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Abstract: PIP5K1β is crucial to generation of phosphotidylinosotol (4, 5) P2. 

PIP5K1β participates in numerous cellular activities, such as B cell and platelet 

activation, cell phagocytosis and endocytosis, cell apoptosis, and cytoskeletal 

organization. In the present work, we aimed to make insight into the function of 

PIP5K1β in osteoclastogenesis and osteogenesis to provide promising strategies for 

osteoporosis prevention and treatment. We discovered that PIP5k1β deletion in mice 

resulted in obvious bone loss and PIP5K1β was highly expressed both during 

osteoclast and osteoblast differentiation, besides, PIP5K1β deletion enhanced the 

proliferation and migration of BMMs to promote osteoclast differentiation. PIP5k1β
-/-

 

osteoclast exhibited normal cytoskeleton architecture but stronger resorption activity. 

PIP5k1β deficiency also promoted activation of MAPK and Akt signaling, enhanced 

TRAF6 and c-Fos expression, facilitated the expression and nuclear translocation of 

NFATC1 and upregulated Grb2 expression, thereby accelerating osteoclast 

differentiation and function. Finally, PIP5K1β enhanced osteoblast differentiation by 

upregulating master genes expression through triggering smad1/5/8 signaling. Thereby, 

PIP5K1β modulate bone homeostasis and remodeling. 

Keywords: PIP5k1β, osteoclast differentiation, osteoblast differentiation, 

proliferation, migration, NFATC1 
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Introduction 

Bone remodeling depends on the dynamic balance and precise coordination of 

bone resorption and subsequent bone formation, which are driven by osteoclast and 

osteoblast activation, respectively. Disturbances of this delicate balance lead to skeletal 

diseases, such as osteopenia, osteoporosis and osteopetrosis (Boyle et al, 2003). 

Bone-resorbing osteoclasts are multinucleated cells derived from 

monocyte-macrophage precursors which originated from hematopoietic stem cells, 

whereas bone-forming osteoblasts are derived from mesenchymal stem cells 

(MSC)(Boyle et al, 2003; Dennis et al, 1999; Pittenger et al, 1999; Teitelbaum, 2000). 

Osteoblast lineage cells produce RANKL and stimulate their RANK receptors on 

osteoclast precursors, resulting in osteoclast differentiation by activating the 

downstream signaling pathways such as transcription factors NF-κB, c-Fos, and 

nuclear factor of activated T cells c1 (NFATc1)(Teitelbaum & Ross, 2003). To initiate 

bone resorption, osteoclasts need to successfully assemble a typical adhesion structure 

that is called actin ring or sealing zone, which consists of a belt of densely packed 

podosomes interlinked by an acto-myosin network (Georgess et al, 2014; Touaitahuata 

et al, 2014).  

 Exacerbated by general population aging, osteoporosis has become a dominating 

health problem around the world (Sambrook & Cooper, 2006). Various conditions can 

provoke osteoporosis, such as bone metastasis, disability and inflammation, 

furthermore, in postmenopausal women, estrogen deficiency gives rise to excessive 

bone loss.(Touaitahuata et al, 2016) Despite recent advances in bone biology, the 

precise molecular mechanisms responsible for pathological osteoporosis remain 

elusive. Therefore, clarifying the molecular mechanisms and novel molecules involved 

in the maintenance of bone homeostasis is critical for deeper understanding of skeletal 

health and development of novel therapeutics against various bone disorders. 

Lipid kinases and their phosphoinositide products perform essential functions in 

secretory vesicle trafficking. Phosphoinositide (PI) contributes to numerous basic 

biological processes, such as chemotaxis, intercellular trafficking, polarity formation 

and cytokinesis. (Takenawa & Itoh, 2001) PIs are essential not only as membrane 
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components in Eukaryotes and as precursors of second messengers like IP3 and PIP3 

but also act as specialized membrane docking sites for effectors of diverse signaling 

cascades.(Takenawa & Itoh, 2001) Accumulating evidence indicates that PIs and 

PI-interacting proteins such as Rho, Arf, and Rab small GTPases serve as modulators of 

osteoclast differentiation.(Chellaiah, 2006; Ory et al, 2008) PIs, especially PIP2, PIP3 

and IP3, have been reported to serve various essential roles during osteoclast 

differentiation and function as well as in maintain bone homeostasis. PIP5K1β is a 

member of the Type 1 phosphatidylinositol 4-phosphate 5-kinases (PIP5K1s; α, β, and 

γ), which are a family of isoenzymes producing phosphatidylinositol 4, 5-bisphosphate 

[PI (4, 5)P2] using phosphatidylinositol 4-phosphate as substrate(De Matteis & Godi, 

2004; Ishihara et al, 1996; Ishihara et al, 1998; Kanaho et al, 2007; Oude Weernink et al, 

2004; van den Bout & Divecha, 2009). PIP5K1s have been reported to be involved in a 

wide range of cellular functions not only as an enzyme generating PIP2, which is a 

critical regulator of cell adhesion formation, actin dynamics, and membrane trafficking, 

but also as cell signaling modulation factor, such as cytoskeleton assembly, exocytosis, 

endocytosis, cell apoptosis, and so on(Mao & Yin, 2007; van den Bout & Divecha, 

2009). PIP5k1γ, which is a major PtdIns (4,5)P2-synthesising enzyme in the rodent 

brain with three splicing variants, is elegantly involved in neurons and neuroendocrine 

cells: Hara Y et al reported that PIP5K1γ, particularly PIP5K1γ_i2, performs essential 

roles in neuronal migration, possibly through recruitment of adhesion components such 

as talin and focal adhesion kinase to the plasma membrane.(Hara et al, 2013) In murine 

megakaryocytes, PIP5K1γ defect results in plasma membrane blebbing accompanied 

by a decreased connection of the membrane to the cytoskeleton possibly through a 

pathway involving talin.(Wang et al, 2008b) Moreover, PIP5K1γ_i2 revealed unique 

regulatory and targeting mechanisms through its C-terminal 26 amino acids. In neurons, 

PIP5K1γ_i2 modulates the clathrin-mediated endocytosis of synaptic vesicles at 

presynapses and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-type glutamate 

receptors during long-term depression at postsynapses via association with adaptor 

protein complex (AP)-2(Unoki et al, 2012). In non-neuronal cells, PIP5K1γ_i2 also 

regulates the formation of focal adhesions through the interaction with talin.(Di Paolo 
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et al, 2002; Ling et al, 2002; Sun et al, 2007) Furthermore, targeted disruption of 

PIP5K1γ leads to widespread developmental and cellular defects. PIP5K1γ-null 

embryos have myocardial developmental defects including impaired intracellular 

junctions resulting in heart failure and extensive lethality at embryonic day 11.5 as well 

as impaired PIP2 production, adhesion junction formation, and neuronal cell migration 

that lead to neural tube closure defects.(Wang et al, 2007) PIP5k1α, was reported to 

selectively modulate apical endocytosis in polarized renal epithelial cells and to 

regulate invadopodia formation and ECM degradation in human breast cancer cells by 

localized production of PI(4,5)P(2) (Szalinski et al, 2013). The function of PIP5k1β 

was investigated less and the roles of PIP5k1s in maintaining bone homeostasis were 

rarely reported. Only one report indicated that PIP5k1γ deficiency or overexpression 

delayed osteoclast differentiation and excess of PIP5k1γ disrupted osteoclasts 

cytoskeleton in a talin-independent way.(Zhu et al, 2013) 

In the present study, we found that PIP5k1β was highly expressed during 

RANKL-induced osteoclast differentiation and PIP5k1β deletion in mice resulted in 

bone loss. To further understand the role of PIP5k1β in bone homeostasis, we 

investigated the functions of PIP5k1β acting on osteoclast and osteoblast 

differentiation by gain- and loss-of-function in vitro. We found that PIP5K1β can 

repress the proliferation and migration of bone-marrow–derived macrophage-like cells 

(BMMs) to inhibit osteoclast differentiation. Furthermore, PIP5k1β deletion promoted 

the activation of MAPK and Akt signaling cascades and enhanced expression of 

TRAF6 and c-Fos to facilitate NFATC1 expression and nuclear translocation, thereby 

accelerating osteoclast differentiation and function. Last but not the least, PIP5k1β 

deficiency upregulated Grb2 expression during osteoclast differentiation. PIP5K1β 

also enhanced osteoblast differentiation through activating of smad1/5/8. Thus, 

PIP5K1β can regulate bone mass and bone remodeling. 

 

Results 

PIP5k1β-deficient mice show an osteoporosis bone phenotype.  

Having demonstrated that PIP5k1γ served an essential role in modulating 
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osteoclast differentiation and that it must be expressed at an actually exact level to 

maintain normal differentiation of osteoclast.(Zhu et al, 2013) To determine the role of 

PIP5k1β in the skeleton, we evaluated the mutant mouse strain with piggyback (PB) 

transposition system-induced mutation in the PIP5k1β gene. Homozygous mutation of 

PIP5k1β were born healthy at the predicted Mendelian frequencies. PIP5k1β
−/−

 mice 

had a similar body structure to that of WT littermates with no obvious differences 

observed between PIP5k1β
−/−

 and WT controls (Supplementary Fig. 1A). Interestingly, 

micro computed tomography (micro CT) analysis revealed that the trabecular bone 

mass density (BMD), trabecular bone volume versus tissue volume (BV/TV), 

trabecular bone number (Tb.N.) and trabecular bone thickness (Tb.Th.) were 

significantly lower but trabecular bone separation (Tb.Sp.) is obvious high in 

PIP5k1β
-/-

 mice compared to that of age- and sex-matched WT littermates (Fig. 1A–F), 

suggesting defects in trabecular bone growth. To gain further insight into the in vivo 

cellular phenotype of the PIP5k1β
−/−

 mice, bone histomorphometry was performed on 

decalcified sections stained for TRAP activity and for hematoxylin and eosin staining 

(Fig. 1G). Consistent with micro CT data, histomorphometric analysis of tibia from 

8-week-old PIP5k1β
−/−

 mice revealed a lower trabecular bone mass when compared to 

WT mice (Fig. 1G, H). Analysis of osteoclast parameters using TRAP stained sections 

showed that PIP5k1β
−/−

 mice exhibited a significant increase in the number of 

osteoclasts (Fig. 1G, I). Moreover, Dynamic histomorphometric analysis detected the 

reduced bone formation rate and mineral apposition rate in PIP5k1β
−/−

 mice (Fig. 1J, K). 

Furthermore, the serum levels of CTX-1, a marker for bone resorption, was 

significantly increased (Fig. 1L) but serum OCN levels, a marker for bone formation, 

was dramatically decreased (Fig. 1O) in PIP5k1β
−/−

 mice. Moreover, 

immunohistochemistry detected that expression of CTSK, one of major markers of 

mature osteoclasts, in PIP5k1β deletion mice was significantly higher than that in wide 

type mice (Fig. 1M-N). These accumulating results suggest that PIP5k1β deletion leads 

to significant decrease in bone mass, which is possibly due to imbalance changes in 

osteoclasts bone resorption and osteoblasts bone formation.  

PIP5k1β expression was increased during RANKL-induced osteoclast 
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differentiation. 

Thereby, to determine how PIP5k1β influences osteoclasts formation and 

function, we first examined the transcriptomes of preosteoclasts and mature osteoclasts 

differentiated from mouse bone marrow–derived macrophage-like cells (BMMs) using 

cDNA microarray and found that among PIP5k1s only PIP5k1β was highly expressed 

in mature osteoclasts.(Fig. 2A). When we cultured BMMs in the presence of RANKL 

and M-CSF, the expression of PIP5k1β was markedly increased during 

RANKL-induced osteoclast differentiation since the third day of RANKL induction, 

however, the expressions of PIP5k1α and PIP5k1γ were not changed (Fig. 2B, Fig.3B). 

Expression levels of VATPased2 and TRAP, important markers of osteoclastogenesis, 

increased as the cells differentiated (Fig. 2B). To confirm the importance of PIP5k1β in 

skeletal biology, we explored the expression pattern of PIP5k1β in different mice 

organs such as bone, spleen, brain, thymus, lung, kidney, liver, heart, and muscle and 

found that PIP5k1β was highly expressed in heart, lung, brain and bone 

(Supplementary Fig. 1B), which indicated that PIP5k1β might play a crucial role in 

bone biology. These results indicate that PIP5k1β might be involved in regulation of 

osteoclastogenesis and bone remodeling.   

PIP5k1β-deficient osteoclasts exhibit normal morphology. 

Accumulating evidences demonstrated that PIP5k1 family kinase serve central 

roles in cytoskeleton assembly(Kisseleva et al, 2005; Rozelle et al, 2000; Shibasaki et 

al, 1997; van den Bout & Divecha, 2009; van Horck et al, 2002; Wang et al, 2008b), so 

we give rise to the hypothesis that PIP5k1β deficient may affect osteoclast cytoskeleton. 

To verify this hypothesis, we detect the actin ring formation as well as the localization 

of vinculin and Rac1, which are critical factors that can contribute to the ability of 

osteoclasts to rearrange podosomes into the sealing zone and establish the 

bone-resorbing apparatus, through classical confocal microscopy(Croke et al, 2011; 

Fukunaga et al, 2014; Ory et al, 2000; Sun et al, 2005; Wang et al, 2008a). F-actin 

exhibits a similar well-defined peripheral belt architecture in both WT and 

PIP5k1β-deficient osteoclast, and PIP5k1β deletion promotes podosome formation in 

preosteoclasts and PIP5k1β deletion osteoclasts display much larger actin rings 
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compared with WT osteoclasts. Vinculin and Rac1 localization and expression are 

also normal in PIP5k1β-deletion osteoclasts, which are all enriched at the podosome 

belt and are colocalized with F-actin (Touaitahuata et al, 2016) (Figure. 2C). Finally, 

the expression levels of β3 integrin, which involves in the association of osteoclasts 

with bone matrix to trigger osteoclast bone resorption activity, was also uninfluenced 

by PIP5k1β deficiency (Supplementary Fig. 1C, D).These results indicate that PIP5k1β 

deletion accelerates actin ring formation but does not affect osteoclast cytoskeleton 

assembly and sealing zone formation as well as interaction ability with bone matrix 

on the whole.   

Deficiency of PIP5k1β enhanced osteoclast differentiation and bone 

resorption. Given our observation that PIP5k1β expression is upregulated during 

RANKL-induced oseoclastogenesis, we examined the effect of PIP5k1β on osteoclast 

differentiation. Bone marrow cells from 9-week- old WT and PIP5k1β
−/−

 mice were 

cultured with M-CSF to generate WT and PIP5k1β
−/−

 BMMs, which were used as 

osteoclast precursor cells to be stimulated with RANKL and M-CSF. Deletion of 

PIP5k1β in BMMs significantly stimulates the formation of TRAP-positive 

multinucleated cells (TRAP-positive MNCs) mediated by RANKL (Fig. 3A, C). More 

osteoclasts with 3–8 nuclei or >13 nuclei were observed in the PIP5k1β-deficient group. 

Besides, RT-PCR results exhibited an increased expression of DC-STAMP in 

PIP5k1β
−/−

 BMMs compared with WT BMMs during RANKL-induced osteoclast 

differentiation (Fig. 3B). Consistently, gene expression analysis revealed that PIP5k1β 

expression was significantly increased since the third day of RANKL-induced 

osteoclastogenesis, but the expressions of the other two PIP5k1 family proteins 

PIP5k1α and PIP5k1γ were not obviously changed during both WT and PIP5k1β 

deletion BMMs differentiation into osteoclasts (Fig. 3B, D). Moreover, the 

expressions of the marker genes of osteoclast formation, such as TRAP, CTSK, 

ATPasev0d2, NFATC1, DC-STAMP and OSCAR were dramatically enhanced during 

PIP5k1β deficiency BMMs differentiation into osteoclasts compared with that of WT 

BMMs. (Fig. 3E
_
J) Furthermore, we cultured WT and PIP5k1β

−/− 
BMMs on bovine 

bone and initiated osteoclastogenensis by M-CSF and RANKL stimulation, 
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respectively. After successful formation of mature osteoclasts, the cells were cultured 

for another day with M-CSF and RANKL stimulation to further resorb bone; the 

resorbed bones then underwent SEM. We discovered that PIP5k1β deletion promoted 

osteoclasts bone resorption and the resorption area of the bone slices by PIP5k1β
−/− 

osteoclasts was significantly larger than that of WT osteoclasts. (Fig. 3 K
_
L) These 

results suggest that PIP5k1β deficiency enhances osteoclast differentiation and 

formation as well as promotes osteoclasts bone resorption function; and this function 

might not depend on the compensational role of PIP5k1α and PIP5k1γ.  

Overexpression of PIP5k1β arrests osteoclastogenesis.  

To further verify the role of PIP5k1β in osteoclast differentiation and formation, 

we overexpress PIP5k1β in BMMs to evaluate its effect on RANKL-induced 

osteoclast differentiation. PIP5k1β was overexpressed in the BMMs by lentivirus 

transfection into the BMM cells and then the BMMs were cultured with RANKL and 

M-CSF. The overexpression levels of PIP5k1β with gradually increased dose of 

lentivirus were showed by RT-PCR (Fig. 4A). TRAP staining analysis showed that 

overexpression of PIP5k1β significantly inhibits osteoclast differentiation and the 

inhibition effect was gradually increased along with the increasing dose of PIP5k1β 

overexpression. (Fig. 4 B
_
E) 

Deficiency of PIP5k1β enhances proliferation, migration and NFATc1 nuclear 

localization in preosteoclasts.  

To explore the mechanisms of PIP5k1β inhibition of osteoclast differentiation, we 

examined the effect of PIP5k1β on BMMs proliferation and migration. The wound 

healing assay displayed that PIP5k1β deletion promotes preosteoclasts migration 

triggered not only by M-CSF or by both M-CSF and RANKL (Fig. 5A, B). The 

CCK8 assay showed that PIP5k1β deficiency enhanced BMMs proliferation under the 

induction of RANKL and M-CSF, whereas only RANKL or M-CSF had no significant 

effect on the proliferation of BMMs (Fig. 5C). Furthermore, PIP5k1β deficiency 

facilitated NFATC1 expression and nuclear translocalization when triggered by 

RANKL detected by classical confocal microscopy and western blotting (Fig. 5D-E). 

Besides, luciferase assay with a NFATC1 responsive reporter was strongly dampened 
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by PIP5k1β overexpression under the stimulation of RANKL (Fig. 5F-G). These 

results implied that PIP5k1β suppressed osteoclast differentiation by depressing 

preosteoclast proliferation, migration and also reducing NFATC1 signaling by 

decreasing its expression and nuclear translocalization.     

Deficiency of PIP5k1β leads to increases of M-CSF- and RANKL-mediated 

MAPK, c-Fos and AKT signaling cascades.  

PIP5k1β was discovered to be highly expressed during RANKL-mediated 

osteoclastogenesis and PIP5k1β suppressed osteoclast formation and bone resorption 

capacity. We asked which signaling pathway modulated osteoclast differentiation and 

whose function is affected by the absence of PIP5K1β, which in turn affected 

osteoclastogenesis. First, we examined the archetypical RANKL signaling mediators 

such as c-Fos, TRAF6, NFATC1, Cathepsin K (CTSK) and TRAP, and found that 

deletion of PIP5k1β prominently enhanced the expression of these genes during 

RANKL-mediated osteoclstogenesis (Fig. 3E-F, H, Fig. 6A-D). During 

RANKL-induced osteoclastogenesis, ligation of RANKL with its receptors RANK 

leads to recruitment of TRAF6 by RANK, which leads to activation of nuclear factor-

КB (NF-КB), the mitogen-activated kinases (MAPKs) and the Akt pathways.(Kadono 

et al, 2005; Kobayashi et al, 2001) In this context, we detected which of these pathways 

were modulated by PIP5k1β. The RANKL-induced activating phosphorylation of Akt 

and three typical MAP kinases (p38, ERK1/2 and JNK) were substantially elevated in 

PIP5k1β deletion BMMs compared with that of WT BMMs (Fig. 6E-J).  

Then, we treated WT and PIP5KIβ
−/−

 mice osteoclast precursors with M-CSF and 

assessed activation of established effector molecules, which mediated osteoclast 

formation. Absence of PIP5K1β had certain effects on M-CSF-induced 

phosphorylation of ERK, JNK or AKT in triggering with M-CSF but the enhance 

effects were not consistent along with the time of cells exposed to M-CSF, especially 

for JNK and ERK1/2, compared with WT BMMs (Fig.6K-N). Notably, the expressions 

of Grb2 was also enhanced during RANKL-mediated osteoclastogenesis in 

PIP5k1β
−/− 

osteoclasts compared with WT osteoclasts (Fig.6A). The adaptor protein 
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Grb2 has been reported to play a pivotal role in several tyrosine kinase signal 

transduction pathways and previous study demonstrated that Grb2 promotes 

osteoclasts survival through activating Erk activation and bone resorption activity by 

enhancing their adhesion.(Levy-Apter et al, 2014) These data suggested that PIP5k1β 

deficiency influenced M-CSF or RANKL-induced osteoclastogenic properties to a 

certain extent, particularly RANKL-induced c-Fos, MAPK and AKT signaling 

pathways. Taken together, PIP5k1β suppressed osteoclasts differentiation and function 

might through influencing M-CSF- and RANKL-mediated MAPK, c-Fos and AKT 

signaling cascades.  

PIP5k1β accelerates osteoblast differentiation. 

 Given that the serum bone formation marker OCN was significantly decreased 

in PIP5k1β
−/−

 mice compared with WT mice, we explored the effect of PIP5k1β on 

osteoblast differentiation and function to deepen our understanding of the role of 

PIP5k1β in bone homeostasis. First, immunohistochemistry revealed that expression 

of OSX, one of major transcriptional factors that control osteoblast differentiation, in 

PIP5k1β deletion mice was notably lower than that in wide type mice (Fig. 7A-B). 

Then, BMSCs constantly overexpress or knockdown of PIP5k1β were obtained by 

corresponding lentivirus transfection (Fig. 7C) and underwent osteoblast 

differentiation by stimulation with osteogenic medium. MTT assay revealed that 

knockdown or overexpression of PIP5k1β have no effect on BMSCs proliferation 

(Supplementary Fig.2A). Real-time PCR was performed to determine whether 

osteoblast marker genes were differentially expressed between WT and PIP5k1β 

overexpression osteoblasts. The mRNA levels of PIP5k1β were significantly 

enhanced during osteoblast differentiation and the mRNA expression of osteoblast 

marker genes, ALP, SP7, colla1, OCN and BSP, were increased by overexpression of 

PIP5k1β (Fig. 7D
_
K). Increased ALP activity was observed in 

PIP5k1β-overexpression osteoblasts at day 7 of culture and decreased ALP activity was 

observed in PIP5k1β-knockdown osteoblasts at day 7 of culture as compared to WT 

osteoblasts by ALP staining (Fig. 7L). The bone mineralization activity of osteoblasts 

derived by BMSCs constantly overexpression or knockdown of PIP5k1β was also 
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altered consistently with ALP activity alteration relative to WT osteoblasts, as 

determined by alizarin red S staining and analysis at day 14 of culture (Fig. 7M). 

Furthermore, the protein levels of Col1α1, RUNX2 and OSX, which were central 

marker genes of osteoblastogenesis were all enhanced via PIP5k1β overexpression and 

decreased when PIP5k1β was knockdown. (Fig. 7N, supplementary Fig. 2B-C). These 

results implied that PIP5k1β enhanced MSCs differentiation into osteoblast. 

PIP5k1β enhances osteoblast differentiation through activating p-Smad1/5/8 

signaling.  

Several signaling pathways were involved in regulation of BMSCs differentiation 

into osteoblast, of which smad1/5/8 signaling exerts crucial roles in osteogenesis. To 

understand through which pathways PIP5k1β modulates osteoblast differentiation, we 

tested the activation of main pathways that regulates MSCs differentiation into 

osteoblast including smad1/5/8 and β-catenin and found that PIP5k1β prominently 

modulates smad1/5/8 activation. The phosphorylation of smad1/5/8 was significantly 

increased after 7 and 14 days treatment with osteogenic medium compared with cells 

treated with control medium, while, knockdown of PIP5k1β drastically depressed 

smad1/5/8 phosphorylation but overexpression of PIP5k1β outstandingly increased its 

phosphorylation on the contrary (Fig. 8A-B). To refine this finding, we further treated 

BMSCs with LDN193189, a smad1/5/8 specific inhibitor, to eliminate the activation 

of smad1/5/8. We observed that PIP5k1β overexpression prominently enhanced 

osteoblast differentiation and LDN193189 significantly reduced osteogenesis, but the 

reduction ratio was partly rescued by overexpression of PIP5k1β (Fig. 8C-E). Western 

blotting showed that PIP5k1β overexpression violently enhanced osteoblastogenesis 

master genes, Col1α1, Runx2 and OSX, expression, and LDN193189 significantly 

inhibited expression of these genes, but the inhibition ratio was partly rescued by 

overexpression of PIP5k1β. Meanwhile, Phosphorylation of smad1/5/8 was changed 

in consistent with the change trend of these osteoblastogenesis master genes. (Fig. 8F). 

In summary, these observations indicated that PIP5k1β enhances BMSCs 

differentiation into osteoblast partly through activating smad1/5/8 signaling.        

Discussion 
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Several therapeutic strategies have been developed for excess bone loss diseases 

such as osteoporosis, including direct suppression of osteoclasts resorption capacity or 

irritation of osteoblast bone formation, with compromised efficacy and momentous 

side effects. Therefore, more appropriate treatments need to be explored to 

synchronously modulate the interaction between osteoblasts and osteoclasts. In present 

study, we discovered that PIP5K1β inhibited osteoclasts formation and function but 

meanwhile facilitated osteoblast differentiation, so that PIP5k1β
−/− 

displayed obvious 

osteoporosis phenotype. These hinted that PIP5K1β might serve pivotal roles in 

maintaining bone homeostasis and that deepening understanding of the mechanisms of 

its functional role might provide new strategy for the prevention and treatment of 

osteoporosis. 

Among all the family members of PIP5k1 family kinases that generate PIP2, only 

PIP5k1β was highly expressed in bone and during osteoblastogenesis and 

RANKL-induced osteoclast differentiation, which indicated that PIP5k1β might serve 

crucial roles in bone biology. Under the consideration that PIP5k1 family proteins 

were reported to be involved in cytoskeleton assembly and that the podosome 

reorganization of osteoclasts was a major event for mature osteoclasts formation and 

activity(Mao & Yin, 2007; Teitelbaum, 2011; van den Bout & Divecha, 2009), we 

speculated that PIP5k1β might participate in osteoclast sealing zone organization. 

However, our present study showed that PIP5k1β deletion osteoclasts exhibit no 

apparent cytoskeletal abnormalities and also had no impact on the expression and 

colocalization of proteins involved in sealing zone formation, such as vinculin, Rac1 

and F-actin. Additionally, the expression levels of β3 integrin, which takes part in the 

association of osteoclasts with bone matrix to trigger the osteoclast bone resorption 

activity, was also uninfluenced by PIP5k1β deficiency (Supplementary Fig. 1C, D). 

This accumulating evidence indicated that PIP5k1β affects osteoclasts not by 

affecting their cytoskeleton formation and interaction with bone matrix though 

deletion of PIP5k1β accelerates and enlarges osteoclast actin ring formation. 

Nonetheless, PIP5k1β indeed influences osteoclast formation and function, which 

might be buttressed by the following facts. First, PIP5k1β deletion enhanced the 
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expression of osteoclasts marker genes such as ACP5, CTSK, DC-STAMP, c-Fos, 

NFATC1 and so on. Besides, PIP5k1β deficiency facilitated osteoclast bone resorption 

as proven by enhanced pit formation activity and highly elevated serum level of bone 

resorption marker CTX-1 in PIP5k1β deletion mice. Finally, knockdown and 

overexpression of PIP5k1β in BMMs accelerated and depressed osteoclast 

differentiation, respectively, as detected by TRAP staining. 

Osteoclasts are generated from mononuclear hematopoietic myeloid lineage cells, 

which are derived in the bone marrow and are attracted to the blood stream by factors. 

These circulating precursors migrated to bone surfaces undergoing resorption by 

chemokines and other factors that were modulated by M-CSF and RANKL at these 

sites, where they fuse to develop multinucleated bone resorbing cells(Kikuta et al, 2011; 

Kular et al, 2012). Interestingly, in the present study, we obtained that PIP5k1β deletion 

can accelerate preosteoclast migration triggered by M-CSF or by both M-CSF and 

RANKL. Besides, PIP5k1β deletion promoted preosteoclast proliferation. These 

results indicated that PIP5k1β repressed preosteoclast proliferation and migration to 

inhibit osteoclastogenesis, but the molecular mechanisms remain to be explored.                   

Furthermore, our present study suggest that PIP5k1β affected osteoclast 

differentiation and function also through modulation of NFATC1 which represents a 

master switch that modulates terminal differentiation of osteoclasts downstream of 

RANKL(Asagiri et al, 2005; Takayanagi et al, 2002), as supported by several 

discoveries. First, we found that PIP5k1β deficiency enhanced NFATC1 expression and 

facilitated NFATC1 nuclear translocation. Additionally, overexpression of PIP5k1β 

dampened NFATC1 activity. Moreover, the phosphorylation of Akt and the activation 

of MAPK/p38, ERK1/2 and JNK, which mediated NFATC1 activation during 

RANKL-stimulated osteoclast differentiation, were prolonged and enhanced with 

RANKL stimulation in PIP5k1β
−/− 

osteoclasts. Last but not the least, PIP5k1β deletion 

enhanced TRAF6 and c-Fos expression, which were demonstrated to stimulate the 

downstream mediators to trigger expression and nuclear translocalization of NFATC1 

resulting in enhanced osteoclastogenesis.(Boyce & Xing, 2008; Kadono et al, 2005) 

(Wang et al, 1992) PIP5K1γ was reported to modulate calcium transport, which in turn, 
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initiated NFATc1 (Wang et al, 2004). Moreover, NFATC1 can autoamplify and trigger 

calcitonin receptor expression which eventually upregulated calcium signaling (Asagiri 

et al, 2005). Further studies need to be performed to determine if PIP5k1β deletion 

affects calcium signaling.  

Adaptor protein Grb2 (growth-factor-receptor-bound protein 2), which serves an 

important role in several tyrosine kinase signal transduction pathways, was reported to 

play a crucial role in osteoclastogenesis by increasing Erk and Akt signaling motivated 

by M-CSF to promote osteoclast proliferation, differentiation and survival.(Levy-Apter 

et al, 2014; Ross & Teitelbaum, 2005; Takayanagi, 2007) An amusing result was 

discovered in the present study that Grb2 expression was advanced and dramatically 

up-regulated during osteoclastogenesis while PIP5k1β was deleted, besides, the 

ERK1/2 signaling was also enhanced. These implied that PIP5k1β might modulate 

Grb2 expression to regulate osteoclastogenesis. However, further study is needed to 

make deep insight in the association between PIP5k1β and Grb2 expression.    

Our present work also discovered that PIP5k1β facilitated osteoblast 

differentiation, immunohistochemistry in Fig. 7A showed that OSX
+
 cells was 

prominently decreased both in bone marrow cells and in bone lining cells in PIP5k1β 

deletion mice compared with that of WT mice, which indicated that PIP5k1β might 

stimulate MSCs differentiation into osteoblast through up-regulation of OSX 

expression. Furthermore, the expression of osteoblast differentiation early and late 

markers Col1α1, ALP, OCN as well as BSP and osteoblast differentiation master 

transcription factor Runx2 and OSX were all outstandingly elevated or reduced during 

osteoblastogenesis of PIP5k1β overexpression or knockdown BMSCs respectively. 

Moreover, ALP and Alizarin Red staining demonstrated that overexpression or 

knockdown of PIP5k1β promoted or repressed MSCs differentiation into osteoblast 

and calcium precipitation, respectively. Meanwhile, the phosphorylation of smad1/5/8 

was also enhanced or dampened in accordance with overexpression or knockdown of 

PIP5k1β during BMSCs differentiation into osteoblast. Moreover, PIP5k1β 

overexpression can partly rescue the elimination effect of osteoblast differentiation and 

smad1/5/8 activation upon LDN193189, a smad1/5/8 specific inhibitor, administration. 
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These accumulating evidences implied that PIP5k1β facilitates osteoblast 

differentiation from BMSCs partly through smad1/5/8 signaling.  

In summary, our study explored the role of PIP5k1β in bone biology, particularly 

in osteoclast and osteoblast differentiation and function, for the first time. We found 

that PIP5K1β was highly expressed both during osteoclast and osteoblast 

differentiation and PIP5K1β can regulate bone mass and bone remodeling by inhibiting 

osteoclast differentiation and facilitating osteoblast differentiation. (Supplementary Fig. 

2D) Further studies need to be performed to determine if these functions were partly 

caused by PIP2 levels alteration that was contributed by PIP5k1β kinase activity during 

osteoclast and osteoblast differentiation. Besides, further explanation of the RANKL 

modulation of PIP5k1β expression is needed to deepen our understanding of the 

biological roles of PIP5k1β on maintaining bone homeostasis to explore new targets for 

prevention and treatment of bone disorders.  

Materials and Methods  

Reagents. Alpha-minimum essential medium (MEM), fetal bovine serum (FBS), 

and penicillin were purchased from Gibco BRL (Gaithersburg, MD, USA). 

Recombinant mouse macrophage-colony stimulating factor (M-CSF) was purchased 

from R&D Systems (USA). Recombinant Murine sRANK Ligand was purchased from 

Peprotech (USA).Tartrate-resistant acid phosphatase (TRAP) staining solution was 

obtained from Sigmae-Aldrich (St. Louis, MO, USA). The Cell Counting Kit-8 

(CCK-8) was obtained from Dojindo Molecular Technology (Japan). 

 Animals. FVB WT and PIP5k1β
−/−

 mice were obtained from PBmice of Fudan 

University (http://www.idmshanghai.cn/PBmice or http://www.scbit.org/PBmice/) and 

housed five per cage under standard conditions (12 h light/12 h dark cycle, 21℃

controlled temperature). 

   Sample preparation and skeletal morphology. For microCT analysis, right 

femurs of both WT and PIP5k1β
-
/
-
 mice were fixed with 4% paraformaldehyde and 

analyzed by Scanco Medical CT-40 instruments. Trabecular bone analysis was 

performed on the secondary spongiosa region (300 μm below the growth plate with a 
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total height of 1 mm towards the mid shaft) of the distal femur. 3D images were 

generated in CTvol program (Skyscan). For histochemistry, proximal tibias from both 

WT and PIP5k1β
−/− 

mice were fixed in 4% paraformaldehyde and embedded in paraffin, 

then cut longitudinally into 4-mm-thick sections and processed for hematoxylin and 

eosin staining (H&E staining) or Tartrate-resistant acid phosphatase (TRAP) staining 

after decalcifying. To evaluate bone formation rate in vivo, WT and PIP5k1β
−/−

 mice 

were injected with green fluorescent calcein (Sigma-Aldrich; 5 mg per kg body weight) 

on 8 and 2 days before euthanasia. Then the tibiae were dissected and embedded in 

methyl methacrylate resins. Tissue sections were observed under a laser-scanning 

microscope (LSM5 PASCAL; Carl Zeiss) 

   Cell Culture. WT or PIP5k1β
−/−

 BMMs were obtained as described previously. (Li 

et al, 2013; Qin et al, 2012)In brief, bone marrow cells extracted from the femurs and 

tibiae of a 9- to 10-week-old WT or its littermate PIP5k1β
−/−

 mouse were cultured in 

α-MEM medium containing 15 ng/ml M-CSF (416-ML ; R&D; USA) in a T-75 cm
2
 

flask for proliferation for 2–3 days until reaching 90% confluence, the cells were 

washed with PBS three times and trypsinized for 30 min to harvest BMMs. Adherent 

cells were classified as BMMs. WT and PIP5k1β
−/− 

BMMs were plated on 96-well 

plates at a density of 8×10
3
 cells/well in triplicate and incubated with α-MEM medium 

containing 20 ng/ml M-CSF in a humidified incubator containing 5% CO2 at 37℃ for 

2 d. Then, the cells were cultured with α-MEM medium with M-CSF (20 ng/mL) and 

RANKL (75 ng /mL; 315-11; Peprotech; Rocky Hill, NJ) for indicated times. Moreover, 

the medium was changed every other day. For osteoblast differentiation, bone 

mesenchymal stem cells (BMSCs) were gained from 9- to 10-week-old mice and 

expanded as previously described, induced by culturing cells in osteogenic medium 

(DMEM containing 1M β-glycerophosphate, 50mM ascorbic acid and 1mM Dex 

(methylisobutylxanthine)) for indicated times, followed by subsequent experiments. 

TRAP activity assay. After 7 days of culture, the osteoclasts were fixed with 4% 

paraformaldehyde (PFA) in PBS for 10 min and then rinsed three times with PBS, 

followed by TRAP staining, using an acid phosphatase kit (387A; Sigmae
_
Aldrich) 

according to the manufacturer’s description and counter-stained with hematoxylin for 
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10 s to 30 s. Images were obtained with a Nikon SMZ 1500 stereoscopic zoom 

microscope (Nikon Instruments Inc.; Melville, NY, USA). We randomly quantified the 

total area of TRAP-positive regions and the total number of osteoclasts on five selected 

fields of view for each sample. 

   Immunofluorescence. For F-actin ring immunofluorescent staining, WT and 

PIP5k1β
−/−

 osteoclasts were fixed with 4% PFA for 15 min at room temperature and 

permeabilized for 5 min with 0.1% v/v Triton X-100 on ice. Cells were incubated with 

Fluorescent phalloidins (1:40; Invitrogen Life Technologies, USA) diluted in 1% w/v 

bovine serum albumin-PBS for 20 min at room temperature and then washed 

extensively with PBS. Cells were then incubated with Hoechst 3342 dye (1:5000); 

Invitrogen Life Technologies, USA) for visualizing nuclei, washed with PBS, and 

mounted with ProLong Gold anti-fade mounting medium (Invitrogen Life 

Technologies, USA). Fluorescence was detected with NIKON A1Si spectral detector 

confocal system equipped with 20 (dry) lenses. Fluorescence images were obtained 

with NISeC Elements software. (National Institutes of Health). 

   Pit formation assay. For the bone resorption assay, 8×10
3
 cells/well WT or 

PIP5k1β
−/− 

BMMs were plated onto bovine bone slices in 96-well plates with three 

replicates and treated with M-CSF (20 ng/mL) and RANKL (75 ng/mL) for 8 days. 

Then the bone slices were fixed with 2.5% glutaraldehyde and followed by 

visualization with scanning electron microscope (SEM; FEI Quanta 250). Pit areas 

were quantified with Image J software (National Institutes of Health). Similar 

independent experiments were repeated three times.  

Cell proliferation and migration assay. The proliferation rate was determined 

with CCK-8 assay according to the manufacturer’s protocols. WT or PIP5k1β
−/− 

BMMs 

were seeded in 96-well plates at a density of 8×10
3
 cells/well, and incubated in 

complete a-MEM supplemented with 20 ng/mL M-CSF for 24 h until 60% confluences, 

then cells were treated with 20 ng/ml M-CSF or 75 ng/ml RANKL or both for 24 h. 

Then 100 ul CCK-8 buffer was added to each well, followed by incubation at 37 °C for 

an additional 2 h. The absorbance was then measured at a wavelength of 450 nm (650 

nm reference) with an ELX800 absorbance microplate reader (Bio-Tek, USA). The 
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migration ability was monitored with wound healing assay. In a typical procedure, a 

straight scratch was made gently through the monolayer cells using an Eppendorf tip in 

48-well plates. Detached cells were washed away with PBS and the serum-free culture 

medium was added; cells were treated with 20 ng/ml M-CSF or 75 ng/ml RANKL or 

both. Cells migrating to the scratch were monitored and images were taken at 0, 17h 

after wounding. The migration rate was calculated following the equation: percentage 

wound healing = ((wound length at 0 h) − (wound length at 17 h))/(wound length at 0 h) 

× 100 (Davalos et al, 2012).  

RNA extraction and Q-PCR assay. 

WT and PIP5k1β
−/−

 BMMs were plated in six-well plates at a density of 1×10
5
 cells 

per well and incubated in complete a-MEM supplemented with 20 ng/mL M-CSF and 

75 ng/mL RANKL for an indicated number of days. Total RNA was extracted with 

TRIzol reagent (Invitrogen) following the manufacturer’s instructions and cDNA was 

generated with 1 ug of RNA. Then, real-time PCR was performed via the 

LightCycler480 system (Roche) using SYBR1Premix Ex TaqTM (Takara, Dalian, 

China) following manufacturer’s instructions and data were analyzed using the 

comparison Ct (2
-∆∆

Ct) method The following program of real-time PCR was 

employed: denaturation at 95 °C for 10 s, 40 cycles at 95 °C for 10 s, and 60 °C for 30 s. 

The dissociation stage was added to the end of the amplification procedure, and the 

dissociation curve did not show any nonspecific amplification. 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as housekeeping 

gene. All reactions were run in triplicate. The mouse primers used in the present study 

were shown as follows:  GAPDH forward 5′- TTCACCACCATGGAGAAGGC -3′ 

and reverse 5′- GGCATGGACTGTGGTCATGA-3′; Nfatc1 forward 

5′-TCCGAGAATCGAGATCACCT-3′ and reverse 

5′-AGGGGTCTCTGTAGGCTTCC-3′; Acp5 (acid phosphatase 5) forward 

5′-CGTCTCTGCACAGATTGCAT-3′ and reverse 

5′-AACTGCTTTTTGAGCCAGGA-3′; cathepsin K (CTSK) forward 

5′-GGACCCATCTCTGTGTCCAT-3′ and reverse 

5′-CCGAGCCAAGAGAGCATATC-3′; DC-STAMP _dendritic cell-specific 
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transmembrane protein (DC-STAMP) forward 5′- 

ACAAACAGTTCCAAAGCTTGC-3′ and reverse 

5′-TCCTTGGGTTCCTTGCTTC-3′; OSCAR forward 

5′-CTGCTGGTAACGGATCAGCTCCCCAGA-3′ and reverse 

5′-CCAAGGAGCCAGAACCTTCGAAACT-3′; PIP5k1β forward 5′- 

GAAGAAGCCCTGGGATCCCGACA-3′ and reverse 

5′-GGGTGTTTGGCTCAGCCGTCA-3′; ATP6v0d2 forward 5′- 

AGACCACGGACTATGGCAAC-3′ and reverse 

5′-CAGTGGGTGACACTTGGCTA-3′ 

Western blotting 

Cells were lysed on ice for 30 min with RIPA lysis buffer which contains 

50 mM Tris
_
HCl, pH 7.4, 150 mM NaCl, 1% Nonidet P-40, and 0.1% SDS 

supplemented with protease inhibitors (10 mg/ml leupeptin, 10 mg/ml pepstatin A, 

and 10 mg/ml aprotinin). For Western blotting, 25µg of protein sample was resolved on 

12.5% SDS-PAGE and electrotransferred onto nitrocellulose membranes (Whatman, 

Piscataway, NJ, USA). The primary antibodies used were as follows: phospho-Akt, 

total Akt, phosphor –GSK3β(ser9A), PTEN, PLCγ2 and all the primary antibodies 

involved in the MAPK signaling pathway (phospo-p44/42 ERK, total p44/42 ERK, 

phospho-p38, total-p38, and phospo-JNK and total-JNK) were purchased from Cell 

Signaling Technology (Danvers, MA, USA) and used at a 1:1000 dilution ratio. 

Anti-NFATC1 antibody was purchased from Santa Cruz and used at 1:500 dilution ratio. 

Beta-actin or GAPDH was used as loading control. HRP-conjugated secondary 

antibodies were used at a 1:5000 dilution. The antigen–antibody complexes were 

visualized using the enhanced chemiluminescence detection system (Millipore, 

Billerica, MA, USA) following the manufacturer’s instructions. Immunoreactive bands 

were quantitatively analyzed in triplicate by normalizing the band intensities to their 

respective controls on scanned films using ImageJ software. 

Alkaline phosphatase staining and Alizarin red staining. The cell layer was 

rinsed with PBS three times, followed by fixation in 4% paraformaldehyde for 10 min 

at room temperature. Then cells underwent ALP or Alizarin red staining. ALP staining 
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was performed according to the manufacturer’s instructions. The fixed cells were then 

incubated with buffer containing 0.1% naphthol AS-Bi phosphate (Sigma
_
Aldrich) and 

2% fast violet B (Sigma
_
Aldrich). After incubation for 1 h at 37 °C, the cell layer was 

washed with deionized water. For Alizarin red staining, the fixed cells were rinsed with 

double-distilled H2O (ddH2O) and then stained with 40 mM Alizarin red S (pH 4.9, 

Sigma) for 15 min with gentle agitation followed by five times washing with 

ddH2O.Then, the calcium precipitates were dissolved with 0.1 N sodium hydroxide 

and monitored using a Tecan Safire2 microplate reader (Tecan, Durham, NC, USA) by 

absorbance at 548 nm to quantify the degree of mineralization. 

Statistical analysis. The data are presented as the mean ± s.d. (n is the number of 

tissue preparations, cells, or experimental replicates). For comparing groups of data, a 

two-tailed Student’s t-test was used. A value of P < 0.05 was considered to be 

statistically significant. 
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Figure legends 

 Figure 1 PIP5k1β-deficient mice exhibit an osteoporotic bone phenotype. (A) 

Representative micro-CT images of femurs in WT or PIP5k1β knockout 2-month-old 

male mice.（B-F) Bone mineral density (BMD), Bone volume per tissue volume 

(BV/TV), trabecular number (Tb.N.), trabecular bone thickness (Tb.Th.) and trabecular 

separation (Tb.Sp.) were assessed from the micro-CT measurements (n = 10). (G) The 

hematoxylin/eosin (H&E) (up) and TRAP staining (down) of histological section of 

proximal tibiae. Bars, 100 µm. (n = 10). （H-I）Analysis of trabecular bone area and 

quantification of N.Oc/BS (osteoclast number/ bone surface) in G. (J-K) Representative 

images of new bone formation（J）and quantification of MAR (K) as assayed by 

calcein double labeling. (n = 6). (L) Serum concentration of CTx-I in WT or PIP5k1β 

knockout mice (n = 6). (M-N) The expression of CTSK in WT or PIP5k1β knockout 

mice shown by immunohistochemistry (M) and the staining density were quantified by 

ImageJ (N). (n=6 per group) (O) Serum concentration of OCN in WT or PIP5k1β 

knockout mice (n = 6) (Data represent as means ± S.D. of three independent 

experiments. *P < 0.05; **P < 0.01; ***P < 0.001.)  

Figure 2 PIP5k1β expression was increased during RANKL-induced 

osteoclast differentiation and PIP5k1β-deficient osteoclasts exhibit normal 
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morphology. (A) cDNA from preosteoclasts and mature osteoclasts were subjected to 

Micro array assay and the expression levels of PIP5k family genes and osteoclasts 

master genes were detected. The heat map is ordered by degree of differential 

expression of the indicated genes between preosteoclasts and mature osteoclasts. (B) 

RT-PCR detection for the expression levels of PIP5k1β, TRAP, VATPased2 during 

osteoclastogenesis and 18s RNA was used as control. (C) Bone marrow cells from WT 

or PIP5k1β−/− mice were treated by 15 ng/ml M-CSF for two days and the cells 

adhesion to the cell plates (named BMMs) were underwent osteoclastogenesis by 

stimulation with 20 ng/ml M-CSF and 75 ng/ml RANKL for 7 days. The actin ring 

formation, Vinculin, and Rac1 expression and colocalization with F-actin were 

assessed by classical confocal microscopy. F-actin was stained with phalloidin (green) 

and nuclear was stained with Hoechst 3342. (All the data were confirmed by three 

independent experiments.) 

Figure 3 Deficiency of PIP5k1β enhanced osteoclast differentiation and bone 

resorption. Bone marrow cells from WT or PIP5k1β−/− mice were treated by 15 ng/ml 

M-CSF for two days and the cells adhesion to the cell plates underwent 

osteoclastogenesis by stimulation with 20 ng/ml M-CSF and 75 ng/ml RANKL for the 

indicated number of days, the osteoclasts formation were detected by TRAP staining (A) 

and the osteoclasts number were counted (C) (n=3). (B, D-J) WT or PIP5k1β−/− 

BMMs were cultured with M-CSF (20 ng/mL) and RANKL (75 ng/mL) for 0, 1, 3, 5 or 

7 days. PIP5k1β, PIP5k1α, PIP5k1γ and osteoclast-specific gene expression (ACP5, 

Ctsk, ATPasev0d2, NFATc1, DC-STAMP and OSCAR) were analyzed by RT-PCR (B) 

and real-time polymerase chain reaction (PCR) and the results were normalized to the 

expression of GAPDH (D-J). All experiments were performed at least three times. (K) 

WT (K left) or PIP5k1β−/− (K right) BMMs were cultured on bovine bone slices with 

20 ng/ml M-CSF and 75 ng/ml RANKL for 8 days and the pit formation was detected 

by SEM and the pit formation rate was measured by Image J and presented graphically 

(L) (All the experiments were repeated three times. Data represent as means ± SD of 

three independent tests. *P< 0.05; **P < 0.01; ***P < 0.001 versus WT).  

Figure 4 Overexpression of PIP5k1β arrests osteoclast formation. (A) WT 
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BMMs were transduced with LV5-NC or gradually increased concentration of 

LV5-PIP5k1β, and the expression of PIP5K1β was detected by RT-PCR. (B-C) BMMs 

transduced with LV5-NC or 50 MOI of LV5-PIP5k1β were cultured with RANKL and 

M-CSF for 0, 5 or 9 days. The cells were stained for TRAP activity and osteoclasts 

number were counted. (D-E) BMMs from A were cultured with RANKL and M-CSF 

for 9 days. The cells were stained for TRAP activity and osteoclasts number were 

counted. (Scale bar, 200 μm, all the experiments were repeated three times. Data 

represent as means ± SD of three independent tests. ***, P < 0.001.)  

Figure 5 Deficiency of PIP5k1β enhances proliferation, migration and 

NFATc1 nuclear localization in preosteoclasts. (A) The wound healing assay. WT or 

PIP5k1β−/− BMMs were cultured in 48-well plates and serum- and cytokine-starved 

for 12 h; scratches were made and serum-free culture medium with M-CSF or both 

M-CSF and RANKL was added. Cells migrating to the scratches were monitored and 

images were taken at 0 and 17 h after wounding. (B) The migration rate was calculated 

according to the equation: percentage wound healing = ((wound length at 0 h) − (wound 

length at 17 h))/(wound length at 0 h) ×100 (C) CCK8 assay was performed to text the 

proliferation rate of WT or PIP5k1β−/− BMMs under triggering with M-CSF, RANKL, 

or both. (D-E) Nuclear translocation of NFATC1 in WT or PIP5k1β−/− osteoclasts 

stimulating with M-CSF and RANKL was detected by immunofluorescence (D) and 

western blotting (E). (F) RAW264.7 cells stably transfected with an NFATC1 luciferase 

reporter construct were seeded in 48-well plates and maintained in the cell culture 

medium for 24 h. The cells were then transduced with vector or pEGFP-PIP5k1β for 24 

h, followed by incubation with RANKL (100 ng/mL) for 4 h. NFATC1 luciferase 

activity was measured (down) and PIP5k1β mRNA levels were detected via RT-PCR 

(up). (All experiments were repeated three times. Data represent as means ± SD of 

triplicate tests. *P< 0.01; **, P < 0.001; ## P< 0.01; ***, P < 0.0001 versus WT).  

Figure 6 Deficiency of PIP5k1β leads to increases of M-CSF- and 

RANKL-mediated MAPK, c-Fos and AKT signaling cascades.  

 (A-D) WT or PIP5k1β
−/−

 BMMs were cultured with M-CSF (20 ng/mL) and 

RANKL (75 ng/mL) for 0, 1, 3, 5days. Expression of TRAF6, c-Fos, Grb2, TRAP and 
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Ctsk were analyzed by western blotting (A), the band densitometry were quantified and 

normalized to β-actin using ImageJ and graphically (B-D). Actin served as loading 

controls. (E-J) Serum- and cytokine-starved WT and PIP5KIβ
−/−

 macrophages were 

exposed to RANKL (100 ng/ml), Phosphorylated AKT, JNK, ERK, p38 were 

immunoblotted with time. Actin served as loading controls, and the expression levels 

were analyzed by ImageJ. (K-N) Serum- and cytokine-starved WT and PIP5KIβ
−/− 

macrophages were exposed to M-CSF (30 ng/ml). Phosphorylated AKT, ERK, JNK 

were immunoblotted with time. Actin served as loading control, and the expression 

levels were analyzed by ImageJ. (All experiments were repeated three times. Data 

represent means ± SD. *P< 0.05; **P< 0.01; ***, P < 0.001 versus WT). 

Figure 7 PIP5k1β accelerates osteoblast differentiation. (A-B) The expression 

of OSX in WT or PIP5k1β knockout mice shown by immunohistochemistry (A) and the 

staining density were quantified by ImageJ (B). (n=6 per group) (C) WT BMSCs were 

transfected with vectors or LV3-PIP5k1β (knockdown) or LV5-PIP5k1β 

(overexpression) to obtain BMSCs that constantly knockdown or overexpress PIP5k1β, 

the transfection ratio of LV5-PIP5k1β were shown. (D-K) BMSCs from C were 

cultured with osteogenic medium for the indicated times. RT-PCR was used to test 

PIP5k1β, BSP, OSX, OCN expression for an indicated number of times (D-E) and 

quantitative real-time PCR was performed for the mRNA expression of PIP5k1β, Alpl 

(ALP), Ibsp (BSP), SP7, OCN and Colla1 (F-K). (Data represent as means± SD of 

triplicate samples. cn, control cells treated with control medium; o and o-cn, cells 

overexpress PIP5k1β treated with control medium; cn-ob, control cells treated with 

osteogenic medium; o-ob, cells overexpress PIP5k1βtreated with osteogenic medium.)  

(L) Cells from C cultured for 7 days with osteogenic medium were fixed and stained for 

ALP. (M) Cells cultured with osteogenic medium for 14 days were fixed and stained for 

Alizarin red and were quantified by densitometry at 548 nm. (N) Western blot for 

osteoblasts marker genes for 7 and 14 days treatment with osteogenic medium and 

β-actin were used as loading control. (All experiments were performed triplicate. Data 

represent means ± SD of triplicate samples. *P < 0.05; ** P < 0.01; ***P < 0.001 versus 

control, cn, cells treated with control medium; om, cells treated with osteogenic 
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medium.)  

Figure 8 PIP5k1β accelerates osteoblast differentiation through activating 

p-Smad1/5/8 signaling. WT BMSCs were transfected with vectors or LV3-PIP5k1β 

(knockdown) or LV5-PIP5k1β (overexpression) to obtain BMSCs that constantly 

knockdown or overexpress PIP5k1β. Then were underwent with control or osteogenic 

medium incubation for 7 or 14 days. (A) Western blot for p-smad1/5/8 after 7 and 14 

days treatment with osteogenic medium and β-actin were used as loading control. (B) 

The band densitometry from A was analyzed with ImageJ and was shown graphically. 

(C) ALP and Alizarin Red S staining for BMSCs incubated with control or osteogenic 

medium with or without smad1/5/8 specific inhibitor LDN193189 for 7 and 14 days 

respectively. (D) The ALP staining density was analyzed using the software Image-Pro 

Plus and shown as graph. (E) The calcium precipitates in figure B were dissolved in 0.1 

N sodium hydroxide and quantified by absorbance at 548 nm with a Tecan Safire2 

microplate reader (Tecan, Durham, NC, USA) (F) Westernblotting for BMSCs 

incubated with control or osteogenic medium with or without smad1/5/8 specific 

inhibitor LDN193189 for 7 and 14 days respectively. Expression of p-smad1/5/8 and 

osteogenic marker genes were detected and analyzed with ImageJ. (All experiments 

were performed triplicate. Data represent means ± SD of triplicate samples. *P < 0.05; 

** P < 0.01; ***P < 0.001 versus control, cn, cells treated with control medium; om, 

cells treated with osteogenic medium.)  

Supplementary Figure 1. (A) The whole body of WT and PIP5k1β deletion mice. 

(B) Total RNA was isolated from bone, spleen, brain, thymus, lung, kidney, liver, 

epididymis, testis, heart, and muscle of WT mice. Quantitative real-time PCR was 

performed for the mRNA expression of PIP5k1α, β and γ. (C-D) WT or PIP5k1β−/− 

BMMs were cultured with M-CSF (20 ng/mL) and RANKL (75 ng/mL) for 0, 1, 3, 5 or 

7 days. β3 Integrin expression was analyzed by real-time polymerase chain reaction 

(PCR) and the results were normalized to the expression of GAPDH (C) and western 

blotting (D). All experiments were performed at least three times (*P < 0.05; **P < 0.01) 

Supplementary Figure 2. (A) MTT assay to detect the proliferation rate of BMSCs 

constantly overexpress or knockdown of PIP5k1β and the control BMSCs. (B-C) 
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Densitometry analysis of Fig.7N and the results were shown graphically. (All 

experiments were performed triplicate. Data represent means ± SD of triplicate samples. 

*P < 0.05; ** P < 0.01; ***P < 0.001 versus control, cn, cells treated with control 

medium; om, cells treated with osteogenic medium.) (D) Model of PIP5k1β to 

modulate bone homeostasis. On the one hand, RANKL binds to RANK then RANK 

recruit TRAF6, which leads to phosphorylation of JNK, Akt MAPK/Erk1/2 and 

MAPK/p38 signaling and activation of c-Fos, which are crucial for NFATC1 induction 

and activation. NFATC1 in turn initiates its own expression and activation. NFATC1 

promotes osteoclastogenesis by promoting expression of osteoclastogenic genes such 

as DC-STAMP, Cathepsin k, OSCAR, ACP5, Atpasev0d2. PIP5k1β inhibits 

RANKL-induced MAPK, AKT activation and TRAF6, c-Fos expression; PIP5k1β also 

inhibits Grb2 expression during osteoclastogenesis. Grb2 promotes osteoclasts 

proliferation and formation. In this way, PIP5k1β inhibits osteoclastogenesis to 

modulate bone resorption. On the other hand, PIP5k1β promotes expression of 

osteogenic genes such as ALP, OSX, RUNX2, OCN, BSP, col1α1 to enhance bone 

formation through activating smad1/5/8 signaling. 
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