latter being the most ideal targets for intervention. Second, thinking beyond all but the most 
local scales, there are a myriad of ways that control efforts across different areas could be 
coordinated. By characterizing structure in malaria transmission across different locations, 
groups of locations can be identified such that transmission within groups is greater than it is 
between them [6, 7]. Combined with transmission models that take into account numerous 
nonlinear feedbacks between control and transmission [8, 9] and that are capable of accounting 
for location-specific intervention packages and their impacts [10, 11], these approaches could in 
theory suggest an optimal elimination strategy. In practice, there are shortcomings of both 
currently available data and models.  
 
Quantifying connectivity is one of the most important aspects of characterizing spatial dynamics 
of malaria, yet it can be one of the most vexing. Call data records and other novel data sources 
on human travel have offered a great deal of hope in recent years [5, 7, 12], but those methods 
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have their challenges, including variable cell tower densities, mobile phone market 
fragmentation, and possible disconnects between who is making calls and who is transmitting 
parasites [13]. Traditional travel survey data may be more directly related to known symptomatic 
individuals, however these data are often limited in scope and accuracy [14]. Ultimately, models 
are necessary to appropriately combine information about human mobility with a variety of 
epidemiological data to arrive at an estimate of how parasite movement is structured. Among 
other data sources that figure into this process of elucidating patterns of parasite movement, 
parasite genetic signals may offer some of the richest information about these otherwise elusive 
patterns of parasite movement. This signal may be easiest to identify in low transmission settings 
[15] for reasons discussed further below.  
 
Although it was not explicitly spatial, a recent analysis of temporal trends in malaria dynamics 
highlights the potential value of using transmission models to assimilate parasite genetic and 
other data to make epidemiologically meaningful inferences [16]. In this work, 24-SNP barcodes 
from 1,007 parasite samples collected over an eight-year period were used together with a 
detailed model of transmission dynamics within a city in Senegal to infer that there had been a 
decline in transmission followed by a rebound. The model and genetic data worked together by 
determining which transmission scenarios had the highest likelihood of generating patterns 
consistent with the genetic data. In this example, parasite genetic data offered additional support 
about temporal trends in support of the epidemiological analysis. We propose that the marriage 
of parasite genetic data and models in a spatial context may offer unique insights into the 
epidemiology of malaria. 
 
Applications of parasite genetics to spatial epidemiology of malaria  
 
Molecular tools may be most valuable when epidemiological information is scarce and/or 
mobility data is unavailable, to quantify changes in transmission and identify the patterns of 
pathogen transmission between different locations. Genomic surveillance and phylogenetic 
analyses that relate the geographic distribution of genetic signals within and between populations 
have enabled near real-time estimation of transmission chains for non-sexually recombining, 
rapidly evolving pathogens (e.g. Ebola, influenza) [17, 18]. This nascent field of pathogen 
phylogeography has provided key insights into the routes of pathogen introductions and spread, 
particularly for viral diseases. However, directly extending these methods to a pathogen like 
malaria - a sexually recombining eukaryotic parasite with a complex lifecycle - requires both 
molecular and analytic advancements that are still at early stages of development. In particular, 
the malaria parasite Plasmodium falciparum undergoes frequent sexual recombination, and is 
often characterized by multi-genotype infections and low density chronic blood-stage infections 
that can last for months in asymptomatic individuals. These complexities mean that standard 
population genetic or phylogenetic approaches do not resolve relationships between parasite 
lineages effectively [19]. 
 
 
Most national control programs are interested in spatial scales that are operationally relevant: 
namely, within a country or between countries if they are connected by migration. Population 
differentiation on international and continental geographic scales can be identified using 
principal component analysis (PCA), phylogenetic analysis and FST [20-24], but these methods 
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are not powered to detect finer-scale differentiation. This is because (1) recombination violates 
the assumptions underpinning phylogenetic analyses [25]; and (2) PCA and FST are influenced 
by drivers of genetic variation that act on a long time scale (i.e. the coalescent time of parasites) 
such that, if migration happens multiple times during this time frame, genetic drift can dominate 
and lead to little or no signal of differentiation among populations [26, 27]. In contrast, methods 
that exploit the signal left by recombination, rather than treating it as a nuisance factor, may have 
the power to detect geographic differentiation on spatial scales relevant for control programs. 
Recombination occurs in the mosquito midgut when genetically distinct gametocytes come 
together to form a zygote, leading to the production of sporozoites (and hence onward infections) 
that are highly related. These highly related parasites will tend to have genomes with a high 
degree of identity over long contiguous blocks, which can be detected given sufficient density of 
informative markers. Perhaps the simplest measure of genetic similarity is identity by state 
(IBS), which is defined as the proportion of identical sites between two genomes and is a simple 
correlate of genetic relatedness between parasites. IBS, however, makes no distinction between 
sites that are identical by chance and those that are identical due to shared ancestry, making it 
sensitive to the allele frequency spectrum of the particular population under study. Analyses that 
are probabilistic and therefore account for identity by chance (e.g. STRUCTURE [28]) provide 
better resolution, but ultimately linkage disequilibrium-based methods, such as identity by decent 
(IBD) [29, 30] and chromosome painting [31], which both account for identity by chance and 
harness the patterns of genetic linkage disequilibrium that are broken down by recombination, 
are more sensitive to recent migration events and thus can be powerful at smaller geographic 
scale.  
  
In low transmission settings, such as Senegal and Panama, STRUCTURE as well as IBS (which 
approximates IBD, albeit with more noise), can often be used to cluster cases together and infer 
transmission patterns within countries [32-34]. In intermediate transmission settings, such as 
coastal regions of Kenya and border regions of Thailand, where genetic diversity is higher, IBS, 
IBD, and relatedness based on chromosome painting have been shown to recover genetic 
structure over populations of parasites on local spatial scales [27, 35]. However, due to 
dependence on allele frequency spectra, IBS is not as easily comparable across data sets, and as 
mentioned above, can be overwhelmed by noise due to identity by chance. Moreover, all of these 
methods currently have limited support for polyclonal samples. In high transmission settings, the 
complexity of infection (COI) is very high, making it difficult to calculate genetic relatedness 
between parasites within polyclonal infections or estimate allele frequencies across polyclonal 
infections. Methods are available to phase parasite genetic data within polyclonal infections [36], 
while THE REAL McCOIL [37] has been developed to infer allele frequencies and COI 
simultaneously, allowing downstream calculation of FST. However, to fully characterize genetic 
structure at fine scales in high transmission settings, new methods are needed that estimate IBD 
and other relatedness measures to infer ancestry between polyclonal infections. Indeed, across all 
spatiotemporal scales we propose that rather than being defined by the transmission of discrete 
(clonal) parasite lineages, malaria epidemiology may be best characterized as the transmission of 
(often polyclonal) infection states. 
 
Current sequencing strategies for genomic epidemiology of malaria 
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The use of the population genetic approaches described above will depend on routine collection 
of parasite genetic data, and must be tailored to the sequencing approach. The discriminatory 
power of the genotyping method will depend on the local epidemiology and transmission setting. 
The two most commonly used approaches, relatively small SNP barcodes and panels of 
microsatellite markers [38], have been extensively used to monitor changes in the diversity and 
structure of the parasite population. However, signals in these markers may not be sufficient to 
distinguish geographic origin, and they have limited resolution in certain transmission settings 
[39, 40]. Increasing the discrimination of each locus will be necessary, and probably more 
effective than sequencing additional loci, for questions relevant to elimination. Identifying a 
panel of optimally informative genetic markers to address a specific question remains a major 
challenge that must balance the cost, throughput, and discriminatory power between (often 
polyclonal) infections. For example, at fine geographic scales high resolution markers with 
representative coverage of the genome may be required as compared to studies comparing distant 
parasite populations; density of sampling infected individuals will also affect the number and 
type of loci required.  
 
With proper consideration, a parsimonious set of genetic targets may be identified as useful to 
answer a number of questions with malaria genomics, but these may be context specific, both in 
terms of the location and the scientific question. Nonetheless, the development of a tool box of 
genotyping methods tailored to answering questions relevant for transmission on different spatial 
scales is an important goal. To this end, several ambitious sequencing studies have begun, and 
over 4,000 Plasmodium falciparum genomes sequenced from different transmission settings 
around the globe (such as the Pf3K Project - https://www.malariagen.net/data/pf3k-pilot-data-
release-3) [41-43]. These genetic data are all publicly available, providing a crucial framework to 
build upon when designing more local, sequence-based epidemiological studies that balance the 
trade-off between the number of genetic loci evaluated with the quality of the data (e.g. depth of 
sequence coverage) for each parasite sample. Genomic sequencing methods are evolving rapidly 
towards high throughput and low-cost deep sequencing approaches that can be done on routinely 
collected patient samples, allowing for evaluation of even asymptomatic, low density infections 
e.g. by selective enrichment of parasite DNA [44, 45]. Moving forward, we must ensure that rich 
metadata are also made easily available in the context of genome sequences, so that links can be 
made to epidemiological and ecological variables and models.  
 
Combining data layers to map malaria  
 
In concrete terms, we want to be able to clearly identify if two locations are epidemiologically 
linked. However, given the current methods available and in development, the complicated 
lifecycle of the parasite, and epidemiology of malaria, any single data source or method is 
unlikely to produce a complete picture of the spatial dynamics of malaria parasites. Figure 2 
illustrates an analytical pipeline linking different spatially explicit data sets to methods and 
ultimately interventions, highlighting current uncertainties and the need to take policy-relevant 
metrics into account when designing sampling frameworks. In particular, we believe that future 
development should focus on identifying how these different types of data can be combined and 
integrated to provide a more complete picture of connectivity and transmission dynamics. If we 
view this problem in terms of a simplified traditional medical statistic, malaria parasite data have 
a high false negative rate (the analysis mostly underestimates relatedness between parasites) 
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whereas connectivity data inferred from mobile phone data or other proxy measures of travel 
have a high false positive rate (the analysis mostly overestimates the number of 
epidemiologically relevant connections). Ideally, additional joint inference methods that combine 
these data sources would help improve the type I (false positivity rate) and type II (false 
negativity rate) errors in each type of data.  
 
These new data streams therefore offer great potential, but understanding how to effectively 
combine them in ways that take into account the biases and strengths of each data type will 
require significant research investment. Furthermore, making these methods relevant for 
implementation is a consideration that must be at the forefront of research efforts. For example, 
the ongoing availability of each data stream, the feasibility of implementing the analytical 
pipeline in the context of the national control program, and the capacity building required to do 
so, will ultimately determine the impact of these approaches. This means that tools must provide 
clear estimates of uncertainty, and will need to be straightforward to use in different contexts, 
easy to communicate, and generalizable.  
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Figure 1: Actionable insight from genetic epidemiological studies of malaria across a range 
of transmission settings This schematic depicts actionable insight that can be obtained from 
genetic epidemiological studies of malaria across a range of transmission settings, from high 
transmission (pink) on the left to low transmission (grey) on the right. Here both imported (stars) 
and local (points) infections are shown that may origin from different parasite lineages (various 
colors). In high transmission settings, parasites mix panmictically, polyclonal infections are 
common, and the goal is to evaluate the effectiveness of ongoing interventions Genetic correlates 
of declining transmission (e.g. diversity) can provide sensitive indicators of the impact of an 
intervention. At intermediate transmission, parasites may cluster into interconnected populations. 
The goal is to delineate regions into units for targeted intervention, and to identify sources that 
seed transmission for maximally efficient resource allocation. In this setting, models 
incorporating human mobility and genetic measures of parasite relatedness can provide 
directional estimates of connectivity between parasite populations. At very low transmission 
most infections are imported. The goal is to identify origins of imported parasites, quantify any 
onward transmission and, if onward transmission exists, the average length of local transmission 
chains. Models incorporating detailed case data, including genetic data and travel history, can 
reconstruct transmission chains to infer who acquires infection from who and how (WAIFW).  
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Figure 2: The analysis pipeline. Both genetic and epidemiological data can be collected and 
analyzed in order to understand parasite flow (with example data sets and methods listed above). 
Identifying how these two methods can be combined, directly related to policy relevant 
questions, and translated control measures will require the development of novel inference 
frameworks and designed studies (sampling framework) across a range of transmission settings.  
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