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Abstract  

Protein kinase phosphorylation is a prevalent post-translational modification (PTM) regulating          

protein function and transmitting signals throughout the cell . Defective signal transductions,           

which are associated with protein phosphorylation, have been revealed to link to many human              

diseases, such as cancer. Defining the organization of the phosphorylation-based signaling           

network and, in particular, identifying kinase-specific substrates can help reveal the molecular            

mechanism of the signaling network. Here, we present DeepSignal, a deep learning framework             

for predicting the substrate specificity for kinase/SH2 sequences with or without mutations.            

Empowered by the memory and selection mechanism of recurrent neural network, DeepSignal            

can identify important specificity-defining residues to predict kinase specificity and changes           

upon mutations. Evaluated on several public benchmark datasets, DeepSignal significantly          

outperforms current methods on predicting substrate specificity on both kinase and SH2            

domains. Further analysis in The Cancer Genome Atlas (TCGA) demonstrated that DeepSignal            

is able to aggregate mutations on both kinase/SH2 domains and substrates to quantify binding              

specificity changes, predict cancer genes related to signaling transduction, and identify novel            

perturbed pathways.  

Availability: Implementation of DeepSignal is at https://github.com/luoyunan/DeepSignal  
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Introduction 

Signaling networks transmit external environmental signals and mediate complex cellular          

communications to drive coordinated expression responses. Perturbations of this cellular          

signaling system have been found to underlie many common human diseases, such as             

diabetes, heart disease and cancers (Lahiry et al., 2010). It is critical to uncover the organization                

and track the dynamics of signaling networks for the purpose of therapy development.  

 

The signaling transduction of the network is mainly performed by the protein phosphorylation, a              

post-translational modification (PTM) of serine, threonine or tyrosine residues, regulated by           

protein kinase and SH2/3 domains. The human genome encodes more than 500 unique kinases              

which can be organized in a hierarchy of 10 groups, 134 families and 201 subfamilies. At the                 

molecular level, kinases regulate many cellular signaling processes by adding phosphoryl group            

to substrate proteins. Therefore, a critical step to understand the signaling system is to predict               

kinase-specific phosphorylation sites given a kinase sequence and a substrate. Despite tens of             

thousands phosphosites have been experimentally verified using the high-throughput         

mass-spectrometric techniques, our knowledge of the phosphorylation-driven signaling network         

is still preliminary: the upstream kinases responsible for the phosphorylation are unknown and a              

significant number of phosphosites are unidentified.  

 

Many computational methods have been developed to predict phosphosites for human kinases,            

including Scansite (Obenauer, 2003), PredPhospho (Kim et al., 2004), NetPhosK (Blom et al.,             

2004), KinasePhos (Wong et al., 2007), GPS (Xue et al., 2008), Predikin (Ellis and Kobe, 2011),                

PSEA (Suo et al., 2014), PhosPhoPICK (Patrick et al., 2016) and PhosphoPredict (Song et al.,               

2017). Existing methods suffer from various limitations. First, most of these methods are             
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kinase-specific models and share the “one-kinase-one-model” paradigm. For a given kinase, an            

individual model was built by utilizing the known substrate sequences of this kinase. These              

models are limited to those well-characterized kinases and conceptually cannot be generalized            

to new kinases (i.e., kinases not in training data) or kinases with mutations. Second, majority of                

these methods have narrow coverage and coarse resolution. For example, PhosphoPredict           

(Song et al., 2017) and (Li et al., 2010) can predict phosphosites for only 12 and 8 kinase                  

families, respectively. They were trained at the kinase family level and cannot make accurate              

predictions for individual kinases or mutated kinases. Third, existing methods have ignored the             

information provided by kinase sequence, and therefore, fail to predict how the specificity would              

change if missense substitutions occur in the kinase sequences. Furthermore, it has been             

hypothesized that the substrate specificity of a kinase is not only determined by the entire               

domain. Instead, only a subset of residues within the domain, which are called determinants of               

specificity (DoS), contribute to define its specificity (Creixell et al., 2015). Several structural             

studies (see ref. in (Creixell et al., 2015)) have been conducted to identify the residues that are                 

close to the binding site as potential DoS in the 3D space, since they are more likely to                  

cooperate together to influence the binding affinity. The residues far from the binding region are               

usually ignored in these structure-based studies, even though they may greatly contribute to the              

binding specificity through long-range dependencies. An evolutionary algorithm, KINspect, was          

proposed in (Creixell et al., 2015) to identify the combinations of residues that can exclusively               

predict the specificity profiles of a kinase as potential DoS. Nevertheless, KINspect only             

explored a limited number (~100) of possible combinations of residues, which covers a small              

portion of all possible combinations. In addition, the DoS set identified by KINspect contains              

around only 80 residues, i.e. about 25% of a kinase domain, making the interpretation and               

further experimental design difficult.  
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To address these issues, we present DeepSignal, a deep learning based method to predict the               

substrate specificity of kinase domains based on the protein sequences. Unlike most of the              

previous methods that only focus on substrate sequences, DeepSignal takes into account the             

information in both kinase domain sequences and substrate peptides, and translates a kinase             

sequence into a binding profile (i.e. position-specific scoring matrix (PSSM)). DeepSignal           

employs the Long Short Term Memory (LSTM) network, a recurrent neural network with             

memory units, to process the kinase sequences with various lengths using a single model,              

enabling the learning of universal knowledge across multiple kinase domains. This model is able              

to identify important residues in kinase domain sequences that best explains the substrate             

specificity of this kinase by exploiting both long- and short-range dependencies of residues             

spanning over the entire kinase domain. DeepSignal can transfer the knowledge it has learned              

from the available kinase-substrate data in the training data to new kinases or mutated kinases,               

thus greatly enabling many possible analyses, which are currently limited or infeasible by             

existing methods.  

 

Results 

Overview of DeepSignal 

As shown in Figure 1 , the DeepSignal framework has two components, an “encoder” network              

and a “decoder” network, to translate a kinase sequence to its binding substrate sequence              

profile. In particular, the encoder is a Recurrent Neural Network (RNN) and takes a protein               

kinase sequence as input, scans the sequence, and extracts important combinatorial patterns of             

amino acids. We use the long-short term short memory (LSTM) as the basic unit of RNN.                

Intuitively, the LSTM unit learns when to ‘forget’ and when to ‘remember’ the long term memory.                

This nice property is especially helpful when both short and long range dependencies are mixed               
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within the sequences. The deterministic information from sequences is thus encoded as an             

output vector by the encoder. The decoder, in conjunction with the encoder, takes this vector of                

hidden state as input, and outputs a sequence profile which is a distribution of 20 amino acids                 

for each position in a substrate peptide. The model is trained to optimize the similarity between                

the predicted sequence profiles and those constructed from experimental data. A more formal             

and detailed description is provided in Method details .  

 

DeepSignal finds kinase specificity-determining residues 

By leveraging the effective memory mechanism of LSTM, DeepSignal can automatically decide            

whether each residue should be enhanced or silenced based on the information extracted from              

protein sequence. This mechanism enables DeepSignal to efficiently explore a very large            

number of amino acids combinations within the kinase domains with both long- and short-range              

dependencies which defines the specificities between kinases and peptides. To illustrate this,            

we followed the setting of previous work (Creixell et al., 2015) to investigate the relationship               

between the 516 kinase sequence similarity and 10,181 substrate specificity similarity from            

several public databases (Method details ). First, we computed the pairwise BLOSUM62 score            

(Henikoff and Henikoff, 1992) between two kinase domain sequences, and the pairwise            

negative Frobenius distance as the pairwise similarity for kinase substrate specificity. Across all             

the kinase-peptide binding samples, we calculated the Spearman’s correlation between the           

kinase sequence similarity and binding specificity similarity. We observed there is a relatively             

low correlation (<0.5) between these two types of similarity (Figure 2A), which suggests that not               

all the amino acids contribute equally to determine the substrate specificity. Next, we computed              

the sequence similarity on those residues identified in previous structure-based studies           

(Structure DoS in Figure 2A) and those predicted by KINspect, a genetic algorithm that              
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enumerates subsets of residues whose similarity correlates to the specificity similarity (Creixell            

et al., 2015). As demonstrated in Figure 2A, these residues have higher correlations with the               

specificity, indicating that instead of the global sequence, a subset of residues potentially             

determines the kinase-substrate specificity. In addition, we checked whether DeepSignal is able            

to extract sufficient information that is encoded within the kinase sequence, by encoding the              

necessary dependencies among residues that determines the binding specificity. The similarity           

between two kinase sequences is calculated by their negative distances of encoder’s         L2     

outputs. DeepSignal achieved the highest correlation to the binding specificity in comparison to             

other methods (Figure 2A, B). This result indicates that DeepSignal can better capture the              

complex features and patterns in the domain sequences that determine the substrate specificity.  

 

Next, we studied whether the better sequence representation by DeepSignal leads to a better              

set of specificity-determining residues, which requires us first to exact the sequence            

representations. Recent progress had been made to improve the interpretability of deep            

learning model (Bahdanau et al., 2014; Lei et al., 2016; Ma et al., 2018). In this work, with the                   

help of the attention model, we can extract the residue patterns from what DeepSignal learned.               

In particular, the attention component helps us to identify an influential set of residues to best                

explain the prediction. The “attention” for each residue was generated by a local neural network               

which considers its flanking regions on the sequence to assign an importance weight to this               

residue. With this attention model, we identified a subset of 15 important residues which are still                

able to achieve a very good prediction accuracy (with an AUC score ~0.85, comparable to the                

performance 0.87 trained using the full sequence) (Figure 2C, D). Among these 15 amino              

acids, two of them (Mok et al., 2010) had been confirmed by previous work to be important for                  

determining binding specificity. Five residues had been annotated by KINspect (Creixell et al.,             
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2015) as the Determinants of Specificity (DoS), and four residues are structural neighbors of              

them. The rest four residues are novel and might suggest new mechanisms for kinase binding.               

Another key observation is that, as shown in Figure 2D, important residues are almost overly               

distributed on the entire kinase sequence, which suggests that the determinants of the kinase              

binding may not be simply explained by local sequence motifs. This also explains why              

DeepSignal outperforms existing methods, since the RNN/LSTM model is especially suitable to            

mine long-range patterns.  

 

To test the generalizability of the identified specificity-determining residues, we evaluate           

whether our model can transfer information across different kinase families. To explicitly            

demonstrate it, we restricted the testing data within only one kinase family and compared the               

performance of using or not using the kinases outside the family. For each kinase family with                

>100 peptides, as Figure 2E shows the relative performance improvement when other kinase             

families were included in the training data. By introducing other kinase families, DeepSignal can              

improve the performance on 75% (12/16) of kinase families. The AUROC scores were             

significantly improved on 25% of 4/16 families. Given the limited number of kinase-peptide             

binding pairs within each family, the ability of transferring knowledge across families alleviates             

overfitting and generates more robust and accurate predictions. 

 

Predicting kinase-specific binding sites 

Armed with a better sequence representation, we compared DeepSignal (encoder + decoder)            

with four popular methods, GPS (Xue et al., 2008), NetPhorest (Miller et al., 2008), NetPhos               

(Blom et al., 2004) and MusiteDeep (Wang et al., 2017), on predicting the kinase-specific              

phosphosites. Since current databases contains only experimentally verified kinase-substrate         
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pairs (positive samples), we adopted the following procedure to generate negative samples: for             

an experimentally verified kinase-substrate and another randomly sampled kinase    ,< x y >       x′  

that is not classified to the same kinase family as , we added as a negative sample          x    ,< x′ y >      

into the training and validation data. The data was split into five partitions with equal size and                 

each partition was iteratively held out as the test set. The area under the receiver operating                

characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) were            

used as the evaluation metric to measure the performance. As shown in Figure 3A, we               

observed that GPS and NetPhorest have similar performance (AUPRC=~0.21), NetPhos and           

MusiteDeep achieved relatively poor/higher performance (AUPRC=~0.18). DeepSignal       

significantly outperformed these four methods by about 20% (AUPRC = 0.25). In Figure 3B, we               

showed that DeepSignal achieved higher AUROC scores than the other four methods            

(DeepSignal=0.875, GPS=0.836, NetPhorest=0.831, NetPhos=0.840 and MusiteDeep=0.818).      

For detail comparison, we also validated the performance of DeepSignal separately on serine             

and threonine (S/T) specific kinases and tyrosine (Y) specific kinases. Figure 3B showed that              

DeepSignal generated more accurate predictions than the other four methods on both types of              

kinases. These results demonstrated the ability of DeepSignal of predicting phosphosites of            

kinases.  

 

Application to SH2 domains 

In addition to the kinase domains, we also applied DeepSignal to predict the substrate              

specificity on SH2 domain proteins, which also play an important regulatory role in cellular              

signaling. Here, we collected the binding datasets from four high-throughput studies: MacBeath            

(Koytiger et al., 2013), Jones (Hause et al., 2012), Nash (Liu et al., 2010), and Cesareni (Tinti et                  

al., 2013). We compared DeepSignal with other three state-of-the-art SH2-peptide binding           
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prediction methods: SMALI (Li et al., 2008), SH2PepInt (Kundu et al., 2013) and MSM/D-PEM              

(AlQuraishi et al., 2014), and one general protein-protein interaction prediction method, PrePPI            

(Zhang et al., 2013).  

 

We observed that DeepSignal outperformed the baseline methods in 93.8% (15/16) of the             

head-to-head comparisons (Figure 3C). The improvement achieved by DeepSignal was          

substantial. For example, on the Jones datasets, the AUROC score of DeepSignal is ~0.85,              

while all the other methods have AUROC score < 0.75. The only one exception is the                

comparison between our method and MSM/D-PEM on the Cesareni dataset, on which the two              

methods have comparable performance (DeepSignal=0.809 and MSM/D-PEM=0.813).       

However, it should be noted that although both methods were tested on the same testing               

dataset held out in the five-fold cross-validation, the released MSM/D-PEM model was trained             

with all the binding data on each dataset, while our method was trained only on 80% of the                  

training data every time in cross-validation. Therefore, MSM/D-PEM has the advantage of the             

access to test data and achieved the comparable performance to ours. Overall, these             

experimental results suggested that the application of DeepSignal to other protein binding            

prediction problems, such the peptide specificity of SH2 domains.  

 

Identification of cancer mutations that dis-regulate signaling networks 

To study the impact of mutations on cancer, we applied DeepSignal to construct the signaling               

network using only the protein primary sequences of 16,254 proteins, including 307 kinase             

domains, 112 SH2 domains and 190,427 phosphoproteins across 18 cancer types (Method            

details ). For each cancer type, we mapped all the missense mutations from TCGA on the               

protein sequences, including 6,286 mutations on kinase domains, 776 mutations on SH2            
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domains and 37,996 mutations on phosphoproteins. For each node (gene) and edge (gene             

interactions) in the signaling network, we define two scores and to         P perturb−node   P perturb−edge   

quantify the likelihood of whether the binding activity being activated or disrupted (Method             

details ). As shown in Figure 4A, B, the tumor networks exhibited strong enrichment for known               

cancer genes (Iorio et al., 2016). In particular, we observed the edge-based perturbation score              

is much more sensitive in terms of ranking cancer genes compared to node-basedP perturb−edge               

perturbation . The reason is that captures each individual rewiring of P perturb−node      P perturb−edge       

signaling transduction network while can only quantify the marginal effect over all    P perturb−node          

the possible network rewiring. Figure 4A shows that for the top 50 edges ranked by .               P perturb−edge  

DeepSignal can significantly improve the efficiency of detecting cancer related genes in            

comparison to MSM/D-PEM for majority of cancer types. DeepSignal achieves superior           

performance on liver cancer (LIHC), uterine cancer (UCEC), bladder cancer (BLCA) and colon             

and rectal cancer (COADREAD). For instance, for LIHC, DeepSignal was able to detect 55% of               

the known cancer genes by considering the mutation impacts on signaling pathway. To further              

study these 4 cancer types, we calculated the efficiency of detecting cancer genes by choosing               

different ranking thresholds. As shown in Figure 4C-J the known cancer genes are constantly              

ranked higher by DeepSignal when compared to MSM/D-PEM, suggesting that our method is             

able to quantitatively measure the signaling perturbations that are relevant to important cancer             

signaling pathways. 

 

We further chose three of these significantly perturbed signaling pathways to demonstrate how             

DeepSignal could be applied to facilitate biologists and clinicians to study the mechanism of              

cancer. In Figure S1A, we focus on the perturbed edges associated with gene CTNNB1 in               

UCEC. CTNNB1 is ranked 1st and 2nd by the and score, respectively.         P perturb−edge   P perturb−node    
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CTNNB1 is known as a very important component of adhesion junctions which are necessary              

for the creation and maintenance of epithelial cell layers by regulating cell growth and adhesion               

between cells. Computational studies showed that CTNNB1 mutations correlated with the           

upregulation and downregulation of multiple well-known cancer genes (Ding et al., 2015) but the              

mechanism is unclear. In Figure S1B, we focused on the perturbed edges associated with gene               

PTEN in glioblastoma (GBM), which is ranked 3rd and 6th by and score,           P perturb−edge   P perturb−node   

respectively. PTEN was identified as a tumor suppressor that is mutated in a large number of                

tumors at high frequency by negatively regulating AKT/PKB signaling pathway (Yang et al.,             

2017). Figure S1B shows its interactions with other very important cancer gene FGFR2 and              

FGFR3 are disrupted, suggesting the functional role of PTEN involved in cancer. We also              

checked the perturbed edges associated with gene SMAD4 in LUAD, which is ranked 4th and               

10th by and score, respectively. SMAD4 plays a central role in the  P perturb−edge   P perturb−node           

balance between atrophy and hypertrophy, which is not only associated with cancer but also              

associated other disease such as de Myhre Syndrome and Polyposis, Juvenile Intestinal            

(Haeger et al., 2016). As shown in Figure S1C, DeepSignal predicts that the mutations of               

SMAD4 will only lead to three significant network rewiring events which dramatically reduce the              

space for pharmacist to search for new drug targets to cure lung cancer.  

 

Conclusion  

We introduced DeepSignal, a deep learning based method for predicting the substrate            

specificity of kinase/SH2 domains. DeepSignal consists of two components, an encoder network            

that encodes the sequence features to a compact expressive low dimensional vector that can              

better explain the substrate specificity, and a decoder network that translates the vector into a               

specificity profile (e.g., PSSM). With the powerful memory mechanism of the LSTM neural             
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network architecture, we are capable of handling variable-length kinase domain sequences and            

effectively translate the protein sequence of a kinase into a substrate specificity profile.             

Experiments demonstrated that DeepSignal could achieved improved performance than existing          

methods. Further interpretation of DeepSignal model showed its strong predicting power came            

from better capturing different complicated and long-range amino acid patterns. Moreover, by            

analyzing phosphorylation-related missense coding mutations in TCGA data, DeepSignal can          

propose new candidate pathways that potentially disrupt the normal signaling processes of cell             

caused by cancer mutations, which may eventually help study new treatment methods to cancer              

patients.  

 

DeepSignal is a versatile method and is applicable to various analyses related to kinase              

substrate specificity or signaling. For example, predicting the binding likelihood of a given kinase              

and substrate, quantifying the change of substrate specificity caused by mutations in the kinase              

sequence, and predicting the impact of mutations in peptides on phosphorylation events (e.g.,             

phosphosites disruption, creation or re-wiring). Given the transferability of its predictive power,            

DeepSignal can be applied to predict new substrate sequences for a kinase that have few               

known substrates or with mutations, which will reveal important functional disruptions caused by             

mutations in human diseases. 

 

STAR Methods 

Contact for Reagent and Resource Sharing 

Jian Peng, jianpeng@illinois.edu, Department of Computer Science, University of Illinois at           

Urbana-Champaign, Urbana, IL, USA. 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2018. ; https://doi.org/10.1101/288647doi: bioRxiv preprint 

https://doi.org/10.1101/288647
http://creativecommons.org/licenses/by/4.0/


Method Details 

Dataset preparation 

Kinase and SH2 domain sequences Protein sequences of human kinome were downloaded            

from the http://kinase.com repository, which provides the domain sequence and additional           

functional information for 516 known human kinases. These domain sequences were searched            

using HHblits (Remmert et al., 2011) and re-aligned using HHalign (Söding et al., 2005) with               

their default parameter settings. We also collected 112 SH2 domain sequences whose            

alignments are from a previous work (AlQuraishi et al., 2014), in which the SH2 domains were                

aligned with SH2-peptide structural complexes.  

 

Substrate peptides Phosphorylation sites data were extracted from the PhosphoSitePlus          

database (Hornbeck et al., 2012), which contains 17,272 experimentally validated phosphosites.           

Each phosphosite is represented by a flanking sequence of length 15 centered around the              

phosphosite. We extracted the human phosphosites and removed duplicates entries, leaving           

10,181 non-redundant human phosphosites, spanning 307 human kinase domains. For SH2           

domain, we obtained the collected dataset used in (AlQuraishi et al., 2014), which is the union                

of four high-throughput binding data (“MacBeath” (Koytiger et al., 2013), “Jones” (Hause et al.,              

2012), “Nash” (Liu et al., 2010), and “Cesareni” (Tinti et al., 2013)) of SH2 domain-phosphosite               

binding, including 5,016 phosphotyrosine peptide sequences spanning 111 SH2 domains.  

 

TCGA dataset. Somatic missense single-nucleotide variants of 24 cancer types and 4,954            

patients, including 5,196 samples and 19,934 genes, from The Cancer Genome Atlas (TCGA)             

were downloaded from the Broad GDAC Firehose Hub (http://gdac.broadinstitute.org, February          

11th 2016). 
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The DeepSignal Framework 

Our method applies the recurrent neural network (RNN) (Hochreiter and Schmidhuber, 1997),            

which is a deep learning architecture that has demonstrated its applicability in various             

sequence-based tasks, e.g., natural language translation (Wu et al., 2016), speech recognition            

(Graves et al., 2013)] and computational biology (Min et al., 2017). RNNs are able to take a                 

protein sequence with an arbitrary length as input and maintain a hidden/memory state. Given a               

protein kinase sequence with length , at each position , the RNN receives the -th amino   x    n      t      t   

acid of the kinase sequence, and updates the hidden state using the following transition xt               

function, which is the composition of an affine transformation followed by a non-linear function.  

                                                                    (1)(Wx h )  ht = ϕ t + U t−1  

where is the hidden state at position , is a non-linear function (e.g., ), and  ht        t  (·)  ϕ       anh(·)  t    W  

and are the parameters of the RNN. In this work, we implemented the RNN using the Long  U                  

Short Term Memory (LSTM) units. LSTM is an improved version of the RNN defined in               

Equation 1 , which can better capture long-range dependencies by choosing proper information            

to forget, and at the same time benefit mathematical optimization. Intuitively, the hidden state               ht  

encodes the “internal memory” of the RNN up to position and summarizes the long-short          t      

range dependencies information over multiple distance scales. In this work, we use a             

bidirectional LSTM (BiLSTM) (Schuster and Paliwal, 1997) that consists of two LSTMs, with one              

scanning the sequence forward and the other scanning backward. For simplicity, we use to              ht   

represent the concatenation of the hidden states of the forward and backward LSTMs at              

position , i.e., , where and are the hidden states of the forward and t   oncat(h , )  ht = C t
F ht

B    ht
F    ht

B          

backward LSTMs, respectively. To identify the residues in the kinase sequence that contribute             
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the most to the determination of specificity (the so-called determinants of specificity, or DoS), we               

employed the attention mechanism to our DeepSignal model, which assigns an attention weight             

to each residue in the kinase sequence. The weights provided by the attention model were               

learned during the training process such that residues which are more critical in predicting the               

substrate specificity will receive higher weights. The attention weight of the -th amino acid           t    xt  

was calculated as follows, 

                                                                    (2)of tmax(Linear(h ))  wi = S i  

We then used the linear combination of all hidden states , weighted by the          , h , …, h  h1  2   n     

attention weights, as a context vector to explicitly capture the information provided by each      ci          

residue, 

                                                                                        (3)hc = ∑
n

i=1
wi i  

Next, we concatenated the context vector and the final hidden state to obtain an attention            hn      

vector  as the output of the encoder,v  

                                                         (4)eLU (Linear(Concat(c, )))  v = R hn  

Given the kinase representation generated by the encoder, the decoder aims to predict the              

substrate specificity for this kinase. Specifically, for each position in the substrate peptide, the              

decoder will learn to predict a probability that an amino acid will occurs at that position,           ∈Σa       

where is the set of all the 20 possible amino acids. For this purpose, we use multiple Σ                  

independent two-layer neural network. That is, there is a different neural network for each              

position in the peptide, to learn the specificity at each position. In particular, for the -th position               k   

in the peptide, the two-layer neural network is defined as,  

                                 (5)(h) of tmax(Linear(ReLU (Linear(v))))  NN k = S  
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where is the output of the encoder, is an affine transformation as  hn        inear(·)  L       

; is the Rectified Linear activation Unit (Nair and Hinton, 2010) usedinear(x) x  L = W + b  eLU (·)  R             

to imitate the neuron activation and defined as ; the softmax function defined        eLU (x) ax(x, )  R = m 0      

as is used to normalize the output to be a valid probability of tmax(x ) xp (x ) / xp(x )S i = e i ∑
 

j
e j             

distribution. The output of , denoted as , is a 20-dimension vector indexed by 20    (h )  NN k n    pk         

amino acids, in which the entry is the probability that the amino acid occurs at the -th      (a)  pk         a     k  

position in the peptide. Given a set of training examples , where is a kinase          (x , y )}  { (i)  (i)   x(i)     

sequence and is a peptide sequence, centering on the phosphorylation site, the loss  y(i)             

function of our model is defined as the sum of negative log-likelihood ( ) , i.e.,LL  N   

                                                (6)− og(p (a)·I[a ])∑
 

i
NLLi = ∑

 

i
∑
 

k
∑
 

a∈Σ
l k = yk (i)   

We used the stochastic gradient descent (error backpropagation + ADAM (Kingma and Ba,             

2014)) to minimize the negative log-likelihood.  

     
Signaling Perturbation Score  

We construct a signaling network from TCGA data, in which nodes represent kinase proteins,              

SH2 proteins and phosphoproteins that contains somatic missense single-nucleotide mutations,          

and edges represent the phosphorylation relationships between wild-type kinase/SH2 proteins          

and wild-type peptide. Taking the sequence of the wild-type kinase/SH2 as input, DeepSignal      x         

predicts the substrate specificity as a sequence profile, i.e., a probability distribution in which              

gives the probability that amino acid occurs at the -th position in the peptide. This(a)  pk        a     k       

distribution can be used to evaluate the likelihood that a wild-type peptide (with sequence )        Lw        y  

will by phosphorylated by the kinase/SH2, 
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                                                                              (7)og(p (y ))Lw = ∑
15

k=1
l k k

w
  

Now let and be the corresponding mutant sequences of the kinase/SH2 protein and the  x′   y′             

peptide (it is also possible only one of the kinase/SH2 protein and peptide was mutated). Taking                

as input, DeepSignal predicts the substrate specificity for the mutant kinase/SH2, andx′         (a)  p′k       

the likelihood  that a mutant peptide will by phosphorylated is given by,Lm  

                                                                                                 (8)og(p (y ))Lm = ∑
15

k=1
l ′k ′k   

The perturbation score of the edge  between the kinase/SH2  and the peptide  is thene x y  

defined as,  

                                 .                                         (9)(e) L |P perturb−edge = | w − Lm  

The perturbation score of a node is defined as the aggregation of the      P perturb−node         P perturb−edge  

scores of all edges associated with this node, i.e., 

                                               ,                         (10)(n) (e)P perturb−node = ∑
 

e∈e(n)
P perturb−edge  

where  is the set of edges that are incident to node .(n)  e n  

 

Baseline methods  

For kinase substrate specificity prediction, we compared DeepSignal with four state-of-the-art           

methods (GPS (Xue et al., 2008), NetPhorest (Miller et al., 2008), NetPhos (Blom et al., 2004)                

and MusiteDeep (Wang et al., 2017)). For SH2 substrate specificity prediction, we compared             

DeepSignal to three existing SH2 models (SMALI (Li et al., 2008), SH2PepInt (Kundu et al.,               

2013) and MSM/D (AlQuraishi et al., 2014)) and one general protein-protein interaction method             

(PrePPI (Zhang et al., 2013)). Among these methods, GPS, SMALI and SH2PepInt are             

kinase/SH2-specific, which means a specific model is trained specifically for a given kinase/SH2             
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and the model can only predict the phosphosites for that kinase/SH2. NetPhorest integrates             

specificity profiles or PSSM derived from Positional Scanning Peptide Library experiments and            

uses them to predict the phosphosites of a kinase. MSM/D uses a multiscale framework to               

model the SH2 specificity and derives the position energy matrices (PEMs) to describe the              

binding selectivity. In our experiments, the prediction method based on PEMs derived from             

MSM/D is denoted as MSM/D-PEM. Note that the pre-built specificity profiles of both NetPhorest              

and MSM/D-PEM were derived from all available data, which may overlap with part of the test                

data in our cross-validation process. Therefore, we gave advantages to the existing baseline             

methods but not DeepSignal in the cross-validation comparisons. For NetPhos, we ran their             

web services with default parameters. MusiteDeep provided pre-trained models for both           

kinase-specific phosphosites and general phosphosites prediction. For a given kinase, if its            

pre-trained kinase-specific model has been provided by MusiteDeep, we used this           

kinase-specific model to predict the phosphosites, otherwise we used the general phosphosites            

prediction model. 

 

Parameter settings and training details 

The hyperparameters of DeepSignal were selected using an inner-loop 5 fold cross-validation            

on the training data only. Specifically, the encoder is a BiLSTM with 512 hidden units (i.e., the                 

dimension of the hidden state vector) and the decoder is a 2-layer neural network with 512                

hidden units. We trained the model for 500 epochs with batch size 512. The learning rate was                 

set to 0.001. Several regularization techniques, e.g., dropout (Srivastava et al., 2014) and early              

stopping (Goodfellow et al., 2016), were used to avoid overfitting. Kinases with less than 30               

known substrates or with 20 known phosphorylation sites were filtered out in the training data.               
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The model was implemented in PyTorch and trained on NVIDIA Titan X GPUs. The training               

process takes 15s for one epoch and 500 epochs to converge. 

 

DATA AND SOFTWARE AVAILABILITY  

A pytorch implementation of DeepSignal, including both training and predicting codes and a             

benchmark dataset are available for download at: https://github.com/luoyunan/DeepSignal. 
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Figures 

 

Figure 1. Schematic illustration of DeepSignal. DeepSignal consists of two modules, an            

encoder and a decoder network. The encoder network employs the bidirectional Long Short             

Term Memory (LSTM) network to process the input kinase (or SH2) sequence. A separate              

attention model is trained together to determine the feature importance. The decoder network             

then predicts the substrate specificity profile based on the output of attention model extracted by               

the encoder from the kinase sequence. A zoom-in view of the LSTM unit was also provided.                

Here we provide three applications of DeepSignal: 1) substrate prediction. 2) mutational            

analysis. 3) signaling network rewiring analysis. 
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Figure 2. Pairwise relationships between the kinase representation similarity and kinase           

substrate specificity similarity. DeepSignal is able to learn a vector representation for a             

kinase domain that encodes the complex features determining its substrate specificity. (A):            

DeepSignal achieves higher Spearman’s correlation than the pairwise kinase domain similarity           

computed based on the whole domain sequences, determinants of specificity identified in            

previous structural studies and the KINspect algorithm. (B): The pairwise kinase domain            

similarity based on the representations learned by DeepSignal are highly correlated with the             

pairwise kinase substrate specificity similarity. (C): The prediction performance (AUROC score)           

of DeepSignal converges with only a small number of residues selected by the attention              

module. (D): Up: Top 15 residues selected by the attention module mapped on a reference               

kinase structure (PDB ID:3poz). Below: The attention value matrix learned from training data for              
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each residue on the kinase sequence. (E): Relative performance improvement across 16 kinase             

families by including other kinase families.  
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Figure 3. Evaluation of prediction performance on the prediction of kinase-specific           

phosphosites. (A): Precision-recall curves of five-fold cross-validation comparison of different          

methods. (B): Stratification of predicting tyrosine-specific kinases, and serine/threonine kinases,          

respectively. Performances were evaluated with a five-fold cross-validation and AUROC was           

used as the evaluation metric. (C): Performance of DeepSignal evaluated on four            

high-throughput datasets of SH2-peptide binding data and compared to four other baseline            

methods. Five-fold cross-validation and AUROC score were used to evaluate each method.            

Note that the released model of MSM/D-PEM has been trained on all the data of each dataset,                 

while our method was trained on the training data only in the cross-validation test. 
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Figure 4. Comparison of known cancer gene detection between DeepSignal and           

MSM/D-PEM. X-axis and Y-axis are the percentage of genes known to be involved in a               

particular cancer type within the top 50 ranked proteins by DeepSignal and MSM/D-PEM,             

respectively, according to the predicted specificity changes. Rankings were performed on the            

basis of (A) edges and (B) nodes. The comparison of top genes identified by DeepSignal with                

known cancer genes is also provided. (C)-(F): The enrichment analysis of top genes ranked by               
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the edge-based perturbation score. (G)-(J): The enrichment analysis of top genes ranked by the              

node-based perturbation score. 
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Figure S1. DeepSignal discovers new perturbed pathways related to cancer including (A):            

CTNNB1 pathway in UCEC, (B): PTEN pathway in GBM and (C): SMAD4 pathway in LUAD.               

Black edges represent the wild-type interactions between Kinase/SH2 domain and          

phosphoproteins. Red edges represent loss of functions predicted by DeepSignal. Red color of             

nodes represents known cancer genes for the corresponding cancer type and green color of              

nodes represents known cancer genes for other cancer types. 
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