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Abstract 1 

Background 2 

Individual variations of white matter (WM) tracts are known to be associated with 3 

various cognitive and neuropsychiatric traits. Diffusion tensor imaging (DTI) and 4 

genome-wide single-nucleotide polymorphism (SNP) data from 17,706 UK Biobank 5 

participants offer opportunity to identify novel genetic variants of WM tracts and 6 

explore the genetic overlap with other brain-related complex traits.  7 

Method 8 

We analyzed the genetic architecture of 110 tract-based DTI parameters, carried out 9 

genome-wide association studies (GWAS) and performed post-GWAS analyses, including 10 

association lookups, gene-based association analysis, functional gene mapping, and 11 

genetic correlation estimation.    12 

Results 13 

DTI parameters are substantially heritable for all WM tracts (mean heritability 48.7%). 14 

We observed a highly polygenic architecture of genetic influence across the genome 15 

(p-value=1.67*10-05) as well as the enrichment of genetic effects for active SNPs 16 

annotated by central nervous system cells (p-value=8.95*10-12). GWAS identified 213 17 

independent significant SNPs associated with 90 DTI parameters (696 SNP-level and 205 18 

locus-level associations; p-value<4.5*10-10, adjusted for testing multiple phenotypes). 19 

Gene-based association study prioritized 112 significant genes, most of which are novel. 20 

More importantly, association lookups found that many of the novel SNPs and genes of 21 

DTI parameters have previously been implicated with cognitive and mental health traits. 22 

Conclusions 23 

The present study identifies many new genetic variants at SNP, locus and gene levels for 24 

integrity of brain WM tracts and provides the overview of pleiotropy with cognitive and 25 

mental health traits.  26 

 27 

 28 

 29 

 30 
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 3 

Introduction 1 

Complex brain functions rely on dynamic interactions between distributed brain areas 2 

operating in large-scale networks. Consequently, the integrity of white matter 3 

connections between brain areas is critical to proper function. Microstructural 4 

differences in white matter (WM) tracts are phenotypically associated with information 5 

processing speed and intelligence (1-5) as well as neurodegenerative/neuropsychiatric 6 

traits, such as Alzheimer's disease (6), Parkinson’s disease (7), schizophrenia (SCZ) (8), 7 

and attention-deficit/hyperactivity disorder (ADHD) (9). A better understanding of 8 

genetic factors influencing integrity of WM tracts could have important implication for 9 

understanding the etiology of these diseases as well as individual variation in 10 

intelligence. To reveal the underlying genetic contributions to brain structural 11 

development and disease/disorder processes, imaging genetics studies of WM 12 

microstructure has been an active research area over the past fifteen years. The 13 

structural changes of WM tracts are typically measured and quantified in diffusion 14 

tensor imaging (DTI) (10). Brain diffusivity can be influenced by many aspects of its 15 

micro- or macro-structures (11). To reconstruct the WM pathways and tissue 16 

microstructure, DTI models the diffusion properties of WM using random movement of 17 

water. Specifically, DTI quantifies diffusion magnetic resonance imaging (dMRI) in a 18 

tensor model and analyzes diffusions in all directions. A typical DTI diagonalizes the 19 

tensor and calculates three pairs of eigenvalues/eigenvectors that respectively 20 

represent one primary and two secondary diffusion directions. Within each voxel, 21 

several DTI parameters can be derived: fractional anisotropy (FA), mean diffusivity (MD), 22 

axial diffusivity (AD), radial diffusivity (RD), and mode of anisotropy (MO). As a summary 23 

measure of WM integrity (12, 13), higher FA indicates stronger directionality in this 24 

voxel. MD quantifies the magnitude of absolute directionality, AD is the eigenvalue of 25 

the principal direction, RD is the average of the eigenvalues of the two secondary 26 

directions, and MO is the third moment of a tensor. Positive MO reflects narrow tubular 27 

water diffusion, whereas a negative value denotes planar water diffusion (14). There are 28 

several approaches to analyze DTI data across the whole brain, including manual 29 

region-of-interest (ROI) analysis, automated ROI analysis, voxel-based analysis, such as 30 

tract-based spatial statistics (TBSS) (15), as well as tractography and graph theory 31 

analysis; see Tamnes, Roalf (16) for a survey. 32 
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 1 

In family-based studies, the magnitude of genetic influences (i.e., heritability) in various 2 

DTI parameters of WM tracts, including FA, MD, AD, and RD, has been examined across 3 

a wide age range, from neonates (17, 18), young children (19), older children (20, 21), 4 

adolescents (22), and young adults (23) to middle aged (24) and older adults (25). 5 

Participants in these studies are typically monozygotic and dizygotic twins or family 6 

members. Table 1 of Vuoksimaa, Panizzon (24) lists 14 studies that illustrated that a 7 

substantial proportion of variance in DTI parameters (FA, MD, AD, and RD) was 8 

explained by additive genetic effects. However, the genetic architecture of DTI 9 

parameters remains largely unknown due to the limitation of family-based studies, for 10 

which the heritability estimation has relied on contrasting the phenotypic similarity 11 

between monozygotic and dizygotic twins. Genetic architecture denotes the 12 

characteristics of genetic variations that contribute to the broad-sense heritability of a 13 

phenotype (26). Based on the number of genetic variants contributing to phenotypic 14 

variance, genetic architecture can be described as monogenic (one variant), oligogenic 15 

(few variants), polygenic (many variants), or omnigenic, which hypothesizes that almost 16 

all genetic variants have small but non-zero genetic contributions (27, 28). Uncovering 17 

the genetic architecture and discovering the associated genetic variants are essential 18 

steps to delineate the functional mechanisms and understand the genetic overlap 19 

between white matter structures and neuropsychiatric traits. 20 

 21 

Recent developments have enabled heritability estimation and genetic variants 22 

discovery with using the common single-nucleotide polymorphisms (SNPs) data 23 

collected in general populations. Instead of using the expected genetic correlation based 24 

on pedigree information, SNP heritability is estimated by adding up the genetic effects 25 

across a large number of common SNPs (minor allele frequency [MAF]>0.05 or 0.01) (29, 26 

30). The architecture of genetic influences can be assessed by SNP annotation and 27 

partition (31, 32). Genome-wide association studies (GWAS) and post-GWAS analysis 28 

can further identify causal genetic variants at SNP, locus and gene levels (33, 34), and 29 

assess the genetic overlap of complex traits in different domains (35, 36). With these 30 

methods, the availability of genomic and imaging data from recent large 31 

population-based United Kingdom (UK) Biobank resource (37) offers the opportunity to 32 
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 5 

uncover the genetic basis of brain WM tracts in one large-scale, relatively homogeneous 1 

population. The UK Biobank has captured data from over 500,000 original participants 2 

of middle or elderly ages (age range 40-69), and is currently in the process of following 3 

up with 100,000 of these participants to perform brain MRI screening (38). 4 

 5 

Here we generated 110 tract-based DTI parameters using the British ancestry UKB 6 

sample including 17,706 participants. For each of the 110 phenotypes, we estimated the 7 

SNP-heritability, assessed the distribution of genetic effects by SNP annotation and 8 

partition, and carried out GWAS to identify the associated genetic variants at SNP and 9 

locus levels. We further discovered gene-level associations via MAGMA (39), and 10 

explored the functional consequences of the significant SNPs by functional mapping and 11 

annotation analysis (FUMA, (34)). To detect genetic overlap and pleiotropy in WM tracts 12 

and other complex traits, we performed association lookups at SNP and gene levels on 13 

the NHGRI-EBI GWAS catalog (40) and estimated genetic correlations via LD score 14 

regression (LDSC, (36)). The GWAS summary statistics have been made publicly available 15 

at https://med.sites.unc.edu/bigs2/data/gwas-summary-statistics/. 16 

 17 

Materials and Methods 18 

Participants and image preprocessing 19 

We used data from 17,706 UKB individuals of British ancestry (self-reported ethnic 20 

background, Data-Field 21000). The DTI data (38) and covariates were downloaded from 21 

the UKB data resource. We generated 110 DTI parameters: FA, AD, MD, MO and RD of 22 

21 WM tracts, and their average values across these tracts. The ID and full names of the 23 

21 WM tracts are listed in Supplementary Table 1. A full description of the DTI 24 

registration and quality controls is documented in supplementary information and an 25 

overview is given in Supplementary Figure 1. We removed values greater than five 26 

times the median absolute deviation from the median in each continuous variable. All 27 

individuals were aged between 40 and 80 years and the proportion of females was 28 

52.9%.  29 

 30 

Genotyping and quality control 31 
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 6 

We downloaded the imputed SNP data from UKB data resource (41). We further 1 

performed the following SNP data quality controls using PLINK (42): excluding subjects 2 

with more than 10% missing genotypes, only including SNPs with MAF > 0.01, 3 

genotyping rate > 90%, and passing Hardy-Weinberg test (p-value>1*10-7). We also 4 

removed SNPs with imputation INFO score less than 0.8. 5 

 6 

SNP-heritability analysis and genome-wide association analysis 7 

For each of the 110 DTI parameters, we estimated the proportion of variation explained 8 

by all autosomal SNPs with using linear mixed-effects model (LMM) via GCTA (29). We 9 

considered the fixed effects of age (at imaging), age-squared, gender, age-gender 10 

interaction, age-squared-gender interaction, as well as the top 40 genetic principal 11 

components (GPCs, Data-Field 22009). We also estimated the proportion of variation 12 

explained by SNPs in each chromosome. In addition, we partitioned the SNPs according 13 

to cell-type-specific annotations (32) to perform enrichment analysis. SNPs were 14 

grouped according to their functional activeness in various cell groups and specifically in 15 

the central nervous system (CNS) cell group: CNS_active, CNS_inactive, and 16 

Always_inactive, see supplementary information for detailed definitions. We performed 17 

GWAS for each DTI parameter separately with PLINK (42). The same set of covariates 18 

were adjusted in all heritability and GWAS analyses.  19 

 20 

Genomic risk loci characterization and comparison with previous findings 21 

We characterized genomic risk loci by using FUMA (34) online platform (v1.3.4). FUMA 22 

first identified independent significant SNPs, which were defined as significant SNPs that 23 

were independent of each other (R2<0.6). FUMA then constructed LD block for 24 

independent significant SNPs by tagging all SNPs that had a MAF ≥ 0.0005 and were in 25 

LD (R2≥0.6) with at least one of the independent significant SNPs. If LD blocks of 26 

independent significant SNPs were closed (<250 kb based on the closest boundary SNPs 27 

of LD blocks), they were merged to a single genomic locus. More details of FUMA 28 

analysis can be found in (34). Independent significant SNPs and all SNPs in LD with them 29 

were subsequently searched on NHGRI-EBI GWAS catalog (40) (v2019-01-31) to look for 30 

reported associations (p-value<9*10-6) with any traits.  31 

 32 
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 7 

Gene-based association analysis and functional annotation 1 

We carried out gene-based association analysis for 18,796 protein-coding candidate 2 

genes via MAGMA (39) (v1.07). Gene-based p-values were calculated by summarizing 3 

the GWAS results of corresponding SNPs, which were mapped to genes according to 4 

their psychical positions. Significant genes were searched on NHGRI-EBI GWAS catalog 5 

(40) (v2019-01-31) to look for their previously reported associations with any traits. We 6 

focused on brain-related complex traits and characterized them into six groups: 7 

cognitive (e.g., general cognitive ability, cognitive performance, math ability, and 8 

intelligence), education (e.g., years of education and college completion), reaction time, 9 

neuroticism, neurodegenerative diseases (e.g., Alzheimer's disease, Parkinson's disease 10 

and corticobasal degeneration), and neuropsychiatric disorders (e.g., major depressive 11 

disorder [MDD], SCZ, bipolar disorder [BD], ADHD, alcohol use disorder, and autism 12 

spectrum disorder).  13 

 14 

We also performed functional gene annotation and mapping via FUMA. SNPs were 15 

annotated with their biological functionality and then were linked to genes by a 16 

combination of positional, expression quantitative trait loci (eQTL) association, and 3D 17 

chromatin interaction mappings. Specifically, independent significant SNPs and all SNPs 18 

in LD with them were annotated for gene functional consequences by ANNOVAR (43). 19 

The annotated SNPs were mapped to 35,808 candidate genes based on physical position 20 

on the genome (tissue/cell types for 15-core chromatin state: brain), eQTL associations 21 

(tissue types: GTEx v7 brain (44), BRAINEAC (45), and CommonMind Consortium (46)) 22 

and chromatin interaction mapping (built-in chromatin interaction data: dorsolateral 23 

prefrontal cortex, hippocampus (47); annotate enhancer/promoter regions: E053-E082 24 

brain (48)). We used default values for all other parameters in FUMA.   25 

 26 

Genetic correlation estimation with LDSC 27 

We used LDSC (v1.0.0, https://github.com/bulik/ldsc) to estimate the pairwise genetic 28 

correlation between DTI parameters and other traits by their GWAS summary statistics. 29 

In LDSC, we used the pre-calculated LD scores provided by LDSC 30 

(https://data.broadinstitute.org/alkesgroup/LDSCORE/), which were computed using 31 
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 8 

1000 Genomes European data. We used HapMap3 SNPs and removed all SNPs in 1 

chromosome 6 in the MHC region.   2 

 3 

Results 4 

SNP heritability estimation  5 

Figures 1-2 and Supplementary Figures 2-7 display the SNP heritability of DTI 6 

parameters estimated by all common autosomal SNPs. The associated standard errors, 7 

raw and Bonferroni-adjusted p-values from the one-sided likelihood ratio tests are given 8 

in Supplementary Table 2. All SNP heritability estimates were significantly larger than 9 

zero (Bonferroni-adjusted p-value<0.004). Genetic factors accounted for a moderate or 10 

large portion of the variance of DTI parameters in all WM tracts (mean heritability 0.487, 11 

standard errors are around 0.041). For example, genetic effects explained more than 12 

60% of the total variance of FA in the posterior limb of the internal capsule (PLIC), 13 

anterior corona radiata (ACR), superior longitudinal fasciculus (SLF), and cingulum 14 

cingulate gyrus (CGC). SNP heritability of FA decreased to 37% and 27%, respectively, in 15 

the fornix (FX) and corticospinal tract (CST). According to the functions of the WM tracts 16 

(Connectopedia Knowledge Database, http://www.fmritools.com/kdb/white-matter/), 17 

we clustered them into four communities: complex fibers (C1), associative fibers (C2), 18 

commissural fibers (C3) and projection fibers (C4). We found that the set of WM tracts 19 

in C1 and C3 (mean=0.512) tended to have higher SNP heritability than those in C2 and 20 

C4 (mean=0.440, p-value=2.16*10-04). 21 

 22 

Partitioning and annotating genetic variation  23 

To examine the distribution of SNP heritability across the genome, we partitioned SNP 24 

data into 22 chromosomes and estimated the SNP heritability by each chromosome 25 

(Supplementary Table 3). We found that the mean heritability across all 110 DTI 26 

parameters explained by each chromosome was linearly associated with the length of 27 

the chromosome (Figure 3(a), R2=61.2%, p-value=1.67*10-05). This finding reveals a 28 

highly polygenic or omnigenic genetic architecture (28) of WM tracts. The large number 29 

of SNPs that contribute to the variation in DTI parameters are widely spread across the 30 

whole genome. To further illustrate this architecture, we ordered and clustered the 22 31 

chromosomes into three groups by their lengths: long, medium, and short. The long 32 
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 9 

group had 4 chromosomes (CHRs 2, 1, 6, 3), which together accounted for 33% of the 1 

length of the whole genome; the medium group had 6 chromosomes (CHRs 4, 5, 7, 8, 10, 2 

11), which accounted for another 33% of the length of the whole genome; and the short 3 

group consisted of the remaining 12 chromosomes. Figure 3(b) shows the SNP 4 

heritability estimates grouped by chromosomal length. It is clear that longer 5 

chromosomes tended to have higher SNP heritability estimates than medium 6 

(p-value=3.82*10-13) or shorter (p-value<2.20*10-16) ones for DTI parameters. 7 

  8 

To compare the contribution of SNPs with different activity level, we partitioned the 9 

genetic variation according to CNS-cell-specific annotations: CNS_active, CNS_inactive, 10 

and Always_inactive (Supplementary Table 4). Heritability estimated by SNPs residing in 11 

chromatin regions inactive across all cell groups (Always_inactive) was clearly much 12 

smaller than the heritability estimated by SNPs residing in chromatin regions active in 13 

CNS cell (CNS_active, p-value<2.20*10-16). The heritability estimated by CNS_inactive 14 

SNPs (inactive in CNS cell but active in other cells) was also significantly smaller than 15 

that of CNS_active SNPs (p-value=8.95*10-12) (Figure 3(c)). This pattern remained 16 

consistent across all the five types of DTI parameters, though larger variance was 17 

observed for the MO parameters. 18 

 19 

GWAS results of 110 DTI parameters  20 

We carried out GWAS for the 110 DTI parameters with using 8,955,960 SNPs after 21 

genotyping quality controls. All Manhattan and QQ plots are shown in Supplementary 22 

Figure 8. 19,530 significant associations were detected at the 4.5*10-10 significance level 23 

(that is, 5*10-8/110, adjusted for testing multiple phenotypes) (Supplementary Figure 9, 24 

Supplementary Table 5). RD and MD of anterior limb of internal capsule (ALIC) had 25 

more than 3,000 significant associations. Significant SNPs were summarized into 213 26 

independent significant SNPs by FUMA, which had 696 independent significant 27 

associations with 90 DTI parameters (Figure 4, Supplementary Tables 6-7). RD and FA of 28 

splenium of corpus callosum (SCC) had the largest number of independent significant 29 

SNPs. 502 of the 696 independent significant associations located in chromosome 5 30 

(Supplementary Table 8, Supplementary Figure 10). The 696 independent significant 31 

SNP-level associations can be further characterized as 205 locus-level associations 32 
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 10 

(Supplementary Table 9). FA and RD of SCC, FA and AD of FX, and RD of ALIC had at 1 

least five genetic risk loci (Supplementary Table 10). Each chromosome had at least one 2 

genetic risk locus except for chromosomes 13 ,20 and 21, and chromosome 5 had the 3 

largest number of risk loci (Supplementary Tables 11). GWAS results at 5*10-9 and 4 

5*10-8 significance levels are also reported in above tables and figures. 5 

 6 

Concordance with previous GWAS results  7 

Association lookups on the NHGRI-EBI GWAS catalog (40) found that 122 of the 213 8 

independent significant SNPs (associated with 83 DTI parameters) were reported to be 9 

associated with any traits (Supplementary Table 12). Our study replicated many SNPs 10 

reported in previous GWAS of WM hyperintensity measures and other brain structural 11 

measures (Supplementary Table 13), most of which were recently detected in 12 

Rutten-Jacobs, Tozer (49) (n=8,448). In addition, we tagged 15 different SNPs associated 13 

with neuropsychiatric disorders, 40 with cognitive traits, 12 with education, 47 with 14 

neuroticism, 17 with neurodegenerative diseases, and 2 with reaction time. We also 15 

compared our results with the those reported in Elliott, Sharp (50) (n=8,428) and found 16 

that 212 of the 368 significant associations (Supplementary Table 6 of (50)) were 17 

replicated in the present study. We note that the both (49) and (50) analyzed a subset of 18 

the sample presented in this study.  19 

 20 

Gene-based association analysis and functional mapping  21 

Gene-based association analysis identified 508 significant gene-level associations 22 

(p-value<2*10-8, adjusted for testing multiple phenotypes) between 112 genes and 96 23 

DTI parameters (Supplementary Table 14). Our results replicated genes discovered in 24 

Rutten-Jacobs, Tozer (49) and Elliott, Sharp (50), including VCAN, C16orf95, NBEAL1, 25 

SH3PXD2A, CACNB2, SRA1, GNA12, CPED1, and EPHA3, but most of the identified genes  26 

were not previously linked to DTI parameters. Association lookups found that 51 of the 27 

112 significant genes were implicated with cognitive, education, reaction, neuroticism, 28 

neuropsychiatric and neurodegenerative traits in previous studies, such as CRHR1 29 

(51-54), MAPT (55-58), KANSL1 (59-61), and MSRA (62-64) (Supplementary Table 15, 30 

Figure 5). We also annotated the SNPs by functional consequences on gene functions 31 

(Supplementary Figure 11) and performed functional gene mapping. Gene mapping 32 
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discovered 292 genes (Supplementary Table 16), 218 of which were not detected in the 1 

gene-based association analysis.  2 

 3 

Genetic correction with other traits  4 

We estimated the pairwise genetic correlation between 110 DTI parameters and 14 5 

other complex traits (Supplementary Table 17). We focused on traits showing evidence 6 

of pleiotropy in association lookups. 43 pairs of phenotypes had significant genetic 7 

correlation after adjusting for multiple testing (1,540 tests) by the Benjamini-Hochberg 8 

(B-H) procedure (65) at 0.05 level (Supplementary Table 18, Supplementary Figure 12). 9 

Reaction time had significant negative correlations with FA parameters (mean=-0.181), 10 

and had widespread positive correlations with AD, MO, MD and RD (mean=0.165) 11 

(Figure 6). Education, cognitive, intelligence, and numerical reasoning also had positive 12 

genetic correlations with AD, FA, and MO. On the other hand, depression, MDD and 13 

drink frequency showed negative genetic correlations with FA. Other pairs were 14 

insignificant after multiple testing adjustment.  15 

 16 

Discussion 17 

Heritability and GWAS analyses can provide guidance for downstream analyses to model 18 

the functional mechanisms and pathways involved in the phenotype of interest or its 19 

pleiotropy traits. A large number of family-based neuroimaging studies have 20 

documented that WM tracts are essentially heritable across the lifespan. Two recent 21 

GWAS (49, 50) have made attempts to explore the genetic risk variants of DTI 22 

parameters, however, they were less powered due to the limited sample size (n<9,000).  23 

With the DTI and common autosomal SNP data from 17,706 UKB participants, the 24 

present study made novel contributions to 1) understand the genetic landscape of WM 25 

tract; 2) identify novel genetic risk variants at SNP, locus, and gene levels; and 3) provide 26 

the overview of statistical pleiotropy (35, 66) with other brain-related complex traits.  27 

 28 

Our SNP heritability estimates are close to the ones reported in previous family-based 29 

studies (e.g., Table 1 of (24)), and are also within a similar range as those reported in 30 

(50), where the mean heritability is around 0.450. These results suggest that studies of 31 

DTI phenotypes using common SNPs may be more informative than studies focused on 32 
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rare variants. Our results partitioning the genetic variation in chromosomes or SNP 1 

functional sets shed light on the distribution of genetic signals across the genome and 2 

different functional consequences. These findings suggest a highly polygenic genetic 3 

architecture of DTI parameters and also provide evidence for stronger genetic signals 4 

from SNPs in active chromatin regions, especially for those active in the CNS cell type. 5 

For such highly polygenic traits, large sample size is essential for GWAS to discover the 6 

widespread genetic signals (67). Compared to previous GWAS (49, 50), our study with 7 

larger sample size identifies many newly associated genetic variants for DTI parameters. 8 

More importantly, these novel findings uncover the widespread pleiotropy between DTI 9 

parameters and cognitive and metal health traits. As the UKB releases more imaging 10 

data, it can be expected that better powered genetic studies on heritable WM tracts will 11 

continue facilitating gene exploration and helping understand the causal relationships of 12 

brain-related complex traits.  13 

 14 

Our analyses reflect several methodological limitations of the current approaches on 15 

population-based imaging genetic studies. First, similar to previous studies (23), CST and 16 

FX were reported to have low SNP heritability, which may be due to the fact that such 17 

small, tubular tracts cannot be well registered and reliably resolved with current 18 

techniques (68). Second, heritability estimated by SNP data reflects narrow-sense 19 

heritability, which only considers the additive genetic effects of common variants. The 20 

genetic architecture may change as we broadly consider all genetic contributions (such 21 

as rare variants, non-additive effects and gene-gene interactions) in future studies. 22 

However, it is notable that with common SNPs in the UK Biobank, we have gained 23 

heritability estimates comparable to those reported in family-based studies. Finally, it is 24 

worth mentioning that the UKB data used in this study were sampled from a specific 25 

cohort (British ancestry) with a specific age-range. Since genetic ancestries are common 26 

confounding effects and aging can play an important role in brain WM structure changes, 27 

one should be careful to generalize these findings to general populations or to specific 28 

clinical cohorts. With more data from diverse imaging genetics studies, future research 29 

will be required to overcome these limitations and advance our biological understanding 30 

of the human brain. 31 

 32 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/288555doi: bioRxiv preprint 

https://doi.org/10.1101/288555
http://creativecommons.org/licenses/by-nd/4.0/


 13 

Funding 1 

This research was partially supported by U.S. NIH grants MH086633 and MH116527, and 2 

a grant from the Cancer Prevention Research Institute of Texas. 3 

 4 

Acknowledgements 5 

We thank the individuals represented in the UK Biobank dataset for their participation 6 

and the research teams for their work in collecting, processing and disseminating these 7 

datasets for analysis. This research has been conducted using the UK Biobank resource 8 

(application number 22783), subject to a data transfer agreement. We gratefully 9 

acknowledge all the studies and databases that made their GWAS summary data 10 

available. The authors acknowledge the Texas Advanced Computing Center (TACC, http: 11 

//www.tacc.utexas.edu) at The University of Texas at Austin for providing HPC and 12 

storage resources that have contributed to the research results reported within this 13 

paper. 14 

 15 

Conflict of interest  16 

The authors declare no competing financial interests. 17 

 18 

REFERENCES 19 

1. Penke L, Maniega SM, Murray C, Gow AJ, Hernández MCV, Clayden JD, et al. (2010): 20 

A general factor of brain white matter integrity predicts information processing speed in 21 

healthy older people. Journal of Neuroscience. 30:7569-7574. 22 

2. Penke L, Maniega SM, Bastin M, Hernández MV, Murray C, Royle N, et al. (2012): 23 

Brain-wide white matter tract integrity is associated with information processing speed 24 

and general intelligence. Molecular psychiatry. 17:955. 25 

3. Tamnes CK, Østby Y, Walhovd KB, Westlye LT, Due-Tønnessen P, Fjell AM (2010): 26 

Intellectual abilities and white matter microstructure in development: a diffusion tensor 27 

imaging study. Human brain mapping. 31:1609-1625. 28 

4. Ritchie SJ, Bastin ME, Tucker-Drob EM, Maniega SM, Engelhardt LE, Cox SR, et al. 29 

(2015): Coupled changes in brain white matter microstructure and fluid intelligence in 30 

later life. Journal of Neuroscience. 35:8672-8682. 31 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/288555doi: bioRxiv preprint 

https://doi.org/10.1101/288555
http://creativecommons.org/licenses/by-nd/4.0/


 14 

5. Ritchie SJ, Booth T, Hernández MdCV, Corley J, Maniega SM, Gow AJ, et al. (2015): 1 

Beyond a bigger brain: Multivariable structural brain imaging and intelligence. 2 

Intelligence. 51:47-56. 3 

6. Nir TM, Jahanshad N, Villalon-Reina JE, Toga AW, Jack CR, Weiner MW, et al. (2013): 4 

Effectiveness of regional DTI measures in distinguishing Alzheimer's disease, MCI, and 5 

normal aging. NeuroImage: clinical. 3:180-195. 6 

7. Bohnen NI, Albin RL (2011): White matter lesions in Parkinson disease. Nature 7 

Reviews Neurology. 7:229. 8 

8. Voineskos AN (2015): Genetic underpinnings of white matter ‘connectivity’: 9 

heritability, risk, and heterogeneity in schizophrenia. Schizophrenia research. 161:50-60. 10 

9. Sudre G, Choudhuri S, Szekely E, Bonner T, Goduni E, Sharp W, et al. (2017): 11 

Estimating the Heritability of Structural and Functional Brain Connectivity in Families 12 

Affected by Attention-Deficit/Hyperactivity Disorder. JAMA psychiatry. 74:76-84. 13 

10. Basser PJ, Mattiello J, LeBihan D (1994): Estimation of the effective self-diffusion 14 

tensor from the NMR spin echo. Journal of Magnetic Resonance, Series B. 103:247-254. 15 

11. Beaulieu C (2002): The basis of anisotropic water diffusion in the nervous system–a 16 

technical review. NMR in Biomedicine. 15:435-455. 17 

12. Thomason ME, Thompson PM (2011): Diffusion imaging, white matter, and 18 

psychopathology. Annual review of clinical psychology. 7. 19 

13. Jones DK, Knösche TR, Turner R (2013): White matter integrity, fiber count, and 20 

other fallacies: the do's and don'ts of diffusion MRI. Neuroimage. 73:239-254. 21 

14. Cox SR, Ritchie SJ, Tucker-Drob EM, Liewald DC, Hagenaars SP, Davies G, et al. 22 

(2016): Ageing and brain white matter structure in 3,513 UK Biobank participants. 23 

Nature communications. 7:13629. 24 

15. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. 25 

(2006): Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. 26 

Neuroimage. 31:1487-1505. 27 

16. Tamnes CK, Roalf DR, Goddings A-L, Lebel C (2017): Diffusion MRI of white matter 28 

microstructure development in childhood and adolescence: methods, challenges and 29 

progress. Developmental cognitive neuroscience. 30 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/288555doi: bioRxiv preprint 

https://doi.org/10.1101/288555
http://creativecommons.org/licenses/by-nd/4.0/


 15 

17. Geng X, Gouttard S, Sharma A, Gu H, Styner M, Lin W, et al. (2012): Quantitative 1 

tract-based white matter development from birth to age 2years. Neuroimage. 2 

61:542-557. 3 

18. Lee SJ, Steiner RJ, Luo S, Neale MC, Styner M, Zhu H, et al. (2015): Quantitative 4 

tract-based white matter heritability in twin neonates. NeuroImage. 111:123-135. 5 

19. Lee SJ, Steiner RJ, Yu Y, Short SJ, Neale MC, Styner MA, et al. (2017): Common and 6 

heritable components of white matter microstructure predict cognitive function at 1 7 

and 2 y. Proceedings of the National Academy of Sciences. 114:148-153. 8 

20. Brouwer RM, Mandl RC, Peper JS, van Baal GCM, Kahn RS, Boomsma DI, et al. 9 

(2010): Heritability of DTI and MTR in nine-year-old children. Neuroimage. 10 

53:1085-1092. 11 

21. Brouwer RM, Mandl RC, Schnack HG, van Soelen IL, van Baal GC, Peper JS, et al. 12 

(2012): White matter development in early puberty: a longitudinal volumetric and 13 

diffusion tensor imaging twin study. PloS one. 7:e32316. 14 

22. Chiang M-C, Barysheva M, Toga AW, Medland SE, Hansell NK, James MR, et al. 15 

(2011): BDNF gene effects on brain circuitry replicated in 455 twins. Neuroimage. 16 

55:448-454. 17 

23. Kochunov P, Jahanshad N, Marcus D, Winkler A, Sprooten E, Nichols TE, et al. 18 

(2015): Heritability of fractional anisotropy in human white matter: a comparison of 19 

Human Connectome Project and ENIGMA-DTI data. Neuroimage. 111:300-311. 20 

24. Vuoksimaa E, Panizzon MS, Hagler Jr DJ, Hatton SN, Fennema-Notestine C, Rinker D, 21 

et al. (2017): Heritability of white matter microstructure in late middle age: A twin study 22 

of tract-based fractional anisotropy and absolute diffusivity indices. Human brain 23 

mapping. 38:2026-2036. 24 

25. Kanchibhotla SC, Mather KA, Wen W, Schofield PR, Kwok JB, Sachdev PS (2013): 25 

Genetics of ageing-related changes in brain white matter integrity–A review. Ageing 26 

research reviews. 12:391-401. 27 

26. Timpson NJ, Greenwood CM, Soranzo N, Lawson DJ, Richards JB (2017): Genetic 28 

architecture: the shape of the genetic contribution to human traits and disease. Nature 29 

Reviews Genetics. 30 

27. Badano JL, Katsanis N (2002): Beyond Mendel: an evolving view of human genetic 31 

disease transmission. Nature reviews Genetics. 3:779. 32 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/288555doi: bioRxiv preprint 

https://doi.org/10.1101/288555
http://creativecommons.org/licenses/by-nd/4.0/


 16 

28. Boyle EA, Li YI, Pritchard JK (2017): An Expanded View of Complex Traits: From 1 

Polygenic to Omnigenic. Cell. 169:1177-1186. 2 

29. Yang J, Lee SH, Goddard ME, Visscher PM (2011): GCTA: a tool for genome-wide 3 

complex trait analysis. The American Journal of Human Genetics. 88:76-82. 4 

30. Loh P-R, Bhatia G, Gusev A, Finucane HK, Bulik-Sullivan BK, Pollack SJ, et al. (2015): 5 

Contrasting genetic architectures of schizophrenia and other complex diseases using 6 

fast variance-components analysis. Nature genetics. 47:1385-1392. 7 

31. Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N, Cunningham JM, et al. 8 

(2011): Genome partitioning of genetic variation for complex traits using common SNPs. 9 

Nature genetics. 43:519. 10 

32. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh P-R, et al. (2015): 11 

Partitioning heritability by functional annotation using genome-wide association 12 

summary statistics. Nature genetics. 47:1228-1235. 13 

33. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. (2017): 10 14 

years of GWAS discovery: biology, function, and translation. The American Journal of 15 

Human Genetics. 101:5-22. 16 

34. Watanabe K, Taskesen E, Bochoven A, Posthuma D (2017): Functional mapping and 17 

annotation of genetic associations with FUMA. Nature communications. 8:1826. 18 

35. Watanabe K, Stringer S, Frei O, Mirkov MU, Polderman TJ, van der Sluis S, et al. 19 

(2018): A global view of pleiotropy and genetic architecture in complex traits. 20 

bioRxiv.500090. 21 

36. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh P-R, et al. (2015): An 22 

atlas of genetic correlations across human diseases and traits. Nature genetics. 47:1236. 23 

37. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. (2015): UK biobank: 24 

an open access resource for identifying the causes of a wide range of complex diseases 25 

of middle and old age. PLoS medicine. 12:e1001779. 26 

38. Alfaro-Almagro F, Jenkinson M, Bangerter NK, Andersson JL, Griffanti L, Douaud G, 27 

et al. (2018): Image processing and Quality Control for the first 10,000 brain imaging 28 

datasets from UK Biobank. NeuroImage. 166:400-424. 29 

39. de Leeuw CA, Mooij JM, Heskes T, Posthuma D (2015): MAGMA: generalized 30 

gene-set analysis of GWAS data. PLoS computational biology. 11:e1004219. 31 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/288555doi: bioRxiv preprint 

https://doi.org/10.1101/288555
http://creativecommons.org/licenses/by-nd/4.0/


 17 

40. Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. 1 

(2018): The NHGRI-EBI GWAS Catalog of published genome-wide association studies, 2 

targeted arrays and summary statistics 2019. Nucleic acids research. 47:D1005-D1012. 3 

41. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. (2017): 4 

Genome-wide genetic data on~ 500,000 UK Biobank participants. BioRxiv.166298. 5 

42. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. (2007): 6 

PLINK: a tool set for whole-genome association and population-based linkage analyses. 7 

The American Journal of Human Genetics. 81:559-575. 8 

43. Wang K, Li M, Hakonarson H (2010): ANNOVAR: functional annotation of genetic 9 

variants from high-throughput sequencing data. Nucleic acids research. 38:e164-e164. 10 

44. Consortium G (2015): The Genotype-Tissue Expression (GTEx) pilot analysis: 11 

multitissue gene regulation in humans. Science. 348:648-660. 12 

45. Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R, et al. (2014): 13 

Genetic variability in the regulation of gene expression in ten regions of the human 14 

brain. Nature neuroscience. 17:1418. 15 

46. Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, et al. 16 

(2016): Gene expression elucidates functional impact of polygenic risk for schizophrenia. 17 

Nature neuroscience. 19:1442. 18 

47. Schmitt AD, Hu M, Jung I, Xu Z, Qiu Y, Tan CL, et al. (2016): A compendium of 19 

chromatin contact maps reveals spatially active regions in the human genome. Cell 20 

reports. 17:2042-2059. 21 

48. Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. (2015): 22 

Integrative analysis of 111 reference human epigenomes. Nature. 518:317. 23 

49. Rutten-Jacobs LC, Tozer DJ, Duering M, Malik R, Dichgans M, Markus HS, et al. 24 

(2018): Genetic study of white matter integrity in UK Biobank (N= 8448) and the overlap 25 

with stroke, depression, and dementia. Stroke. 49:1340-1347. 26 

50. Elliott LT, Sharp K, Alfaro-Almagro F, Shi S, Miller KL, Douaud G, et al. (2018): 27 

Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature. 28 

562:210. 29 

51. Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. (2018): Gene 30 

discovery and polygenic prediction from a genome-wide association study of 31 

educational attainment in 1.1 million individuals. Nature genetics. 50:1112. 32 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/288555doi: bioRxiv preprint 

https://doi.org/10.1101/288555
http://creativecommons.org/licenses/by-nd/4.0/


 18 

52. Nagel M, Jansen PR, Stringer S, Watanabe K, de Leeuw CA, Bryois J, et al. (2018): 1 

Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals 2 

identifies novel genetic loci and pathways. Nature Genetics. 50:920. 3 

53. Davies G, Lam M, Harris SE, Trampush JW, Luciano M, Hill WD, et al. (2018): Study 4 

of 300,486 individuals identifies 148 independent genetic loci influencing general 5 

cognitive function. Nature communications. 9:2098. 6 

54. Luciano M, Hagenaars SP, Davies G, Hill WD, Clarke T-K, Shirali M, et al. (2018): 7 

Association analysis in over 329,000 individuals identifies 116 independent variants 8 

influencing neuroticism. Nature genetics. 50:6. 9 

55. Kouri N, Ross OA, Dombroski B, Younkin CS, Serie DJ, Soto-Ortolaza A, et al. (2015): 10 

Genome-wide association study of corticobasal degeneration identifies risk variants 11 

shared with progressive supranuclear palsy. Nature communications. 6:7247. 12 

56. Lam M, Trampush JW, Yu J, Knowles E, Davies G, Liewald DC, et al. (2017): 13 

Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression 14 

and Potential Nootropic Drug Targets. Cell reports. 21:2597-2613. 15 

57. Chang D, Nalls MA, Hallgrímsdóttir IB, Hunkapiller J, van der Brug M, Cai F, et al. 16 

(2017): A meta-analysis of genome-wide association studies identifies 17 new 17 

Parkinson's disease risk loci. Nature genetics. 49:1511. 18 

58. Okbay A, Baselmans BM, De Neve J-E, Turley P, Nivard MG, Fontana MA, et al. 19 

(2016): Genetic variants associated with subjective well-being, depressive symptoms, 20 

and neuroticism identified through genome-wide analyses. Nature genetics. 48:624. 21 

59. Sanchez-Roige S, Palmer AA, Fontanillas P, Elson SL, Team aR, Consortium 22 

SUDWGotPG, et al. (2018): Genome-wide association study meta-analysis of the Alcohol 23 

Use Disorders Identification Test (AUDIT) in two population-based cohorts. American 24 

Journal of Psychiatry.appi. ajp. 2018.18040369. 25 

60. Jun G, Ibrahim-Verbaas CA, Vronskaya M, Lambert J-C, Chung J, Naj AC, et al. (2016): 26 

A novel Alzheimer disease locus located near the gene encoding tau protein. Molecular 27 

psychiatry. 21:108. 28 

61. Trampush JW, Yang M, Yu J, Knowles E, Davies G, Liewald D, et al. (2017): GWAS 29 

meta-analysis reveals novel loci and genetic correlates for general cognitive function: a 30 

report from the COGENT consortium. Molecular psychiatry. 22:336. 31 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/288555doi: bioRxiv preprint 

https://doi.org/10.1101/288555
http://creativecommons.org/licenses/by-nd/4.0/


 19 

62. Li Z, Chen J, Yu H, He L, Xu Y, Zhang D, et al. (2017): Genome-wide association 1 

analysis identifies 30 new susceptibility loci for schizophrenia. Nature genetics. 49:1576. 2 

63. Bergen S, O'dushlaine C, Ripke S, Lee P, Ruderfer D, Akterin S, et al. (2012): 3 

Genome-wide association study in a Swedish population yields support for greater CNV 4 

and MHC involvement in schizophrenia compared with bipolar disorder. Molecular 5 

psychiatry. 17:880. 6 

64. Kramer PL, Xu H, Woltjer RL, Westaway SK, Clark D, Erten-Lyons D, et al. (2011): 7 

Alzheimer disease pathology in cognitively healthy elderly: a genome-wide study. 8 

Neurobiology of aging. 32:2113-2122. 9 

65. Benjamini Y, Hochberg Y (1995): Controlling the false discovery rate: a practical and 10 

powerful approach to multiple testing. Journal of the royal statistical society Series B 11 

(Methodological).289-300. 12 

66. Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW (2013): Pleiotropy in 13 

complex traits: challenges and strategies. Nature Reviews Genetics. 14:483. 14 

67. Zhao B, Zou F (2018): Is PRS Good for Predicting Complex Polygenic Traits? 15 

bioRxiv.447797. 16 

68. Bach M, Laun FB, Leemans A, Tax CM, Biessels GJ, Stieltjes B, et al. (2014): 17 

Methodological considerations on tract-based spatial statistics (TBSS). Neuroimage. 18 

100:358-369. 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/288555doi: bioRxiv preprint 

https://doi.org/10.1101/288555
http://creativecommons.org/licenses/by-nd/4.0/


 20 

Captions to figures  1 

Figure 1. SNP heritability estimates grouped by white matter tract functions. 2 

Figure 2. Distribution of SNP heritability estimates of the 21 white matter tracts in brain. 3 

Figure 3. Heritability estimated by SNPs in each chromosome or in functionally 4 

annotated SNP categories. 5 

Figure 4. Number of independent significant SNPs discovered for each DTI parameter at 6 

different GWAS significance levels. Outer layer: p-value <5*10-8; middle layer: p-value 7 

<5*10-9; and inner layer: p-value <4.5*10-10. 8 

Figure 5. Genes identified in gene-based association analysis of DTI parameters that 9 

have been implicated with traits of neuroticism, neurodegenerative diseases, 10 

neuropsychiatric disorders, education, cognitive, and reaction time in previous GWAS. 11 

Figure 6. Selected pairwise genetic correlations between DTI parameters and other 12 

traits. 13 
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