
 
 

1 

Title Page 
 
Classification: Medical Sciences 
 
Title: Estimating the proportion of bystander selection for antibiotic resistance among potentially 
pathogenic bacterial flora 
 
Short Title: Estimating bystander selection for resistance 
 
Authors: Christine Tedijantoa, Scott W. Olesenb, Yonatan H. Gradb,c, Marc Lipsitcha,b 
 
Author Affiliation: a Center for Communicable Disease Dynamics, Department of Epidemiology, 
Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, Massachusetts, 02115, 
USA; b Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 
655 Huntington Avenue, Boston, Massachusetts, 02115, USA; c Division of Infectious Diseases, Brigham 
and Women’s Hospital, Harvard Medical School, 15 Francis Street, Boston, Massachusetts, 02115, USA 
 
Corresponding Author: Christine Tedijanto 
Harvard T.H. Chan School of Public Health 
677 Huntington Ave, Suite 506 
Boston, MA 02115 
ctedijanto@g.harvard.edu 
 
Keywords: antibiotic resistance, vaccines, microbiome 
 
 
  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 28, 2018. ; https://doi.org/10.1101/288704doi: bioRxiv preprint 

https://doi.org/10.1101/288704


 
 

2 

Abstract 
 
Bystander selection -- the selective pressure for resistance exerted by antibiotics on microbes that are not 
the target pathogen of treatment -- is critical to understanding the total impact of broad-spectrum 
antibiotic use on pathogenic bacterial species that are often carried asymptomatically. However, to our 
knowledge, this effect has never been quantified. We quantify bystander selection for resistance for a 
range of clinically relevant antibiotic-species pairs as the proportion of all antibiotic exposures received 
by a species for conditions in which that species was not the causative pathogen (“proportion of bystander 
exposures”). Data sources include the 2010-2011 National Ambulatory Medical Care Survey and 
National Hospital Ambulatory Medical Care Survey (NAMCS/NHAMCS), the Human Microbiome 
Project, and additional carriage and etiological data from existing literature. For outpatient prescribing in 
the United States, we find that this proportion over all included antibiotic classes is over 80% for 8 of 9 
organisms of interest. Low proportions of bystander exposure are often associated with infrequent 
bacterial carriage or concentrated prescribing of a particular antibiotic for conditions caused by the 
species of interest. Applying our results, we roughly estimate that pneumococcal conjugate vaccination 
programs result in nearly the same proportional reduction in total antibiotic exposures of S. pneumoniae, 
S. aureus, and E. coli, despite the latter two organisms not being targeted by the vaccine. These results 
underscore the importance of considering antibiotic exposures of bystanders, in addition to the target 
pathogen, in measuring the impact of antibiotic resistance interventions. 
 
Significance Statement 
 
Bystander selection, defined as the inadvertent pressure imposed by antibiotic treatment on microbes 
other than the targeted pathogen, is hypothesized to be a major factor in the propagation of antibiotic 
resistance, but its extent has not been characterized. We estimate the proportion of bystander exposures 
across a range of antibiotics and potential pathogens commonly found in the normal flora and describe 
factors driving variability of these proportions. Impact estimates for antibiotic resistance interventions, 
including vaccination, are often limited to effects on a target pathogen. However, the reduction of 
antibiotic treatment for conditions caused by one pathogen may have the broader potential to decrease 
bystander selection pressures for resistance on many other organisms. 
 
Introduction  
 
Antibiotic use creates selective pressures favoring resistant microbes. While designed to control the 
pathogenic bacteria causing an infection (we use the term “target pathogen”), currently available 
antibiotics often have antimicrobial activity against many bacterial species and disseminate widely 
throughout the body (1). Thus, the bacteria that comprise the human microbiome are subject to the 
selective pressures applied by most antibiotic consumption (2–4). These selective pressures for resistance 
experienced by microbial flora due to antibiotic exposures for a condition not caused by that species can 
be called “bystander selection”. While non-pathogenic commensals residing in the microbiome are 
always bystanders, opportunistic and obligate pathogens, which are often carried asymptomatically, lie at 
the critical intersection where resistance is clinically relevant and the extent of bystander selection among 
them is unknown. Although commensals may be an important reservoir for resistance elements, our 
ability to measure horizontal transmission between organisms in the microbiome is limited. Therefore, we 
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focus on bystander selection for resistance due to antibiotic exposures experienced directly by potential 
pathogens.   
 
Quantifying bystander selection, as defined above, is important for evaluating the impact of antibiotic 
resistance control interventions. For example, vaccination and infection control strategies are designed to 
reduce the need for appropriate antibiotic treatments and thus decrease selective pressure for resistance on 
a target pathogen: vaccination by reducing the incidence of disease from, say, Streptococcus pneumoniae 
and thus the need for antibiotic treatment (5, 6), and infection control by reducing the incidence of 
hospital-acquired infections that will require treatment. Often overlooked is the impact that averted 
treatment may have beyond the target pathogens, because each treatment averted would have exerted 
selection on bystanders as well. For stewardship interventions, which aim to avert inappropriate treatment 
of conditions that are never or seldom caused by bacteria, the primary goal of the intervention is to avert 
bystander selection of the patient’s normal flora. Mathematical transmission models that aim to simulate 
the dynamics of antibiotic resistance and to project the impact of interventions on pathogenic bacteria 
with an asymptomatic carriage state often assume that treatment incidence is independent of colonization 
with the bacterium of interest, implying that bystander selection is the rule rather than the exception (7–
9). Prior to this study, there has not been sufficient evidence to support this claim.  
 
This work aims to estimate the extent of bystander selection for resistance due to outpatient prescribing in 
the US for a range of clinically relevant species and antibiotic combinations. Prescriptions are used as a 
measured proxy for exposures and, ultimately, for selection. We use existing data, including the National 
Ambulatory Medical Care Survey and National Hospital Ambulatory Medical Care Survey 
(NAMCS/NHAMCS) to estimate prescription volume and associated diagnoses, and the Human 
Microbiome Project and other studies of bacterial carriage to estimate the microbial communities subject 
to selection. We quantify bystander selection as the proportion of total exposures of an antibiotic 
experienced by a species when that species was not the target pathogen of treatment, and will refer to this 
measure as the “proportion of bystander exposures”. 
 
Understanding the contribution of bystander exposures to the landscape of selective pressures for 
antibiotic resistance at the population level will help to inform interventions including vaccines and 
antibiotic stewardship. Given the special attention of the current issue of PNAS to vaccines and 
antimicrobial resistance, we spell out how such measures can contribute to estimating the impact of 
vaccines, in particular pneumococcal conjugate vaccines, whose impact on antimicrobial resistance has 
received arguably the most attention of any vaccine (10, 11). 
 
Results 
  
Data source characteristics. After exclusion of visits resulting in hospital or observation unit admission, 
the National Ambulatory Medical Care Survey (NAMCS) and National Hospital Ambulatory Medical 
Care Survey (NHAMCS) from 2010-2011 with nationally representative sampling weights were used to 
estimate outpatient diagnosis and prescription volume in the US (see Materials and Methods). 94.4% of 
total sampled visits were included in the analysis, with 14.7% of these visits resulting in at least one 
antibiotic prescription. Visits with one or more of the conditions explicitly included in the bystander 
analysis (x-axis of Figure 1A) accounted for 55.8% of unweighted prescriptions of our antibiotic classes 
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of interest. Of included visits with one of these conditions, 6% were clinical encounters with patients less 
than one year old and 19% with patients between the ages of 1 and 5. The Human Microbiome Project 
(HMP) data includes isolates from healthy individuals between the ages of 18 and 40 sampled at 15-18 
locations across five major body sites: the nasal passages, oral cavity, skin, gastrointestinal tract, and 
urogenital tract. This analysis was agnostic to body site; an individual was considered to have positive 
carriage status of a particular species if that species was identified at any body site.  
  
Estimating the proportion of bystander selection for resistance, by species and antibiotic or class. The 
three inputs required to calculate the proportion of bystander exposures are antibiotic prescriptions by 
condition, condition etiologies, and carriage prevalence of each species. In Figure 1A, we depict antibiotic 
use as the proportion of weighted visits at which the specified condition was diagnosed, given that the 
visit resulted in a prescription of the specified antibiotic class; this value is a function of both antibiotic 
use by condition and volume of visits for the given condition. For example, this proportion is relatively 
high for use of penicillins for suppurative otitis media and macrolide/lincosamide use for bronchitis, 
common conditions leading to frequent prescriptions of the respective antibiotic class. While a high 
proportion of pneumonia cases also result in antibiotic prescriptions, low incidence in the outpatient 
setting leads to low proportions of antibiotic use associated with this condition. Nitrofurantoin presents an 
extreme case where use is targeted towards a single, common condition, urinary tract infections (UTIs). 
While many of the conditions that we consider do not have bacterial etiologies, those that do are 
infrequently caused by our bacteria of interest; conditions which are primarily caused by a single 
organism are streptococcal sore throat (strep), which we assume is always caused by S. pyogenes, and 
UTIs, commonly caused by E. coli (Figure 1B). Carriage prevalence varies dramatically from nearly 75% 
for H. influenzae and E. coli to well below 5% for S. pyogenes, S. agalactiae, and P. aeruginosa (Figure 
1C). 
 
The connections between antibiotic use, etiology, and carriage prevalence may be observed more clearly 
when considering bystander selection for a single antibiotic or class. We discuss two examples -- E. coli 
and quinolones, and S. pyogenes and penicillins. Quinolones, such as ciprofloxacin, are frequently used to 
treat UTIs (Figure 1A), which, as previously mentioned, are commonly caused by E. coli (Figure 1B). 
This alignment between antibiotic use and etiology results in a lower proportion of bystander exposures to 
quinolones for E. coli, compared to other species (SI Appendix, Figure S1). This relationship is 
accentuated for species with low carriage prevalence. For example, a moderate proportion of penicillin 
use is directed towards strep throat (Figure 1A), for which we assume S. pyogenes is the sole cause 
(Figure 1B). Due to this extreme etiology and low carriage prevalence, exposures of S. pyogenes to all 
included antibiotics, especially penicillins, occur more frequently when S. pyogenes is a target pathogen 
and not a bystander. This factor also contributes to the low bystander proportion of P. aeruginosa for 
antibiotics used to treat UTIs. The bystander proportion for P. aeruginosa is often comparable to that of 
E. coli, even though it is a far less common cause of UTIs; compare this to K. pneumoniae, which causes 
more UTIs than P. aeruginosa, but is more prevalent in carriage and thus experiences more bystander 
exposures. Thus, low carriage prevalence is also a driver of low bystander selection.  
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Figure 1. Inputs and overall results of bystander analysis. A: Heat map shading represents the proportion 
of visits (after weighting to be nationally representative) with a diagnosis of the specified condition, given 
that the visit resulted in a prescription of the specified antibiotic class. Results for TMP/SMX and 
nitrofurantoin are for the individual drug instead of an antibiotic class. Rows are not required to sum to 
100%, as only a subset of conditions are shown, and each visit may be associated with more than one 
condition. Antibiotics included in each class are based on the Multum Lexicon classification system. 
Macr./Linc. = Macrolides/lincosamides; TMP/SMX = trimethoprim-sulfamethoxazole. Diagonal lines 
indicate cells with value of 0. B: Heat map shading represents the estimated etiology of each condition by 
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species. If etiological data was available for multiple age groups, the weighted mean based on the relative 
frequency of visits (after weighting to be nationally representative) for that condition is shown. Diagonal 
lines indicate cells with value of 0. C: Bars indicate mean carriage prevalence of each species across age 
groups, weighted by relative frequency of visits (after weighting to be nationally representative). D: Bars 
indicate proportion of bystander exposures by antibiotic class and species (Bas) with 95% confidence 
intervals. “Overall” estimates reflect exposures to antibiotic in any of the classes shown in Panel A. 

Overall, the proportion of bystander exposures exceeded 80% for 8 out of 9 organisms (all except S. 
pyogenes) when considering exposures to any of our antibiotic classes of interest (Figure 1D), and was 
above 80% for 133 out of 153 (86.9%) antibiotic-species pairs (SI Appendix, Figure S4). These results 
indicate that for the majority of antibiotic and species combinations, fewer than 20% of the exposures of 
that species to the antibiotic in question occur in the context of treating a disease caused by that species. 
Of particular clinical interest, 83.9% (95% CI: 80.9%, 86.6%) of S. pneumoniae exposures to penicillins 
and 93% (95% CI: 90.7%, 94.5%) of exposures to macrolides occurred when S. pneumoniae was not the 
target pathogen of disease. For E. coli, the proportion of bystander exposures was 81.3% (95% CI: 79.1%, 
84%) for quinolones and 93.2% (95% CI: 91.4%, 94.3%) for cephalosporins, both of which are often used 
to treat pathogenic E. coli. The proportion of bystander exposures was similarly high for S. aureus and 
penicillins at 91% (95% CI: 86%, 94.6%). S. pyogenes, which is rarely carried asymptomatically, only 
experienced 35.2% (95% CI: 30.6%, 55.9%) of its exposures to penicillins as a bystander. 
 
Antibiotic resistance in N. gonorrhoeae is of urgent concern, and recent ecological (12) and individual-
level (13) studies have implicated bystander selection as a potential driver of macrolide resistance. Due to 
the low incidence of gonorrhea in the general population, limited data was available from 
NAMCS/NHAMCS. We used additional data from the Gonococcal Isolate Surveillance Project (GISP) 
(14) with slightly modified methods (see Materials and Methods) to estimate the proportion of bystander 
exposures for N. gonorrhoeae. From 2010-2011, the proportion of bystander exposures for N. 
gonorrhoeae was 97.7% for ciprofloxacin and 4.8% for ceftriaxone. At the antibiotic class level, the 
proportion of bystander exposures for N. gonorrhoeae was 97.5% for quinolones and 14.6% for 
cephalosporins. GISP data on macrolide and tetracycline use were unavailable for 2010. For 2011, GISP 
reports combine prescription data for azithromycin and erythromycin and for doxycycline and 
tetracycline. Assuming that 75-95% of the azithromycin-erythromycin volume can be attributed to 
azithromycin, we estimate that the proportion of bystander exposures for N. gonorrhoeae ranges from 
22.8% to 18.9%, respectively. Similarly, assuming that 75-95% of reported doxycycline-tetracycline use 
is doxycycline results in estimates for the proportion of doxycycline bystander exposures for N. 
gonorrhoeae of 29.7% to 25%. At the antibiotic class level, the proportion of bystander exposures for N. 
gonorrhoeae was 22.8% for macrolides/lincosamides and 28.6% for tetracyclines, accounting for all 
doxycycline-tetracycline use. 
 
Application to vaccine impact on antimicrobial exposures in bystanders. We provide here preliminary 
estimates of the bystander impact of vaccines to illustrate how such calculations might be performed. 
Because the requisite quantities have not all been estimated in the same population, we combine estimates 
from different populations for the purposes of illustration, but we note the need for additional data to 
improve the level of confidence in such calculations by comparing quantities within a single population. 
We take the example of the pneumococcal conjugate vaccine (PCV), which reduces bacteremia, 
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meningitis, pneumonia and otitis media caused by 7, 10 or 13 serotypes of pneumococci, depending on 
the formulation.  
 
Considering only immediate direct effects, we made a conservative estimation of the effect of PCV on 
antimicrobial exposures of bystander organisms (see Materials and Methods). A randomized controlled 
trial of the seven-valent pneumococcal conjugate vaccine found a 7.8% reduction in otitis media among 
vaccinated vs. control children, and a 5.4% in all-cause antimicrobial prescribing, mainly attributed to 
reduced otitis media (5). Restricting attention to the 0-1 and 1-5 year old age groups in our study, this 
would translate to a 5.2% reduction in exposure of S. aureus to antibiotics, and a 5.4% reduction in 
exposure of E. coli to antibiotics in these age groups.  
 
Much larger estimates of impact on otitis media are obtained in studies that account for herd immunity 
effects and for the possibility that PCVs can indirectly prevent some non-pneumococcal otitis media (15). 
An Israeli study found a 57-71% reduction in all-cause otitis media associated with the rollout of PCV13 
in various age groups up to the third birthday (16), while a study in the UK found a 36% reduction in  
otitis media among children under 10 years old comparing the post-PCV13 period to the pre-PCV7 
period, and a 29% reduction in otitis media-associated antimicrobial prescribing for the same comparison 
(6). Impact on total antimicrobial prescribing was not reported in the UK (6). If we assume that the ratio 
of 0.69 percentage points reduction in total prescribing per percentage point reduction in otitis media can 
be extrapolated from the RCT in California (5), this 36% reduction in otitis media would correspond to a 
25% reduction in all-cause antibiotic prescribing. Using our estimates of prevalence and bystander 
proportion, this would yield a 24.99% and 24.2% reduction in outpatient exposure of bystanders E.coli 
and S. aureus to antibiotics.  While these calculations require a number of assumptions, they underscore 
the potentially substantial impact of vaccines on bystander selection and the need for improved data on 
the impact of vaccination on use of specific antimicrobials in specific populations. 
 
Discussion 
 
For most bacterial species, the majority of their antibiotic exposures were the result of treatment for a 
condition that they did not cause. This held true across a range of different organisms and antibiotics. 
Carriage prevalence was the key predictive factor of the differences in proportion of bystander exposures 
between organisms, with species that were commonly carried asymptomatically (SI Appendix, Table S2), 
such as E. coli, H. influenzae and S. pneumoniae, having consistently high bystander proportions, and 
more rarely carried species such as S. pyogenes and N. gonorrhoeae, which are frequently associated with 
antibiotic-treated disease, having lower ones. Among drugs/drug classes, nitrofurantoin, used almost 
exclusively for urinary tract infections, had low bystander proportions for common urinary tract 
pathogens, which frequently are the cause of nitrofurantoin treatment. In contrast, broad-spectrum drug 
classes such as beta-lactams, cephalosporins, and quinolones typically have high bystander proportions 
for most or all species considered, because they are used for a wide variety of conditions caused by a wide 
variety of species, as well as for treatment of conditions that are often nonbacterial. 
 
Quantifying bystander selection for resistance for different antibiotic-species combinations has several 
potential applications. As previously discussed, mathematical transmission models of antibiotic 
prescribing and resistance commonly assume that bystander selection is the rule rather than the exception, 
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and these findings confirm this has been a sensible assumption, at least for outpatient antibiotic use. For 
policy discussions, the high bystander proportions obtained here suggest that interventions to reduce 
antimicrobial use may have broad effects in reducing the strength of selection across a number of 
bacterial species, not only the ones involved in the pathogenesis of the disease targeted by such efforts. 
For example, improved adherence to guidelines on unnecessary antimicrobial prescribing might mainly 
affect prescribing for respiratory infections, yet might reduce selection for resistance on potential 
pathogens that reside on the skin (e.g. S. aureus) or in the gut (e.g. E. coli and Klebsiella species), as well 
as on respiratory bacteria. In the area of antimicrobial stewardship, these findings suggest that each 
reduction in inappropriate antibiotic prescribing for a particular indication may have broad impacts across 
many species but may not dramatically reduce the exposures to antibiotics of any one species, as long as 
prescribing for other indications remains unchanged.  
 
As discussed, another example of an intervention that can reduce antimicrobial prescribing is vaccination. 
Vaccines can reduce the incidence of resistant infections directly (by preventing disease from their target 
pathogens) and indirectly (by preventing the need for antibiotic prescribing, thereby protecting bystander 
bacteria from exposure to antibiotics that can promote resistance). High bystander proportions are seen 
here for broad-spectrum antibiotic classes that are frequently prescribed for respiratory infections, and 
respiratory infections (including otitis media) account for a large fraction of total antimicrobial use. These 
considerations suggest that vaccines against pathogens that cause respiratory infections, such as 
Bordetella pertussis, Streptococcus pneumoniae, influenza virus, and respiratory syncytial virus, may 
substantially reduce the exposure of a broad range of pathogenic bacterial species to antibiotics, via 
prevention of bystander selection. Notably, this includes vaccines that prevent viral respiratory infections, 
which are often inappropriately treated with antibiotics (17) and perhaps prevent bacterial secondary 
infections that might be appropriately treated if they occurred (18). We have described an approach for 
using estimates of bystander exposures to estimate how vaccines could reduce exposure across various 
non-target pathogens. However, as noted by [REF Sevilla et al.’s perspective in this issue], quantifying 
the impact of vaccines on antimicrobial resistance is a complex task, and many components of such 
calculations will depend on the population, vaccine, and timescale considered, among other variables.  
 
It is informative to consider the antimicrobial agents not included in our analysis. Most antimycobacterial 
agents have little effect on other bacterial species, while most broad-spectrum antibacterial classes are of 
little use against Mycobacterium tuberculosis. Quinolones are an exception to both rules -- bystander 
selection has been documented both in treatment of what was thought to be bacterial pneumonia but was 
actually tuberculosis (19) and in treatment with quinolones in a tuberculosis ward promoting the spread of 
quinolone-resistant S. pneumoniae (20). Other exceptions include rifamycins, also commonly used for 
treatment of tuberculosis, and macrolides, which may be prescribed for M. avium complex disease. With 
these exceptions, bystander selection by antimycobacterial drugs is expected to be limited, and bystander 
selection on M. tuberculosis is also expected to be limited. This is reflected in an appropriate focus for 
tuberculosis resistance management in ensuring adequate treatment to prevent emergence of resistance 
and prevent transmission, rather than on bystander-focused interventions. Additionally, antiviral agents, 
such as the neuraminidase inhibitor oseltamivir for influenza, have no substantial known activity against 
other components of the (bacterial) microbiome, so the rationale for prudent use of oseltamivir would 
include avoiding side effects and costs, but not avoiding selection for resistance. Beyond anti-infectives, a 
recent in vitro study found that 24% of 835 therapeutic compounds with molecular targets in human cells 
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inhibited the growth of at least one bacterial species commonly found in the human gut microbiome (21). 
This work suggests that our focus on antimicrobials underestimates bystander selection for resistance, but 
further research is needed to elucidate which drug-species combinations may be prone to such effects. 
 
This analysis has several limitations. Firstly, all necessary inputs -- incidence and etiology of bacterial 
infections, antibiotic prescribing practices, and composition of the microbial flora -- are derived from 
different data sources and are highly heterogeneous, varying over time and by age, gender, and 
geographic location. Antibiotic prescribing additionally depends upon safety and toxicity profiles in 
certain populations. Microbiome diversity varies between and within individuals, depending on 
demographic characteristics, diet, and disease. For simplicity, we only consider age group stratification to 
calculate population-level, average estimates. Carriage prevalences and etiologies are also applied 
uniformly across visits. This may bias our estimates depending on the extent of microbial ecological or 
etiological relationships. For example, if abundance (or lack) of organism A in the microbiome 
contributes to the pathogenicity of organism B, organism A may be more (or less) prone to bystander 
exposure of antibiotics used to treat the condition caused by organism B than we calculate. Additionally, 
while we estimate the impact on the organism at the species level due to data constraints, selection 
pressures may be more relevant at the strain level; for example, true bystander selection may be lower for 
infrequently carried, more pathogenic strains compared to our overall, species-level estimate.  
 
Secondly, the limitations of the datasets used in our analysis also extend to our results. For example, the 
HMP was conducted in a restricted, healthy study population and prevalence estimates may not be 
generalizable to the US population. To our knowledge, a more extensive and nationally representative 
source of microbiome data is unavailable, and little is known about how microbiome composition among 
individuals with common outpatient conditions may differ from that of healthy individuals. Additionally, 
HMP samples a limited number of body sites and may exclude the most relevant colonization sites for 
some species of interest. For example, measurement of E. coli in the stool as a proxy for the large 
intestine likely contributes to its low carriage prevalence in HMP (66.3%), leading to underestimation of 
colonization and thus bystander proportion. Similarly, unavailability of samples from the anterior nares 
for some individuals may have led to underestimation of the carriage prevalence of S. aureus in HMP data 
(12.4%). Etiologic studies are burdensome and thus often conducted among very small populations; small 
sample sizes may miss infrequent causative agents of disease, but this is unlikely to have a substantial 
effect on our point estimates. GISP, used for the analysis of N. gonorrhoeae, is based on convenience 
sampling of male patients at sexually-transmitted disease clinics. In 2016, the CDC estimated that 90.8% 
of patients in STD clinics received the recommended azithromycin/ceftriaxone regimen compared to 
79.8% of patients in other provider settings; the same relationship, though much weaker, was observed 
when comparing men to women (22). Since these differences are fairly small, any underestimation of 
bystander selection for N. gonorrhoeae due to the recommended antibiotics of azithromycin and 
ceftriaxone is likely to be minor. Additionally, though NAMCS/NHAMCS are unique in providing a 
large sample of outpatient visits with corresponding diagnoses and prescriptions, a direct link between 
diagnosis and prescription is unavailable -- therefore, exposures may be incorrectly counted as 
“bystander”, when the prescription was in fact written for a second diagnosis caused by the species of 
interest. In this analysis, we make no assumptions about linkage between prescriptions and diagnoses; 
instead, we attribute any antibiotic prescription to all of the diagnoses recorded in the same visit. This 
may bias the proportion of bystander exposures in either direction, depending on the antibiotic and 
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species pair in question; use of an alternative tiered method for assigning diagnoses to visits (37) resulted 
in similar findings (98% of antibiotic class and species pairs were within 5% of the values reported here). 
 
Finally, we use prescriptions as a proxy for exposure, which is itself a proxy for selective pressure. 
NAMCS/NHAMCS do not contain information on whether or not the prescriptions were filled; even after 
being filled, we have no information on compliance to the listed medications. Furthermore, little is known 
about how exposures of a particular antibiotic correspond to selection pressures. This may differ widely 
by antibiotic, regimen, organism, and body site. Strength of selective effects at different body sites will 
further vary based on pharmacodynamics, pharmacokinetics, and context (e.g. microbiome composition) 
(25). Most of the antibiotic classes considered here may be assumed to exert some selective pressure for 
resistance throughout the body. Direct evidence of selection on the gut normal flora by oral antibiotics has 
been reported (26). Likewise, selection on the flora of the upper respiratory tract is likely the rule for 
many of these classes, including macrolides, penicillins, cephalosporins, and 
trimethoprim/sulfamethoxazole because they are routinely prescribed for upper respiratory infections and 
are documented to affect bacterial carriage at in the nasopharynx (27–29). Antibiotics in major classes 
including penicillins and cephalosporins (30), macrolides (31) and quinolones (32) have been detected in 
sweat, indicating that they can exert selection on skin flora. One exception to this general rule is 
nitrofurantoin, which tends to concentrate in the urinary tract and is accordingly used to treat UTIs. The 
relationship between drug concentration and selective pressure is also not straightforward, with 
subinhibitory concentrations likely playing an important role in selection for resistance (33). In general, 
the metric used in the present study, counting prescriptions as exposures, could be refined in studies of 
individual drugs, classes, microbes or body sites to incorporate more biological detail, and deviations 
from the estimates shown here will be specific to the antibiotic and organism of interest. 
 
The bystander proportions quantified in this analysis are a step toward better characterizing the dynamics 
of antibiotic resistance and should be considered in the development and prioritization of interventions. In 
this paper, we specifically address selective pressures for resistance among potential pathogens in the 
microbial flora due to outpatient antibiotic prescribing. Outpatient prescribing constitutes approximately 
90% of total antimicrobial volume for human health in developed countries (22, 23), but certainly further 
work is needed to consider the inpatient context as it affects nosocomial pathogens. In addition, off-target 
antibiotic exposures also contribute to resistance dynamics in other ways not captured in this analysis, 
including selection for resistance elements among non-pathogenic bacteria that may be horizontally 
transferred to pathogens and depletion of beneficial bacteria which play active roles in metabolism, 
pathogen resistance, and immune responses (34, 35). Research on the broader effects of antibiotic use on 
the microbiome is greatly needed to further understand the implications of bystander exposures on the 
spread of antibiotic resistance. 
 
Materials and methods 
 
Data sources. All estimates except for Neisseria gonorrhoeae were based on three main data sources - the 
National Ambulatory Medical Care Survey/National Hospital Ambulatory Medical Care Survey 
(NAMCS/NHAMCS) collected by the National Center for Health Statistics, the Human Microbiome 
Project and other studies of carriage prevalence, and etiological studies. 
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The NAMCS and NHAMCS are cross-sectional national surveys designed to collect data on ambulatory 
care services provided at office-based physician practices, emergency, and hospital outpatient 
departments throughout the United States. At each sampled visit, patient characteristics (e.g. age), visit 
characteristics (e.g. reason for visit, diagnosis, prescriptions), and physician characteristics are recorded, 
including up to 3 diagnoses and up to 8 prescribed medications. Sampling is based on a multistage 
probability sampling scheme. The most recent 2 years of fully available data for both NAMCS and 
NHAMCS (2010-2011) were used for this analysis. As the focus of our analysis was outpatient antibiotic 
use, visits that resulted in hospital or observation unit admission were excluded. Antibiotics were grouped 
into classes based on the Multum Lexicon system used in NAMCS/NHAMCS.  
  
The first phase of the Human Microbiome Project (HMP) consisted of collecting microbiome samples 
from 300 healthy individuals between the ages of 18 and 40 at multiple timepoints across five major body 
sites: the nasal passages, oral cavity, skin, gastrointestinal tract, and urogenital tract. Microbial 
composition was characterized using MetaPhlAn2 (36), a taxonomic profiling method for whole-
metagenomic shotgun samples. Prevalence estimates from HMP data were based on presence of the 
species at any body site. For children under 5 years old, carriage prevalences were compiled from primary 
sources in the literature (SI Appendix, Table S1). As individual carriage studies tended to collect samples 
from only one body site, carriage prevalences at each body site were estimated as an average across 
studies weighted by sample size, and overall prevalence was calculated assuming independence at each 
body site. This process was also used to estimate carriage prevalences of S. pyogenes and S. pneumoniae 
in the >5 age group, as MetaPhlAn2 did not distinguish between these and closely related species (e.g. S. 
mitis, S. oralis). Etiologies for conditions of interest were based on etiologic studies cited in the medical 
resource UpToDate (SI Appendix, Table S3). 
 
Calculations of bystander proportions. A bystander exposure was defined as a prescription of antibiotic 
(or antibiotic class) a received by an individual carrying species s for a diagnosis of condition c that was 
not caused by s. Exposures were estimated on average at the population level. Let Bas be the proportion of 
bystander exposures of antibiotic a received by species s, equivalent to one minus the ratio of Nas, the 
number of exposures of antibiotic a received by species s for a case of some condition c that was caused 
by species s, and Tas, the total number of exposures of antibiotic a received by species s. Additionally, let 
dacg be the number of prescriptions of antibiotic a written for condition c in age group g, let pscg be the 
proportion of cases of condition c who are colonized with species s in age group g, and let escg be the 
proportion of cases of condition c caused by species s in age group g. The proportion pscg was calculated 
under the assumption that all individuals with condition c not caused by species s were colonized with 
species s at the group-specific prevalence estimated from HMP or other studies (denoted psg), while 
individuals with condition c caused by species s were colonized with species s with probability 1: pscg = 
escg + (1-escg)psg. Since the inputs dacg, escg, and psg may be highly variable by age, estimates were summed 
over three age strata g (<1 year old, 1-5 years old, and over 5 years old). The proportion of bystander 
exposures for antibiotic a, species s, and condition c was calculated as follows: 
 

𝐵"# = 1 −
𝑁"#
𝑇"#

= 1 −
∑ ∑ 𝑑"+, × 𝑒#+,/

+01
2
,01

∑ ∑ 𝑑"+, × 𝑝#+,/
+01 + ∑ 𝑑"+,̅ × 𝑝#,2

,01
2
,01
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Table 1. Summary of notation with definitions, sources, and relevant figures and tables. 

Variable Definition Source Figure/Table 

dacg Number of prescriptions (using 
nationally representative weights) 
of antibiotic a associated with 
condition c in age group g 

NAMCS/NHAMCS 2010-11 Figure S2 (unweighted) 

dac6g Number of prescriptions (using 
nationally representative weights) 
of antibiotic a associated with all 
conditions not explicitly included in 
analysis (𝑐̅) in age group g 

NAMCS/NHAMCS 2010-11 N/A 

psg Carriage prevalence of species s in 
age group g 

HMP and carriage studies Figure 1, Table S2 

pscg Carriage prevalence of species s 
among individuals with condition c 
in age group g  

escg+81-escg9psg N/A 

escg Proportion of cases of condition c 
in age group g caused by species s 

Etiologic studies Figure 1, Table S3 

Nas Number of exposures of antibiotic a 
experienced by species s for cases 
of conditions in C caused by 
species s 

::dacg×escg

C

c=1

G

g=1

 
N/A 

Tas Total number of exposures of 
antibiotic a experienced by species 
s over all conditions 

::dacg×pscg

C

c=1

G

g=1

+:dac6g×psg

G

g=1

 
N/A 

Bas Proportion of bystander exposures 
for antibiotic a and species s 1-

Nas

Tas
 

Figures 1, S1 and S4 

 
Conditions were based on diagnostic categories delineated by Fleming-Dutra et al. (37) with the 
following exceptions: 1) “Other bacterial infections” includes all codes listed under “miscellaneous 
bacterial infections” plus other intestinal infectious diseases (ICD-9CM codes: 001-008), but excludes a 
subset of infectious diseases (040-041, 130-139), mastoiditis (383), and peritonsillar abscess (475); 2) we 
include only cellulitis (681-682) from the category “Skin, cutaneous and mucosal infections”. The set of 
conditions C includes conditions for which antibiotic use was relatively high (>2% of weighted 
prescriptions; viral upper respiratory tract infection contributed the most, at 10.8% of weighted 
prescriptions) and reasonable estimates of escg were available. When diagnoses were excluded, this was 
most often due to one of these two limitations. Influenza was also included due to clear etiology and 
vaccination-related interest, and acne was included due to high tetracycline use for this indication. All 
cases with ICD-9CM code indicating the causative agent (e.g. 480: viral pneumonia, 481: streptococcal 
pneumonia [Streptococcus pneumoniae pneumonia]) were attributed to that agent. 
 
The second term in the denominator of the proportion of bystander exposures accounts for exposures of 
antibiotic a that were not associated with any of the conditions in C, where dac6g represents prescriptions 
of antibiotic a that occur at visits not associated with any condition in C. The use of psg in this term 
implies that our species of interest are rarely, if ever, causative agents for conditions that are not included 
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in our analysis. Violations of this assumption will lead to overestimation of the proportion of bystander 
exposures. For comparison, we performed the analysis excluding this term (SI Appendix, Figure S5) as 
lower bound estimates of the proportion of bystander exposures for all species-antibiotic class pairs. 
 
Confidence intervals were estimated by simulation. The proportion of bystander exposures was calculated 
for 1000 random draws of dacg, psg, and escg based on empirically estimated distributions. Draws for dacg 
were based on the normal distribution, using variances calculated by the `survey` package in R (38). For 
HMP prevalence estimates, with A presences and B absences, random draws were simulated from a beta 
distribution with parameters (𝐴 + 0.5, 𝐵 + 0.5), the posterior distribution using Jeffreys prior. 
Resampling was done similarly for etiological fractions. The 2.5th and 97.5th percentiles were utilized as 
the bounds of the 95% confidence interval. Table 1 provides a summary of notation used in this analysis. 
 
Calculations of bystander proportion for N. gonorrhoeae. Separate analyses were conducted for N. 
gonorrhoeae using additional data from the Gonococcal Isolate Surveillance Project (GISP) (14). The 
same formula for the proportion of bystander exposures was applied. When GISP data was reported by 
clinic site, the weighted average by sample size over all clinics was used. Age groups were further 
stratified into those used by GISP (<20, 20-24, 25-29, 30-34, 35-39, 40-44, >45 years old) for this 
analysis. 
 
N. gonorrhoeae was assumed to be the causative agent for all gonorrhea cases only (escg=1 for gonorrhea 
and 0 for all other conditions of interest). The number of prescriptions of antibiotic a written for all 
conditions except gonorrhea was calculated from NAMCS/NHAMCS as in the previous analyses. We 
include only prescriptions for patients >5 years old, as we expect gonococcal infection and carriage to be 
very rare among children age 5 and below. For gonorrhea, the number of prescriptions of antibiotic a 
written in 2010-2011 was estimated by multiplying the total number of reported gonorrhea cases (309,341 
in 2010 (39) and 321,849 in 2011 (40)) by the proportion of GISP participants treated with a. 
Prescriptions were counted equally regardless of dosage. Data on quinolone and cephalosporin 
prescribing only were available for 2010, while 2011 reports also included macrolides and tetracyclines. 
Therefore, bystander proportions for azithromycin and doxycycline are only available for 2011. 
 
N. gonorrhoeae is identified in HMP, but the measured prevalence of 37%, with 95% of these identified 
in oral isolates, indicates that this data may include false positives. Miller et al. report that prevalence of 
N. gonorrhoeae in urine samples from a nationally representative sample of young adults (National 
Longitudinal Study of Adolescent Health) was 0.64% among participants 20-21 years old, 0.47% among 
participants 22-23 years old, and 0.24% among participants 24-25 years old. Using the target population 
weights reported in Table 1 of the same paper, we estimated the carriage prevalence of N. gonorrhoeae to 
be 0.56% among participants 20-23 years old and 0.48% among participants 20-25 years old (41). We 
applied the mean of these two groups, 0.52%, as the carriage prevalence of N. gonorrhoeae in the 20-24 
age category used by GISP. For all other age groups designated by GISP, this prevalence was inflated by 
the relative proportion of GISP isolates from that age group. For example, in 2010, 31.4% of GISP 
isolates were sampled from individuals aged 20-24 years old, while 21.2% were from individuals aged 
25-29 years old. The carriage prevalence among 20-24 year olds was multiplied by 21.2%/31.4% to 
estimate carriage prevalence in the 25-29 age category. 
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Impact of vaccine. To approximate the impact of a vaccine in reducing antimicrobial exposure of 
nontargeted species (e.g. E. coli for a pneumococcal vaccine), we initially assume as an input the 
observed reduction r in all-cause antimicrobial use in a particular age group, such as the 5.4% reduction 
in all-cause antibiotic use in a randomized pneumococcal conjugate vaccine trial in 0-2 year-olds (5). 
From our analysis, we approximate values for 0-2 year-olds as the average of results from the 0-1 and 1-5 
age groups. We reason as follows:  
 
Table 2 shows the possible combinations of presence/absence of E. coli in a treated patient, and E. coli as 
cause or not cause of the treatment. One cell (absent, but causal) is empty because by assumption the 
species must be present to cause treatment.  Let A, B, and D represent proportions of all treatments so 𝐴 +
𝐵 + 𝐷 = 1. 
 
Table 2. Classifying all-cause antibiotic treatments with respect to a potential bystander species, E. coli, 
as present or not, and cause of treatment or not. 

  E. coli present in treated patient 

E.coli is the cause 
of treatment 

  - + 

- A B 

+   D 

 
In our example, the total treatment reduction, r, is 5.4% of all treatments. However, this reduction is 
unequally apportioned. All of the reduction occurs in categories A and B, because we assume that PCV 
would have no effect on the rate of treatment for a disease that was caused by E. coli. Define pEc as the 
prevalence of E. coli in the microbiome data for the relevant age group. Then by our modeling 
assumptions, pEc= B

A+B
. Thus, the amount of treatment reduction in category B is r B

A+B
=rpEc. 

  
We seek the proportional reduction in 𝐵 + 𝐷, the exposure of E. coli to treatment. D is unchanged, so the 
reduction is rpEc

B+D
= rpEc

1-A
. Defining the proportion of bystander exposures for E. coli to all antibiotics as 

Ball, Ec= B
B+D

= B
1-A

, some algebra yields the quantity we seek, the reduction in E. coli’s total (causal plus 
bystander) exposure to antibiotics attributable to a reduction r in all-cause antibiotic treatment from a 
vaccine that prevents no disease caused by E. coli: 
 

𝑟
𝑝A+
1 − 𝐴 = 𝑟8𝑝A+ + 𝐵"BB,A+ − 𝑝A+𝐵"BB,A+9 

 
Analogous calculations can be made for any other bacterial species for which disease is not reduced by 
the vaccine. For pathogens (e.g. H. influenzae) in which vaccination may cause a reduction in the amount 
of disease they cause (e.g. through indirectly preventing non-pneumococcal otitis media (15, 16)), this 
estimate would be a lower bound. 
 
All data for this project is publicly available. Code will be made available on Github. 
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Figure S1. Proportion of bystander exposures (with 95% confidence interval) by antibiotic class and 
species. “Overall” estimates reflect exposures to antibiotics in any of the included classes. Results for 
TMP/SMX and nitrofurantoin are for the individual drug instead of an antibiotic class. 
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Figure S2. Number of sampled outpatient visits (unweighted) from NAMCS/NHAMCS 2010-2011 with 
given diagnosis and antibiotic prescription. 

 

 

Figure S3. Heat map shading represents the proportion of visits (after weighting to be nationally 
representative) with a diagnosis of the specified condition, given that the visit resulted in a prescription of 
the specified antibiotic. Rows are not required to sum to 100% as only a subset of conditions are shown, 
and each visit may be associated with more than one condition. 
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Figure S4. Proportion of bystander exposures (with 95% confidence interval) by antibiotic and species. 
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Table S1. Carriage studies used to characterize microbial prevalences for which HMP data was 
unavailable. In addition to prevalences among children <5 years old, additional carriage studies were also 
used for S. pyogenes and S. pneumoniae in the >5-year-old age group as taxonomic profiling of HMP data 
via MetaPhlAn2 does not distinguish between these and similar species. Specific studies were not 
identified for P. aeruginosa and S. agalactiae for children from 1 to 5 years old; the prevalences among 
children under 1 year old were imputed in these cases. 

Article Age group Body site Organisms 

Bäckhed et al. 2015 (1) <1 year old Gastrointestinal P. aeruginosa 
S. agalactiae 

Bogaert et al. 2011 (2) 1-5 years old Nasopharyngeal H. influenzae 

Mainous et al. 2006 (3) 1-5 years old Nasopharyngeal S. aureus 

Regev-Yochay et al. 2004 (4) <1 year old 
1-5 years old 

Nasopharyngeal S. aureus 
S. pneumoniae 

Verhaegh et al. 2010 (5) <1 year old 
1-5 years old 

Nasopharyngeal M. catarrhalis 

Pettigrew et al. 2012 (6) <1 year old 
1-5 years old 

Upper respiratory tract H. influenzae 
M. catarrhalis 
S. pneumoniae 

Holgerson et al. 2015 (7) <1 year old 
1-5 years old 

Oral E. coli 
H. influenzae 
K. pneumoniae 
S. aureus 
S. pyogenes 

Yassour et al. 2016 (8) 
(DIABIMMUNE cohort) 

<1 year old 
1-5 years old 

Gastrointestinal E. coli 
H. influenzae 
K. pneumoniae 
S. aureus 

Ginsburg et al. 1985 (9) All Throat S. pyogenes 

Gunnarsson et al. 1997 (10) All Throat S. pyogenes 

Hammitt et al. 2006 (11) All Nasopharyngeal S. pneumoniae 

Huang et al. 2009 (12) All Nasopharyngeal S. pneumoniae 
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Table S2. Carriage prevalence estimates by age group and species from the Human Microbiome Project 
(HMP) and carriage studies. 

Species <1 year old 1-5 years old >5 years old 

E. coli 94.9% 100% 66.3% 

H. influenzae 100% 95.9% 68.6% 

K. pneumoniae 39.1% 15.0% 7.4% 

M. catarrhalis 45.5% 50.8% 2.3% 

P. aeruginosa 1.4% 1.4% 1.9% 

S. aureus 35.0% 19.1% 12.4% 

S. agalactiae 8.2% 8.2% 2.7% 

S. pneumoniae 64.3% 64.6% 25.2% 

S. pyogenes 1.1% 4.4% 4.7% 

 
 
 
Table S3. Estimated etiologies by condition. Conditions in which none of our species of interest are 
causative agents are excluded. If two numbers are shown, the number to the left was applied to children 
under 5 years old, and the number to the right was applied to individuals over 5. Diagnoses with etiology 
specified by ICD-9CM code (e.g. 481: pneumococcal pneumonia) were attributed to the appropriate 
organism. 

 
 

Species 

 
Cellulitis 

(13) 

Pneumonia 
(unidentified cause)  

 (14, 15) 

Sinusitis 
(acute) 

(16) 

Sinusitis 
(chronic) 

(17) 

 
Strep 
throat 

Otitis media 
(suppurative) 

(18, 19) 

 
UTI 

(20, 21) 

E. coli 0.4% - - 2.9% - - 75% | 78.5% 

H. influenzae 0.1%        - | 0.6% 0.7% 4.4% - 23% | 26% - 

K. pneumoniae - - - 2.9% - - 4.7% | 4.8% 

M. catarrhalis - - 0.1% 11.8% -     14% | 3% - 

P. aeruginosa 0.5%        - | 0.4% - - - - 2.3% | 2.7% 

S. aureus 8%        - | 1.6% 0.1% 11.8% - 1% | 3% - 

S. agalactiae 0.5% - - 5.9% - - - 

S. pneumoniae - 27% | 5.1% 0.8% 5.9% - 35% | 21% - 

S. pyogenes 4.3%       - | 0.3% - 7.4% 100% 3% | 3% - 
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Figure S5. Proportion of bystander exposures (with 95% confidence interval) by antibiotic class and 
species, excluding the term ∑ dac6g

G
g=1 ×psg from the denominator. “Overall” estimates reflect exposures to 

antibiotics in any of the included classes. Results for TMP/SMX and nitrofurantoin are for the individual 
drug instead of an antibiotic class. 
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