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Abstract	(150	words)	

The	 predictive	 coding	 framework	 construes	 the	 brain	 as	 performing	 a	 specific	 form	 of	

hierarchical	 Bayesian	 inference.	 In	 this	 framework	 the	 precision	 of	 cortical	 unsigned	

prediction	 error	 (surprise)	 signals	 is	 proposed	 to	 play	 a	 key	 role	 in	 learning	 and	 decision-

making,	 and	 to	 be	 controlled	 by	 dopamine.	 To	 test	 this	 hypothesis,	 we	 re-analysed	 an	

existing	data-set	 from	healthy	 individuals	who	 received	a	dopamine	agonist,	 antagonist	or	

placebo	and	who	performed	an	associative	 learning	task	under	different	 levels	of	outcome	

precision.	 Computational	 reinforcement-learning	modelling	 of	 behaviour	 provided	 support	

for	 precision-weighting	 of	 unsigned	 prediction	 errors.	 Functional	 MRI	 revealed	 coding	 of	

unsigned	 prediction	 errors	 relative	 to	 their	 precision	 in	 bilateral	 superior	 frontal	 gyri	 and	

dorsal	 anterior	 cingulate.	 Cortical	 precision-weighting	 was	 (i)	 perturbed	 by	 the	 dopamine	

antagonist	 sulpiride,	 and	 (ii)	 associated	 with	 task	 performance.	 These	 findings	 have	

important	 implications	 for	 understanding	 the	 role	 of	 dopamine	 in	 reinforcement	 learning	

and	predictive	coding	in	health	and	illness.		
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Introduction	

Recent	 decades	 have	 witnessed	 an	 increased	 interest	 in	 Bayesian	 theories	 of	 neural	

function,	 where	 neural	 signals	 representing	 prediction	 errors	 (expected	 –	 predicted	

outcome)	play	a	key	role	(Rao	&	Ballard,	1999;	den	Ouden	et	al.,	2008	&	2012;	Bastos	et	al.,	

2012).	These	models,	including	predictive	coding	frameworks	and	the	free-energy	principle,	

conceptualize	 the	 brain	 as	 performing	 a	 specific	 form	 of	 hierarchical	 Bayesian	 inference,	

where	each	layer	 in	the	cortex	aims	to	best	predict	 its	 input,	and	updates	its	prediction	by	

virtue	 of	 the	 prediction	 error,	 to	 achieve	 an	 accurate	model	 of	 the	world	 (Rao	&	 Ballard,	

1999;	Bar,	2009;	Friston,	2009;	Mathys	et	al.,	2011;	Bastos	et	al.,	2012;	Clark,	2013	&	2015;	

Hohwy,	2013).	A	core	idea	included	in	these	models	is	that	prediction	errors	are	scaled	in	a	

precision-weighted	 fashion,	 i.e.	 neural	 systems	 encoding	 predictions	 errors	 respond	more	

strongly	 when	 new	 information	 is	 more	 reliable	 and	 hence	 more	 informative.	 Neural	

implementations	 of	 these	 theories	 have	 hypothesized	 the	 importance	 of	 the	 dopamine	

system	 in	 controlling	 the	 precision-weighted	 coding	 of	 prediction	 errors	 (Friston,	 2009;	

Bastos	et	al.,	2012;	Adams	et	al.,	2013).	However,	to	the	best	of	our	knowledge,	there	is	no	

direct	 evidence	 to	 support	 the	 hypothesis	 of	 a	 dopamine-mediated	 precision-weighted	

prediction	error	signalling	in	the	cortex.	

As	with	Bayesian	 theories	of	neural	 function,	 reinforcement-learning	models	also	highlight	

the	importance	of	the	minimization	of	prediction	error	(Sutton	&	Barto,	1998).	However,	in	

this	 context	 a	 distinction	 is	 usually	made	 between	 signed	 and	 unsigned	 prediction	 errors,	

which	play	different	roles	(Roesch	et	al.,	2012).	The	signed	prediction	error	signals	the	extent	

to	which	an	outcome	is	better	or	worse	than	expected	and	changes	the	value	of	a	stimulus	

accordingly	 (Rescorla	&	Wagner	et	 al.,	 1972;	 Sutton,	 1988).	 The	unsigned	prediction	error	

signals	the	degree	to	which	an	outcome	is	unexpected,	independent	of	its	sign,	and	thereby	

controls	 the	 rate	 of	 learning	 (Pearce	&	Hall	 1980;	Hall	&	 Pearce	 et	 al.,	 1982).	 In	 Bayesian	

reinforcement	 learning	 models	 unsigned	 prediction	 errors	 increase	 (or	 decrease)	 the	

uncertainty	regarding	prediction	estimates	and	thereby	increase	learning	in	a	fashion	similar	

to	reinforcement	learning	(Courville	et	al.,	2006).	Critically,	influential	Bayesian	models	also	

posit	the	presence	of	a	cortical	precision-weighted	unsigned	prediction	error	signal,	thought	

to	be	mediated	by	dopamine	(Friston,	2009;	Bastos	et	al.,	2012;	Adams	et	al.,	2013).	

Where	 in	 the	 brain	 can	 we	 expect	 to	 find	 evidence	 of	 a	 precision	 weighted	 unsigned	

prediction	error	signal	that	is	mediate	by	dopamine?	During	reinforcement	learning,	neural	
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signals	 representing	 signed	 reward	 prediction	 errors	 and	motivational	 salience	 prediction	

errors	can	be	 found	 in	various	 locations	 (Roesch	et	al.,	2012).	For	example,	 signed	reward	

prediction	 errors	 are	 coded	 in	 a	 variety	 of	 brain	 regions,	 most	 notably	 the	 dopaminergic	

midbrain	 and	 ventral	 striatum	 (Schultz	 et	 al.,	 1997;	 O’Doherty	 et	 al.,	 2003	 &	 2004;	

Pessiglione	 et	 al.,	 2006;	D’Ardenne	 et	 al.,	 2008;	Diederen	 et	 al.,	 2016	&	2017,	 Tian	 et	 al.,	

2016).	 In	 contrast,	 neurophysiological	 evidence	 in	 experimental	 animals	 suggests	 that	

unsigned	 prediction	 errors,	 which	 are	 the	 main	 focus	 of	 interest	 here,	 are	 coded	 in	 the	

cortex,	including	the	dorsal	anterior	cingulate	cortex	(dACC)	(Hayden	et	al.,	2011),	as	well	as	

subcortically,	 in	 the	 basolateral	 amygdala	 (Li	 et	 al.,	 2011);	 both	 of	 these	 structures	 are	

innervated	by	dopamine	(Esber	et	al.,	2012;	Paus	et	al.,	2001).	Evidence	from	human	fMRI	

learning	 studies	 also	 points	 to	 prefrontal	 representations	 of	 unsigned	 prediction	 error,	 in	

medial,	superior	and	lateral	aspects	of	the	prefrontal	cortex,	including	the	dACC		(Fletcher	et	

al	2001,	Turner	et	al	2004,	 Ide	et	al.,	2013;	Metereau	et	al.,	2013;	Fouragnan	et	al.,	2017,	

Fouragnan	et	al	2018).		

Given	the	findings	of	unsigned	prediction	error	signals	 in	the	frontal	cortex,	and	given	that	

the	dACC	receives	dense	dopaminergic	projections	(Lewis	et	al.,	1987;	Berger	et	al.,	1991),	

we	hypothesize	the	following.	Firstly,	we	expect	that	unsigned	prediction	errors	are	coded	in	

the	 frontal	 cortex.	 Secondly,	we	 expect	 that	 the	 unsigned	prediction	 error	 signal	 is	 coded	

relative	to	the	precision	of	environmental	outcomes.	Third,	we	expect	the	aforementioned	

process	to	be	mediated	by	dopamine,	especially	in	the	dACC.	We	test	these	hypotheses	with	

novel	analyses	on	an	existing	dataset	(Diederen	et	al	2017).	 In	this	study	participants	were	

randomised	to	receive	either	placebo,	sulpiride	(a	D2	receptor	antagonist),	or	bromocriptine,	

(a	 potent	 dopamine	 receptor	 agonist,	 which	 also	 has	 effects	 at	 some	 classes	 of	 5-HT	

receptors	 (Knverno	et	 al.,	 2008;	Newman-Tancredi	 et	 al.,	 2002)).	 Participants	 undertook	 a	

cognitive	task	where	they	were	presented	with	rewards/	monetary	outcomes	on	each	trial	

that	 were	 drawn	 from	 distributions	 with	 varying	 degrees	 of	 uncertainty.	 The	 participants	

were	 instructed	 to	 best	 predict	 drawn	 rewards,	 with	 the	 most	 accurate	 prediction	

corresponding	 to	 the	 mean	 of	 the	 reward	 distribution.	 Crucially,	 we	 manipulated	 the	

reliability	of	reward	information	by	including	distributions	with	varying	standard	deviations.	

Regression	 analyses	 clearly	 indicated	 a	 role	 for	 unsigned	 prediction	 errors	 in	 learning.	

Further	computational	modelling	confirmed	that	behaviour	was	best	explained	by	a	model	

that	 included	 precision-weighted	 signed	 and	 unsigned	 prediction	 errors	 that	 drove	 value	
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updating	 and	 learning	 rates	 respectively.	 Functional	 MRI	 (fMRI)	 in	 conjunction	 with	 a	

pharmacological	 manipulation	 allowed	 us	 to	 explore	 whether	 dopamine	 perturbs	 the	

precision-weighting	 of	 prediction	 errors	 in	 the	 brain,	 and	 whether	 this	 perturbation	 was	

associated	with	diminished	task	performance.	Our	previous	analysis	of	this	dataset	focussed	

exclusively	on	analysis	 of	 signed	prediction	errors	 and	was	 largely	 focussed	on	 subcortical	

region	 of	 interest	 analyses	 (Diederen	 et	 al	 2017).	 Specifically,	 these	 analyses	 showed	

precision-weighting	 of	 signed	 prediction	 error	 signals	 in	 the	 dopaminergic	 midbrain	 and	

striatum,	the	extent	of	which	was	modulated	by	D2	receptor	antagonism.	However,	 in	the	

current	 paper,	 we	 are	 concerned	 primarily	 with	 cortical	 representations	 of	 unsigned	

prediction	error,	and	their	dopaminergic	modulation.	In	a	novel	analysis,	we	find	precision-

weighting	of	unsigned	prediction	error	signals	in	the	superior	frontal	cortex	and	dACC,	which	

are	 modulated	 by	 the	 dopamine	 D2	 receptor	 antagonist	 sulpiride.	 The	 findings	 provide	

evidence	in	favour	of	recent	computational	models	that	hypothesize	a	role	for	dopamine	in	

modulating	 precision-weighting	 of	 cortical	 prediction	 error	 signals	 (Bastos	 et	 al.,	 2012;	

Adams	et	al.,	2013).	

	

Results	

	

Environmental	precision	and	D2	antagonism	modulate	performance.		

First,	we	explored	whether	performance	increases	when	environmental	precision	is	high	(i.e.	

when	the	standard	deviation	of	rewarding	outcomes	is	low).	We	measured	performance	by	

investigating	how	close	participants	predictions	were	to	the	actual	mean	of	the	distribution	

in	 the	 final	 trials	of	each	 task	block	 (i.e.,	 the	average	difference	between	 the	mean	of	 the	

reward	distribution	and	the	final	three	predictions	the	participants	made).	We	used	a	two-

factor	mixed	model	ANOVA	with	medication	group	as	the	between-subjects	variable	and	SD	

conditions	 as	 the	 within-subjects	 variable,	 using	 a	 linear	 contrast	 across	 SD	 for	 the	main	

effect	 of	 SD	 and	 interaction.	 We	 found	 that	 performance	 increased	 when	 the	 standard	

deviation	decreased	(F{1,56}=11.3,	p=.001).	We	found	no	interaction	between	SD	and	group	

(F{2,56}=1.3,	 p=.27).	 However,	 there	 was	 a	 trend-level	 effect	 of	 group	 on	 average	 final	

performance	 (F{2,56}=2.5,	p=.094).	Post-hoc	 tests	 indicate	 reduced	overall	 performance	 in	

the	 sulpiride	 group	 compared	 to	 placebo	 (F{1,38}=5.10,	 p=.030),	 but	 no	 significant	

interaction	 with	 SD	 (F{1,38}=.18,	 p=.68).	 Comparing	 the	 bromocriptine	 group	 to	 placebo	
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there	 was	 no	 significant	 overall	 difference	 (F{1,37}=2.01,	 p=.17)	 and	 no	 interaction	

(F{1,37}=1.70,	p=.20).		

Since	 dopamine	 plays	 an	 important	 role	 in	 motivation,	 we	 explored	 whether	 the	

dopaminergic	 manipulation	 influenced	 measures	 of	 motivation,	 such	 as	 reaction	 times	

(Crespi,	1942;	Niv,	2007),	how	far	 the	participants	scrolled	 the	mouse	 in	order	 to	come	to	

state	their	prediction	(Fig.	1A;	please	see	methods	section	for	more	detail),	and	the	number	

of	missed	trials	 (Fig.	1D).	Using	one-way	ANOVAs,	we	found	that	only	 reaction	times	were	

significantly	different	across	medication	groups,	with	 the	sulpiride	group	being	 faster	 than	

placebo	 (RT:	 F{2,55}=4.21,	 p=.019;	 Misses:	 	 F{2,55}=0.33,	 p=.72;	 Scrolling	 distance:	

F{2,55}=0.56,	 p=.57;	 Fig.	 1C).	 Differences	 in	 RT	 remained	 significant	 when	 controlling	 for	

scrolling	 distance:	 F{2,55}=3.32,	 p=.044.	 More	 rapid	 reactions	 in	 the	 sulpiride	 condition	

makes	 it	 unlikely	 that	 any	 performance	 deficit	 secondary	 to	 sulpiride	 could	 be	 driven	 by	

motivational	impairments.	

	

	
Figure	 1:	 A.	 Average	 performance,	 B.	 scrolling	 distance,	 C.	 reaction	 time	 and	 D.	 missed	 trials	 per	 group.	 Error	 bars	
represent	 standard	 error	 of	 the	 mean.	 Participant	 performed	 worse	 after	 receiving	 sulpiride,	 and	 they	 responded	
significantly	faster.		
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Unsigned	and	signed	prediction	errors	contribute	to	belief	updating	

In	 order	 to	 explore	 whether	 signed	 and	 unsigned	 prediction	 errors	 contribute	 to	 belief	

updating,	 we	 fitted	 a	 simple	 regression	 model	 to	 the	 behavioural	 data,	 where	 belief	

updating	 was	 the	 dependent	 variable	 and	 signed	 and	 unsigned	 prediction	 errors	 the	

independent	 variables.	 Belief	 updating	 here	 is	 defined	 as	 the	 change	 in	 predicted	 reward	

from	 tn	 to	 tn+1.	 We	 expected	 a	 main	 effect	 of	 signed	 prediction	 error,	 but	 not	 unsigned	

prediction	 as	 the	 former	 informs	 the	 participants	 about	 the	 direction	 of	 belief	 updating,	

whereas	the	latter	does	not.	However,	as	reinforcement	learning	models	like	the	Pearce-Hall	

model	suggest	that	unsigned	prediction	errors	increase	the	amount	of	attention	devoted	to	

a	 stimulus,	we	expect	 there	 to	be	an	 interaction	between	unsigned	and	 signed	prediction	

errors.	 As	 expected	 we	 indeed	 found	 an	 effect	 of	 signed	 prediction	 errors	

(F{1,10763}=246.95,	 p<.0001),	 but	 not	 unsigned	 prediction	 errors	 (F{1,10763}=.95,	 p=.33).	

Most	 importantly	we	 found	an	 interaction	effect	between	 signed	and	unsigned	prediction	

errors	(F{1,10763}=51.7,	p<.0001),	showing	that	the	influence	of	signed	prediction	error	on	

belief	 updating	 is	 a	 function	 of	 both	 the	 signed	 and	 unsigned	 prediction	 error.	 We	

furthermore	tested	whether	SD	condition	had	an	interaction	with	signed	prediction	error	on	

belief	updating.	Although	there	was	no	main-effect	of	SD	(F{2,10761}=.25,	p=.78)	there	was	

indeed	 a	 significant	 interaction	 (F{2,10761}=25.8,	 p<.0001).	 In	 order	 to	 visualise	 the	

interaction	 between	 signed	 and	 unsigned	 prediction	 error	 we	 binned	 signed	 prediction	

errors	and	plotted	belief	updating	on	the	y-axis	(Fig.2A).	The	significant	interaction	predicts	

a	logit-function,	 amplifying	 the	 contribution	 of	 signed	 prediction	 error	 on	belief	

updating	when	the	unsigned	prediction	errors	are	highest	(i.e.	when	signed	prediction	errors	

are	 highly	 positive	 or	 highly	 negative).	We	 thus	 conclude	 unsigned	 prediction	 error	

contribute	to	learning	in	addition	to	signed	prediction	errors.	We	furthermore	visualised	the	

effect	of	SD,	where	we	see	that	signed	prediction	errors	have	a	stronger	effect	on	learning	in	

the	SD5	condition	compared	to	SD15	(Fig.2B).	The	significant	interaction	predicts	a	stronger	

effect	of	 signed	prediction	error	on	belief	updating	 in	 the	 SD5	 condition	 compared	 to	 the	

SD15	 condition.	 We	 thus	 conclude	 signed	 prediction	 errors	 contribute	 more	 to	 learning	

when	reward	information	is	reliable.		
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Figure	2:	Here	we	show	the	relationship	between	signed	prediction	errors	(x-axis)	and	belief-updating	(y-axis)	collapsed	
for	SD5	SD10	&	SD15	(A)	and	separate	for	SD5	&	SD15	(B)	(SD10	is	not	plotted	for	clarity	purposes).	The	shaded	area	is	
one	standard	error	of	the	mean.	In	fig2A	the	interaction	effect	between	unsigned	prediction	error	and	signed	prediction	is	
shown	(above	the	top	and	below	the	bottom	dotted	line	unsigned	prediction	errors	are	strongest,	amplifying	the	effect	of	
the	signed	prediction	error).	In	figure	B	the	effect	of	SD	is	shown,	revealing	a	stronger	effect	of	signed	prediction	error	in	
the	SD5	condition	compared	to	SD15.	

Reinforcement	 Learning	 modelling	 of	 the	 behavioural	 data	 supports	 a	 precision-weighted	

unsigned	and	signed	prediction	error	

We	fitted	different	reinforcement	learning	models	to	the	participants’	trial-wise	predictions	

to	 investigate	whether	participants	were	 likely	 to	make	us	of	precision	weighted	unsigned	

and	 signed	 prediction	 errors.	 These	 models	 included	 a	 simple	 Rescorla-Wagner	 (RW,	

Rescorla	&	Wagner,	1972)	model	without	precision	weighting	of	prediction	errors,	as	well	as	

a	 precision	weighted	RW	model.	 In	 addition,	 as	 previous	work	 using	 similar	 tasks	 showed	

that	 learning	rates	tend	to	decrease	as	trials	progress	as	a	 function	of	unsigned	prediction	

error	size	in	uncertain	environments	we	included	four	Pearce-Hall	(PH,	Pearce	&	Hall,	1980)	

models	 that	 allow	 the	 learning	 rate	 to	 decrease	 as	 trials	 progress:	 1)	 without	 precision	

weighting	 of	 prediction	 errors,	 2)	 precision	 weighting	 of	 signed	 and	 unsigned	 prediction	

errors	3)	estimated	precision	weighting	of	unsigned	and	signed	prediction	errors	4)	separate	

estimation	of	precision	weighting	of	unsigned	and	 signed	prediction	errors.	 The	modelling	

showed	that	in	all	three	medication	groups	the	Pearce-Hall	model	with	separate	estimated	

precision	weighted	signed	and	unsigned	prediction	errors	performed	the	best	 in	explaining	

the	 behavioural	 data	 (model	 comparison	 using	 AIC	 to	 penalize	models	 for	 the	 number	 of	

free	parameters;	see	table	2	for	an	overview	of	the	model	(free)	parameters	and	models	fits	

and	comparisons).	These	results	indicate	that	both	unsigned	and	signed	prediction	errors	are	
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precision-weighted	 to	 facilitate	 efficient	 learning	 when	 the	 environment	 is	 uncertain/	

variable.		

	

Table	1:	Overview	AIC	for	each	reinforcement	 learning	model	per	medication	group.	The	 lowest	AIC	for	each	

group	is	printed	in	bold.		

	

Unsigned	prediction	errors	are	coded	in	the	SFC/dACC	

Our	previously	published	analysis	of	these	neuroimaging	data	focussed	exclusively	on	signed	

prediction	errors	 (Diederen	et	al.,	2017),	and	was	 largely	 confined	 to	 subcortical	 region	of	

interest	analysis.	To	 investigate	the	coding	of	unsigned	prediction	errors	 in	the	brain,	here	

we	 tested	 for	 a	 main	 effect	 on	 the	 unsigned	 prediction	 errors	 parametric	 modulators	

(regressors	whose	magnitude	 is	 proportional	 to	 the	 degree	 of	 unsigned	 prediction	 error).	

Note	 that	 the	 task	design	 allows	us	 to	measure	 the	degree	of	 prediction	error	directly	 by	

taking	the	difference	between	predicted	and	received	reward,	and	therefore	do	not	need	to	

be	inferred	via	the	modelling	procedure.	This	has	the	added	benefit	that	fMRI	group	effects	

cannot	be	driven	by	differences	in	model	fits	between	groups.		

We	conducted	analyses	across	the	whole	brain	at	pFWE	<.01.	Unsigned	prediction	errors	were	

significantly	 coded	 in	 a	 right	 superior	 frontal	 cluster,	 spanning	 the	 superior	 and	 middle	

frontal	gyri	(peak:	27	8	54,	cluster	size:	145	voxels,	T=8.43,	Z=7.68,	pFWE<.001),	a	left	superior	

frontal	cluster	spanning	the	superior	and	middle	frontal	gyri	(peak:	-26	0	54,	cluster	size:	32	

voxels,	T=7.66,	Z=7.09,	pFWE<.001),	and	a	dorsal	anterior	cingulate	cortex	cluster	(peak:	-7	12	

50,	 cluster	 size:	 6	 voxels,	 T=5.32,	 Z=5.1	 pFWE=.002	 Fig.3A).	We	 also	 found	 a	 right	 superior	

occipital	cluster	(peak:	24	-74	34,	cluster	size	21	voxels,	T=7.24,	Z=6.75,	pFWE<.001)	and	two	

	 Free	

parameters	

AIC	overall	 Placebo	 Sulpride	 Bromocriptine	

RW	 1	 894.7	 824.2	 935.9	 924.0	

RW	scaled	 1	 903.2	 829.0	 947.3	 933.4	

PH	not	scaled	 2	 884.2	 808.2	 931.1	 913.4	

PH	both	scaled	 2	 883.6	 807.3	 930.1	 913.4	

PH-estimated	SD	 3	 882.7	 806.1	 928.9	 914.1	

PH-estimated	SD	separate	for	

signed	and	unsigned	PE	

4	 879.4	 803.1	 926.3	 910.4	
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parietal	clusters:	(peak:	34	-48	38,	cluster	size:	18	voxels,	T=5.69,	Z=5.43,	pFWE<.001)	(peak:	

20	-60	26,	cluster	size:	4	voxels,	T=5.24,	Z=5.03,	pFWE=.003).	We	used	the	left	and	right	SFC	

and	dACC	clusters	as	ROIs	with	which	to	take	forward	our	analysis	of	dopaminergic	effects	

on	precision	weighting	in	our	primary	analyses.	Secondary	analyses	examined	these	effects	

in	occipital	and	parietal	regions.	

	

Precision-weighting	of	unsigned	prediction	errors	is	mediated	by	dopamine	in	the	SFC/dACC		

In	order	to	test	for	an	effect	of	outcome	precision	(i.e.,	the	SD	of	reward	distributions)	and	

pharmacological	 perturbations	 on	 precision-weighting	 of	 unsigned	 prediction	 errors,	 we	

extracted	 the	 parameter	 estimates	 (betas)	 of	 the	 unsigned	 prediction	 error	 parametric	

modulators	 from	 the	 left	 and	 right	 superior	 frontal	 cortex	 (SFC)	 and	 dACC	 cluster	 that	

showed	 a	 main	 effect	 of	 unsigned	 prediction	 error	 coding	 at	 whole	 brain	 corrected	

pFWE<.01.	 We	 used	 a	 two-factor	 mixed	 model	 ANOVA	 with	 medication	 group	 as	 the	

between-subjects	 variable	 and	 SD	 condition	 as	 the	within-subjects	 variable,	 using	 a	 linear	

contrast	across	SD	for	the	main	effect	of	SD	and	interaction.	In	the	left	SFC	cluster,	there	was	

a	 significant	 interaction	 across	 SD	 conditions	 and	medication	 group,	 suggesting	 indicating	

that	medication	group	had	a	significant	effect	on	precision-weighting	of	unsigned	prediction	

errors	 (F{2,56}=4.025	p=.023;	 Fig.3B).	We	 then	explored	whether	 the	effect	was	driven	by	

differing	 effects	 of	 bromocriptine	 or	 sulpiride	 compared	 to	 placebo.	 In	 the	 analysis	 of	

differential	 effects	 of	 sulpiride	 and	 placebo,	 we	 found	 a	 significant	 interaction	 between	

medication	group	and	SD	condition	 (F{2,37}	=	5.44,	p=.025),	which	 indicates	 that	 sulpiride	

dampens	 precision-weighting	 of	 unsigned	 prediction	 errors.	 Comparing	 the	 placebo	 and	

bromocriptine	group,	 there	was	a	significant	effect	of	SD	 (F{1,37}	=	14.93,	p<.001),	but	no	

significant	effect	of	group	(F{1,37}	=	2.781,	p=.104)	or	interaction	between	medication	group	

and	SD	(F{2,36}	=	0.02,	p=.894).	This	indicates	that	SFC	unsigned	prediction	error	signals	are	

precision-weighted,	but	unaffected	by	bromocriptine.		

In	the	right	SFC	we	did	not	find	a	significant	interaction	(F{2,56}=1.70,	p=.193;	Fig.	3C),	and	

therefore	did	not	perform	any	further	post-hoc	tests.	However,	the	brain	response	pattern	is	

largely	the	same	as	in	the	left	SFC	(see	Fig.	3).	

In	 the	 dACC	 we	 found	 a	 “trend-level”,	 marginally	 significant	 interaction	 (F{2,56}=2.81,	

p=.069;	Fig.	3D).	Post-hoc	tests	between	the	placebo	and	sulpiride	group	revealed	a	trend-

level	 interaction	 (F{1,38}=3.043,	 p=.089).	 Testing	 the	 placebo	 and	 bromocriptine	 group	
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revealed	 a	 significant	 effect	 of	 SD	 (F{1,37}=9.32,	 p=.004),	 but	 no	 effect	 of	 group	

(F{1,37}=1.17,	p=.29)	and	interaction	(F{1,37}=.172,	p=.68).	A	similar	pattern	was	thus	found	

in	the	dACC	as	in	the	left	SFC	(see	Fig.	3).	

	

	
Figure	 3:	 A.	 Unsigned	 prediction	 errors	 were	 coded	 in	 bilateral	 superior	 frontal	 cortex	 and	 dorsal	 anterior	 cingulate	
cortex.	 The	 left	 side	 of	 the	 brain	 is	 the	 left	 side	 of	 the	 image.	 B-D.	When	 exploring	 these	 regions	 further,	we	 find	 that	
unsigned	prediction	errors	are	coded	in	a	precision-weighted	fashion	as	indicated	by	the	strong	unsigned	prediction	error	
signal	 in	 the	 SD5	 condition	which	 declines	 over	 the	 SD10	&	 SD15	 condition	 in	 the	 placebo	 and	 bromocriptine	 group.	
Importantly,	sulpiride	perturbed	precision-weighting	significantly	in	the	left	SFC.	Error	bars	represent	standard	error	of	
the	mean.		

	

Performance	correlates	with	the	precision-weighting	of	unsigned	prediction	errors	

As	 neural	 precision-weighting	 is	 thought	 to	 facilitate	 task	 performance,	 we	 computed	

Spearman	 correlations	 between	 the	 degree	 of	 precision-weighting	 (quantified	 as	 the	
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average	parameter	estimates	(betas)	of	the	unsigned	prediction	error	 in	the	SD5	condition	

minus	 the	 SD15	 condition)	 and	 performance	 (quantified	 as	 the	 mean	 performance	 error	

(abs(actual	mean	–	predicted	mean))	on	 the	 last	 three	 trials	 in	each	session.	Thus	a	 lower	

performance	(error)	error	equals	higher	accuracy	(performance)).	We	found	that	precision-

weighting	 in	both	 the	 left	 superior	 frontal	 cortex	 (Rho=-.43,	p=.001;	 Fig.	 4A)	and	 the	 right	

superior	frontal	cortex	(Rho=-.37,	p=.004;	Fig.	4B)	was	significantly	related	to	performance,	

and	 precision-weighting	 in	 the	 dACC	 was	 trend-level	 related	 to	 performance	 (Rho=-.24,	

p=.066),	 such	 that	 increased	 precision-weighting	 resulted	 in	 more	 accurate	 predictions	

(smaller	 difference	 between	 prediction	 and	 actual	 mean).	 In	 a	 general	 linear	 model	

controlling	for	medication	group	this	effect	remained	significant	(F{57}=7.53,	p=.008).	

	

	
Figure	 4:	 Precision-weighting	 of	 unsigned	 prediction	 errors	 in	 the	 A.	 left	 SFC	 and	 B.	 right	 SFC	 correlates	 with	
performance	(i.e.	difference	between	mean	of	the	reward	distribution	and	predicted	mean)	on	the	task.		

	

Secondary	outcome	variable	analyses	

In	 addition	 to	 the	 analyses	we	 conducted	 in	 our	 primary	 regions	 of	 interest,	 i.e.	 SFC	 and	

dACC,	 we	 also	 test	 for	 an	 interaction	 between	 SD	 conditions	 and	 medication	 in	 the	

remainder	of	clusters	that	coded	unsigned	prediction	errors.	There	were	no	significant	SD	by	

medication	 interactions:	 superior	 occipital	 cortex	 cluster,	 (F{2,56}=1.60,	 p=.21),	 larger	

parietal	cluster	(F{2,56}=.82,	p=.45),	smaller	parietal	cluster	(F{2,56}=1.53,	p=.23).	
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Discussion	
	
We	first	confirmed	that	unsigned	prediction	errors	play	a	role	in	learning	using	a	regression	

analysis.	We	subsequently	confirm	using	computational	modelling	on	the	behavioural	 level	

that	 a	 separately	 estimated	 precision-weighted	 signed	 and	 unsigned	 prediction	 errors	

provided	 the	best	 description	of	 the	behavioural	 data,	 thus	 suggesting	precision-weighted	

signed	and	unsigned	prediction	errors	in	the	brain	(the	former	confirmed	previously	by	fMRI	

in	humans	(Diederen	et	al	2016),	including	in	a	prior	analysis	of	these	data	(Diederen	et	al.,	

2017).	 In	 the	present	 study,	we	 tested	 the	prediction	of	 brain	 representation	of	 unsigned	

prediction	errors.	We	found	evidence	supporting	this	prediction,	by	showing	that	unsigned	

prediction	 errors	 are	 coded	 relative	 to	 the	 SD	 in	 an	 associative	 learning	 paradigm	 (i.e.	

precision-weighted)	 in	 the	 bilateral	 superior	 frontal	 cortex	 and	 dorsal	 anterior	 cingulate	

cortex	(SFC/dACC).	Importantly,	this	mechanism	was	significantly	diminished	in	the	sulpiride	

(D2	 receptor	 antagonism)	 group	 in	 comparison	 to	 the	 other	 groups	 in	 the	 right	 SFC,	with	

marginal	evidence	of	a	medication	effect	in	the	dACC.	This	result	suggests	that	the	dopamine	

D2	receptor	plays	a	key	role	in	the	mechanisms	underlying	precision-weighting	of	unsigned	

prediction	errors.	We	furthermore	found	that	a	decrease	in	precision-weighting	of	unsigned	

prediction	error	was	significantly	correlated	to	performance	on	the	task,	where	an	increase	

in	 precision-weighting	 resulted	 in	more	 accurate	 predictions	 of	 upcoming	 rewards.	 These	

results	 confirm	 the	 hypothesis	 that	 there	 exist	 cortical	 unsigned	 prediction	 error	 signals,	

which	influence	performance	and	are	precision	weighted	by	dopamine.		

	

Although	we	argue	that	these	results	are	in	line	with	influential	predictive	coding	theories	of	

cognition,	the	reinforcement	learning	models	used	in	this	paper	are	not	hierarchical.	This	is	

because	 an	 important	 element	 in	 hierarchical	 Bayesian	 models,	 like	 the	 hierarchical	

Gaussian	 filter	model	 (Mathys	 et	 al.,	 2011),	 lies	 in	 the	 ability	 to	 learn	 about	 higher	 level	

features	of	the	reward	environment	that	were	absent	 in	this	task.	 In	our	task,	participants	

were	explicitly	informed	that	the	distance	between	the	green	bars	in	the	cues	indicated	the	

relative	 standard	 deviation	 of	 the	 reward	 distribution	 (low,	 medium	 high),	 although	 they	

were	 uninformed	 with	 regards	 to	 the	 exact	 size	 of	 the	 standard	 deviation	 (SD5,	 SD10	 &	

SD15).	 Furthermore	 the	mean	 of	 the	 distribution	 remained	 fixed	within	 each	 session,	 i.e.	

there	 were	 no	 changes	 in	 the	 mean	 and/or	 the	 volatility	 of	 changes.	 The	 experimental	
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manipulation	introduced	by	the	task	design	eliminates	the	need	to	estimate	latent	variables	

of	 interest	 and	 examine	 their	 fit	 with	 MRI	 data.	 Rather,	 simple	 reinforcement-learning	

models	 and	 classical	 neuroimaging	 contrasts	 suffice	 to	 model	 this	 task.	 An	 advantage	 of	

making	the	precision	of	reward	information	explicit	is	that	we	can	test	directly	the	degree	of	

precision-weighting,	which	would	otherwise	be	implicit,	as	in	the	hierarchical	Gaussian	filter,	

where	precision-weighting	is	a	consequence	of	the	precision	of	–	or	confidence	in	–higher-

level	priors.	Although	the	models	are	not	hierarchical	in	this	paper,	we	believe	these	results	

are	 in	 line	 with	 influential	 formulations	 of	 predictive	 coding	 and	 the	 proposed	 role	 of	

dopamine	 therein	 (Refs	 –	 Friston	 2009,	 Friston	 et	 al	 2014).	 In	 our	 view,	 traditional	

experimental	 psychology	 task	 design	 and	 latent	 variable	 “model-based”	 fMRI	 are	

complementary	ways	of	investigating	brain	function.	

	

Although	sulpiride	diminished	precision-weighting	on	the	neural	level,	there	were	only	mild	

deficits	in	performance	induced	by	sulpiride,	and	our	behavioural	modelling	suggested	that	

on	average,	the	sulpiride	group	still	utilised	precision-weighting	in	their	decision	making.	The	

potential	 reasons	 for	 this	 include	 that	our	 analysis	on	 the	behavioural	 level	may	not	have	

been	 sufficiently	 sensitive	 to	 demonstrate	 sulpiride-induced	 impairments	 (Murray	 et	 al.,	

2010).	Alternatively,	a	secondary	mechanism	in	the	brain	might	compensate	for	the	lack	of	

superior	 frontal	 cortex	 precision-weighting	 of	 prediction	 error	 in	 the	 sulpiride	 condition,	

potentially	at	the	cost	of	performance	in	more	taxing	circumstances	(Murray	et	al.,	2010)..		

	

It	could	be	objected	that	a	difference	in	brain	encoding	of	unsigned	prediction	errors	might	

be	driven	by	different	sizes	of	prediction	error	across	SD	conditions.	For	example,	it	could	be	

objected	that	in	the	SD15	condition	unsigned	prediction	errors	will	be	higher	than	in	the	SD5	

condition,	as	it	is	a	more	noisy	environment.	Critically,	our	findings	are	the	reverse	of	what	

would	 be	 expected	 under	 this	 objection.	 That	 is,	 whilst	 the	 objection	 posits	 higher	 brain	

prediction	 error	 associated	 activity	 in	 the	 SD15	 condition	 because	 prediction	 errors	 are	

higher	here	than	in	the	SD5	condition,	our	data	indicates	the	opposite	effect:	that	prediction	

errors	in	the	SD15	condition	are	in	fact	attenuated	compared	to	the	SD5	condition.	

	

The	coding	of	unsigned	prediction	errors	in	the	superior	and	middle	frontal	gyri	and	dACC	is	

in	line	with	earlier	findings	by	Hayden	(et	al.,	2011)	who	found	unsigned	prediction	errors	in	
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the	dACC	of	monkeys,	and	with	prior	fMRI	studies	in	humans	(Fletcher	et	al	2001,	Turner	et	

al	 2004,	 Fouragnan	 et	 al.,	 2017;	 Fouragnan	 et	 al	 2018;	Metereau	 et	 al.,	 2013;	 Ide	 et	 al.,	

2013).	 However,	 the	 finding	 that	 cortical	 unsigned	 prediction	 error	 signals	 are	 precision-

weighted	 in	humans	 is	a	novel	 finding	to	 the	best	of	our	knowledge.	 	The	 fact	 that	such	a	

precision	 weighted	 signal	 exists	 in	 the	 dACC	 is	 notable	 given	 that,	 aside	 from	 the	motor	

cortex,	dopaminergic	 innervation	of	cortex	 is	greatest	 in	ACC	(Lewis	et	al.,	1987;	Berger	et	

al.,	1991;	Paus,	2001),	compatible	with	the	hypothesis	that	precision	weighting	is	influenced	

here	by	dopaminergic	input.		

	

The	 observation	 that	 dopamine	 plays	 a	 role	 in	 the	 precision-weighting	 of	 unsigned	

prediction	errors	extends	previous	work	showing	the	precision-weighting	of	signed	(reward)	

prediction	 errors	 (Diederen	 et	 al.,	 2016	 &	 2017),	 and	 fits	 well	 with	 contemporary	

computational	 neuroscience	 models	 which	 suggest	 that	 the	 brain	 is	 a	 hierarchically	

organized	 system	 which	 aims	 to	 minimize	 prediction	 error.	 According	 to	 these	 accounts,	

modulatory	 neurotransmitters	 like	 dopamine	 are	 hypothesised	 to	 play	 a	 key	 role	 in	

controlling	the	precision	of	prediction	errors	(Bastos	et	al.,	2012;	Adams	et	al.,	2013;	Friston	

et	al.,	2014a,b).	Our	finding	that	the	precision	of	the	prediction	error	signal	is	represented	in	

superior	and	middle	 frontal	gyri	and	anterior	cingulate	cortex	under	placebo,	and	that	 the	

degree	of	precision-weighting	of	the	signal	is	disrupted	by	sulpiride,	provides	initial	evidence	

in	 accordance	with	 such	models.	We	did	not	 find	 evidence	 that	 bromocriptine	modulated	

precision-weighting	of	cortical	prediction	error	signals.	This	is	analogous	to	the	results	of	the	

previous	 analysis	 of	 these	 data	 focussed	 on	 signed	 prediction	 error	 signals,	 especially	 in	

subcortical	 regions.	 Diederen	 and	 colleagues	 (2017)	 found	 that	 there	 were	 effects	 of	

sulpiride	on	precision	of	the	prediction	error	signal	in	the	midbrain	and	striatum,	but	found	

no	corresponding	effect	of	bromocriptine.	Choosing	the	optimal	dose	of	medication	to	use	in	

pharmacological	 fMRI	 studies	 is	 often	 a	 challenge,	 where	 tolerability	 has	 to	 be	 balanced	

against	 efficacy.	 Furthermore,	 bromocriptine	 has	 been	 shown	 to	 have	 non-linear	 dosage	

effects.	 For	 example	 a	 study	 investigating	 motor	 cortex	 neuroplasticity	 under	 different	

dosages	 of	 bromocriptine	 (2.5mg,	 10mg	 and	 20	mg)	 found	 a	 non-linear	 dose	 relationship	

(Fresnoza	et	al.,	2014),	and	effects	of	dopaminergic	drug	intervention	may	depend	on	base-

line	dopamine	levels	(Cools	et	al.,	2011).	Thus,	it	is	possible	that	the	dose	of	bromocriptine	

used	in	this	study	(2.5mg)	may	have	been	too	low	to	detect	robust	effects	on	brain	signals,	
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and	thus	its	lack	of	significant	effect	on	precision	weighting	in	this	experiment	should	not	be	

over-interpreted.		

	

If	 the	 precision-weighting	 of	 prediction	 errors	 is	 important	 in	 learning,	 we	 can	 expect	

aberrant	learning	to	occur	when	prediction	errors	are	not	scaled	optimally	to	the	precision	

of	information.	This	mechanism	could	be	of	importance	to	psychosis,	which	is	characterized	

by	 delusional	 beliefs	 and	 hallucinatory	 perception	 (Fletcher	&	 Frith	 et	 al.,	 2009).	 Previous	

work	showed	aberrant	prediction	error	coding	in	people	with	psychosis	(Murray	et	al.,	2008;	

Corlett	 et	 al.,	 2007a,b).	 As	 psychosis	 has	 consistently	 been	 associated	 with	 dopamine	

dysfunction	 (Howes	 et	 al.,	 2009),	 it	 is	 conceivable	 that	 the	 precision-weighting	 process	 is	

impaired	 in	 psychosis.	 Indeed,	 it	 has	 been	 suggested	 that	 dopamine	 dysregulation	 causes	

psychosis	due	to	affecting	the	brains	capacity	to	precision-weight	prediction	error	(Adams	et	

al.,	 2013).	 That	 is,	 if	 unreliable	 prediction	 errors	were	 given	 excessive	weight,	 they	 could	

have	an	exaggerated	influence	on	driving	changes	in	the	brain’s	model	of	the	world,	thereby	

contributing	 to	 the	 formation	 of	 abnormal	 beliefs.	 As	 such,	 future	 studies	 should	 aim	 to	

explore	the	relationship	between	precision-weighting	of	prediction	error	and	psychosis.		

	

In	 conclusion,	we	 found	 evidence	 of	 precision-weighted	 unsigned	 prediction	 errors	 in	 the	

superior	 frontal	 and	 dorsal	 anterior	 cingulate	 cortices.	 Furthermore,	 we	 found	 that	 the	

precision-weighting	 of	 prediction	 errors	 was	 modulated	 by	 the	 dopaminergic	 antagonist	

sulpiride,	and	we	found	that	the	degree	of	precision-weighting	in	this	area	was	correlated	to	

performance	on	the	task,	providing	evidence	for	the	first	time	that	dopamine	plays	a	role	in	

precision-weighting	of	unsigned	prediction	error	signals	during	learning.		
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Methods	

Demographics	

	

N	 Mean	Age	(SD)	 Male	(Female)	

Medication	study	 59	 24.19	(4.46)	 31	(28)	

Placebo	 20	 23.9	(4.76)	 9	(11)	

Sulpiride	 20	 24.8	(4.51)	 12	(8)	

Bromocriptine	 19	 23.7	(4.3)	 10	(9)	

	 	 	 	

	

Participants	

We	 recruited	 63	 participants,	 of	 which	 4	 were	 excluded	 due	 to	 feeling	 unwell	 during	

scanning	and/or	a	failure	to	complete	the	paradigm,	or	side-effects	of	the	medication	(see	

Diederen	 et	 al.,	 2017	 for	 a	 detailed	 description).	 All	 participants	 were	 recruited	 via	 the	

distribution	of	flyers	in	Cambridge	and	advertisements	on	Gumtree.	Drug	screenings	were	all	

negative.	After	receiving	detailed	information	about	the	study,	all	participants	gave	written	

informed	consent.	

	

Table	2:	Participants		

	 N	Sessions	 N	Trials	 SDs	 EVs	 N	participants	

Dopamine	Study	 3	 62	 5,	10	&	15	 35	 &	

65	

60	(20	per	group)	

	

Pharmacological	dopaminergic	challenge	

Participants	 received	 a	 single	 dose	 of	 the	 D2-antagonist	 sulpiride	 (600mg),	 the	 dopamine	

agonist	 Bromocriptine	 (2.5	 mg),	 or	 placebo,	 in	 a	 double-blind	 fashion.	 Domperidone	 was	

added	 to	 prevent	 potential	 nausea,	 as	 it	 would	 be	 an	 indicative	 factor	 of	 having	 taken	 a	

drug,	and	could	thus	influence	the	blinding	procedure,	as	well	as	making	people	feel	unwell	

(see	Diederen	et	al.,	2017	for	a	detailed	description	of	the	dopaminergic	manipulation).		

	

Task	design	
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Durin	functional	(f)MRI	data	acquisition,	participants	predicted	the	magnitude	of	upcoming	

rewards.	Optimal	performance	on	this	task	required	the	participant	to	estimate	the	mean	of	

the	distribution	from	which	the	rewards	were	drawn.	The	task	consisted	of	three	sessions	of	

10	minutes	each.	The	rewards	were	drawn	from	six	different	pseudo-Gaussian	distributions	

that	differed	with	respect	to	their	standard	deviation	(SD)	and	expected	value	(i.e.	mean	of	

the	distribution;	EV).	 See	Table	1	 for	an	overview	of	 the	SD’s	and	EV’s.	Distributions	were	

counterbalanced	to	ensure	that	the	two	conditions	within	each	session	differed	with	respect	

to	the	EV	and	SD.	The	conditions	were	presented	 in	short	blocks,	each	 including	4-6	trials.	

Each	distribution	consisted	of	21	trials,	which	resulted	in	a	total	number	of	trials	of	42	per	

block.	The	participants	were	informed	beforehand	that	each	distribution	(of	which	two	per	

session)	had	a	different	level	of	precision,	which	could	be	one	of	three	levels:	low,	medium	

or	high	precision,	corresponding	to	SD5,	10	&	15,	although	the	exact	SD’s	were	not	revealed	

to	the	participants.	Each	trial	started	with	a	fixation	cross	that	was	presented	between	2100	

and	4200ms.	The	 fixation	cross	was	 followed	by	a	cue	that	was	presented	 for	500ms.	This	

cue	informed	the	participant	from	which	of	two	distributions	(high,	medium	or	low)	in	that	

block	the	upcoming	reward	was	being	drawn.	After	the	cue	was	presented	the	participants	

were	required	to	predict	the	magnitude	of	the	upcoming	reward.	They	had	3500ms	to	make	

this	prediction.	Making	 the	prediction	 involved	scrolling	a	mouse	ball	with	 their	 fingers	up	

and	 down,	 and	 clicking	 the	 left	 mouse	 button	 to	 state	 their	 prediction.	 This	 resulted	 in	

moving	a	bar	up	and	down	 the	 screen	on	a	 scale	 that	 ranged	 from	0	 to	100.	 The	 starting	

point	 on	 the	 bar	 was	 randomized	 throughout	 the	 experiment,	 to	 ensure	 that	 scrolling	

distance	did	not	correlate	with	participants’	predictions.	The	participants	were	instructed	to	

minimize	 the	 prediction	 error,	 i.e.	 the	 difference	 between	 the	 expected	 and	 the	 actual	

obtained	 reward.	 After	 the	 prediction,	 another	 fixation	 cross	 was	 presented	 for	 duration	

between	2100	and	5250ms.	Thereafter,	 the	obtained	reward	was	presented	 in	addition	 to	

the	prediction	and	the	reward	prediction	error	for	1000ms	(see	Fig.	5	for	an	example	trial).		

	

Pay-off	

If	the	participants	would	always	receive	the	amount	of	money	drawn	by	the	computer,	this	

might	 have	 reduced	 their	 motivation	 to	 reveal	 their	 true	 prediction.	 Therefore,	 the	

participants	were	rewarded	according	 to	 their	accuracy	 (i.e.,	proximity	 to	 the	mean	of	 the	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 10, 2018. ; https://doi.org/10.1101/288936doi: bioRxiv preprint 

https://doi.org/10.1101/288936


	 18	

reward	distribution)	on	20%	of	the	trials	in	order	to	keep	them	motivated	to	predict	as	well	

as	possible.	

	

	
Figure	5:	Example	of	a	trial.	The	participants	were	instructed	to	learn	the	mean	of	a	reward	distribution.	First	a	fixation	
cross	was	presented	after	which	the	participants	were	informed	about	the	standard	deviation	of	the	reward	distribution.	
Subsequently	the	participants	were	asked	to	make	a	prediction	regarding	the	upcoming	reward,	which	was	presented	to	
the	participant	in	combination	with	the	prediction	error	(in	yellow)	after	an	anticipation	period.		

	

Behavioural	analyses		

Behavioural	 data	 was	 analysed	 in	 Matlab.	 In	 order	 to	 test	 the	 performance	 of	 the	

participants,	we	analysed	whether	the	predictions	of	the	participants	approached	the	mean	

of	 the	 distribution	 (or	 expected	 value	 (EV)),	 toward	 the	 end	 of	 the	 experiment	 (final	 3	

predictions	in	each	SD	condition).	We	calculated	the	absolute	difference	between	the	EV	and	

the	prediction	 in	 these	 final	3	 trials	 and	averaged	 them.	We	 reasoned	 that	 if	 participants’	

prediction	were	close	to	the	EV	of	the	reward	distribution	from	which	rewards	were	drawn,	

the	participants	were	 learning.	We	 tested	 this	by	using	a	mixed-2-factor-ANOVA	with	a	3-

level	 within	 subject	 factor	 (SD5,	 SD10	 &	 SD15)	 and	 a	 3-level	 between	 subject	 factor	

(medication),	and	 tested	 for	main	effect	of	SD	and	 interaction	between	SD	conditions	and	

medication	using	a	mixed-model	ANOVA	 in	SPSS	 (version	21).	Specifically	we	used	a	 linear	

contrast	 (termed	 “linear	 polynomial	 contrast”	 in	 SPSS)	 for	 the	 main	 effect	 of	 SD	 and	

interaction.	 In	 addition,	 we	 analysed	 differences	 in	 scrolling	 distance	 to	 exclude	 the	

possibility	that	drug	effects	 influenced	willingness	to	do	the	task,	resulting	in	a	decrease	in	

scrolling	distance.	We	also	analysed	differences	 in	 reaction	 times	and	missed	 trials	 for	 the	

same	reason.		
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Linear	regression	model	

In	order	to	explore	the	contribution	of	signed	and	unsigned	prediction	error	to	learning	we	

used	 a	 linear	 regression	 model	 with	 belief-updating	 as	 dependent	 variable	 and	 both	

unsigned	 and	 signed	 prediction	 error	 as	 independent	 variables.	 Belief	 updating	 here	 is	

defined	as	the	change	in	value	estimate	from	tn	to	tn+1.	That	is,	when	the	participant	expects	

a	value	of	20	on	t1	and	expect	as	value	of	30	on	t2	there	was	a	belief	update	of	10,	which	is	

expected	 to	 be	 explained	 by	 a	 prediction	 error	 experienced	 at	 t1.	 Since	 signed	 prediction	

errors,	 but	 not	 unsigned	 prediction	 errors	 inform	 the	 participant	 about	 the	 direction	 of	

learning,	we	expect	the	former	but	not	the	latter	to	have	a	main	effect	on	belief-updating.	

Furthermore,	since	formal	learning	models	like	the	Pearce-Hall	model	(Pearce	&	Hall,	1980),	

suggest	that	unsigned	prediction	errors	increase	learning,	we	expect	an	interaction	between	

unsigned	and	signed	prediction	error	on	belief-updating.	 In	order	 to	visualise	 the	effect	of	

signed	and	unsigned	prediction	errors	on	belief-updating,	we	will	create	bins	on	the	basis	of	

signed	prediction	errors	and	plot	belief-updating	on	the	y-axis.	If	unsigned	prediction	errors	

interact	with	signed	prediction	error	in	predicting	belief-updating	we	should	expect	to	see	a	

logit	or	sigmoid	relationship	between	signed	prediction	error	and	belief	updating.	

	

Behavioural	modelling	

To	 investigate	 learning,	 we	 fitted	 several	 reinforcement	 learning	 models	 to	 participants’	

prediction	sequences.	Each	model	used	a	common	updating	rule	in	which	predictions	on	trial	

n	depended	on	the	prediction	error	and	the	learning	rate	on	trial	n-1:	

	

yn	=	yn-1	+	kn	δn	 	 	 	 	 Equation	1	

	
Here,	yn	 is	the	prediction	made	on	trial	n,	kn	refers	to	the	learning	rate	and	δn	denotes	the	

size	of	the	prediction	error.	This	 is	a	standard	reinforcement	learning	model,	and	allows	to	

estimate	to	which	degree	prediction	errors	are	being	used	by	the	participant	by	estimating	

the	learning	rate	parameter	(Sutton	&	Barto	et	al.,	1998).			

	

The	 first	model	consisted	of	a	Rescorla-Wagner	 (RW)	reinforcement	 learning	model	with	a		

fixed	 learning	 rate.	A	 fixed	 learning	 rate	prescribes	 that	 each	prediction	 error	 is	weighted	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 10, 2018. ; https://doi.org/10.1101/288936doi: bioRxiv preprint 

https://doi.org/10.1101/288936


	 20	

equally	 during	 learning	 (e.g.,	 independent	 of	 whether	 a	 prediction	 error	 occurred	 at	 the	

start,	or	the	end	of	a	session):		

kn	=	α	 	 	 	 	 	 Equation	2	

	
The	second	model	consisted	of	a	Pearce-Hall	(PH)	model	with	a	trial-wise,	dynamic,	learning	

rate,	which	prescribes	higher	weighting	of	prediction	errors	(i.e.,	more	learning)	at	the	start	

of	a	task	session	compared	to	later	trials	(Pearce	et	al.,	1980).	In	uncertain	environments,	it	

is	more	optimal	to	decrease	the	weighting	of	prediction	errors	as	learning	progresses	(once	

participants	become	more	certain	of	their	predictions)	as	prediction	errors	will	continue	to	

occur	as	a	result	of	the	imposed	uncertainty.	The	PH	learning	rate	decays	as	trial	progress,	as	

a	function	of	the	previous	learning	rate	and	the	experienced	prediction	error,	which	allows	

for	fast	updating	of	predictions	at	the	beginning	of	each	task	session:		

	

kn	=	ɣC|δn-1|	+	(1	–	ɣ)	kn-1	 	 	 	 Equation	3	

	

in	which	|δ|	is	the	absolute	prediction	error,	C	is	an	arbitrary	scaling	coefficient	and	ɣ	is	the	

learning	rate	decay.		

		

We	 additionally	 explored	 whether	 scaling	 prediction	 error	 to	 the	 reliability	 of	 the	

environment	 (i.e.,	 precision	 –weighting)	 benefitted	 learning	 by	 comparing	 models	 that	

scaled	 the	 prediction	 error	 term	 and	models	 that	 did	 not.	We	both	 explored	models	 that	

simply	 precision-weighted	 the	 prediction	 error	 by	 a	 constant	 term	ω	 (equation	 4&5),	 and	

models	that	estimated	the	degree	υ	of	precision-weighting	for	each	individual	(equation	6).	

We	 estimated	 both	 models	 that	 had	 a	 single	 estimated	 υ	 for	 both	 signed	 and	 unsigned	

prediction	 errors	 and	 a	 model	 that	 had	 a	 separate	 variable	 for	 signed	 and	 unsigned	

prediction	errors.		In	contrast	to	earlier	studies	(Diederen	et	al.,	2015,	2016	&	2017)	we	used	

a	 more	 simplified	 model	 that	 utilised	 a	 linear	 precision-weighted	 model	 to	 ease	

interpretation.	

	

yn	=	yn-1	+	kn	(δ/	ω)n	 	 	 	 	 Equation	4	

kn	=	ɣC|(δn-1/	ω)|	+	(1	–	ɣ)	kn-1	 	 	 	 Equation	5	

ω	=	1-υ+	υ*(SD)	 	 	 	 Equation	6	
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For	 the	 Pearce-Hall	model	we	 explored	 the	 scaling	 of	 the	 signed	 and	 unsigned	 prediction	

error	separately,	as	well	as	combined.		

	

We	used	the	Akaike	Information	Criterion	(AIC)	to	estimate	the	model	evidence	in	favour	of	

each	of	the	two	models.	The	model	with	the	lowest	AIC	was	used	for	further	analyses.	

	

fMRI	pre-processing	steps	

All	 pre-processing	 steps	 were	 performed	 using	 SPM8	 (available	 at	

http://www.fil.ion.ucl.ac.uk;	 Wellcome	 Department	 of	 Cognitive	 Neurology,	 London,	

England)	 in	 combination	with	 the	Donders	matlab	 (dmb)	 toolbox	 for	 combining	data	 from	

different	echo	acquisition	 times.	Data	was	acquired	at	4	different	echo	 times	 (TE’s)	of	12,	

27,91,	 43,82	 and	 59,73	 ms.	 Corrections	 for	 slice	 timing	 was	 not	 applied	 considering	 the	

relatively	 fast	 repetition	 times	 (TR)	 of	 2100ms.	 Using	 SPM8	 the	 functional	 images	 were	

realigned	first,	after	which	the	four	different	echoes	were	summed	and	averaged	in	order	to	

minimize	 signal	 intensity	 inhomogeneity	 due	 to	 differences	 in	 T2*	 relaxation	 times	 across	

the	brain	(Poser	et	al.,	2006).	The	functional	images	were	subsequently	coregistered	to	the	

T1-weighted	anatomical	image	in	native-space	by	first	coregistering	one	averaged	functional	

image,	after	which	the	coregistration	parameters	of	this	registration	were	applied	to	the	all	

the	functional	images	in	order	to	registered	to	native	space.	Unified	segmentation	was	used	

in	order	to	achieve	the	normalization	of	the	functional	and	anatomical	images	to	MNI	space	

(Ashburner	 et	 al.,	 2005).	 Unified	 segmentation	 is	 a	 single	 iterative	 model	 that	 combines	

segmentation,	 bias	 correction	 and	 normalization	 in	 order	 to	 achieve	 optimal	 results.	 The	

segmentation	 step	 was	 omitted	 for	 one	 of	 the	 participants;	 since	 it	 gave	 erroneous	

segmentation	parameters	resulting	in	distortions	in	the	normalized	anatomical	T1	scan.	The	

segmentation	 step	was	 later	 conducted	 using	 a	 different	 template,	 namely	 the	 East-Asian	

template,	which	resulted	in	a	correct	segmentation.	Spatial	smoothing	was	performed	using	

8mm	Gaussian	kernels.	The	time	series	in	each	session	were	high-pas	filtered	at	128	Hz.	

1st-level	analysis		

fMRI	 analyses	 were	 conducted	 using	 SPM8.	We	 used	 a	 single	 statistical	 linear	 regression	

model	 for	our	main	analyses.	We	modelled	for	each	trial	 the	onset	of	 the	cue	as	an	event	

(i.e.	 a	 delta	 function	 of	 zero	 duration),	 the	 onset	 of	 the	 prediction	 event	 (i.e.,	 when	
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participant	could	start	making	their	prediction)	as	a	single	epoch	lasting	until	they	indicated	

their	 prediction.	 Each	 event	 was	 convolved	 by	 the	 standard	 canonical	 haemodynamic	

response	function	in	SPM8.	Importantly,	we	used	parametric	modulation	to	identify	neural	

correlates	of	unsigned	prediction	error	 responses	by	specifying	 for	all	outcome	events	 the	

reward	prediction	errors.	The	reward	events	were	separately	modelled	for	the	different	SD	

conditions	 in	 order	 to	 test	 for	 differences	 in	 precision-weighting	 of	 prediction	 errors	 as	

evidences	 by	 different	 sizes	 of	 slopes	 for	 the	 coding	 of	 unsigned	 prediction	 errors	 under	

different	levels	of	certainty.	Contrast	were	created	on	the	1st-level	which	combined	the	two	

EV	conditions	 for	each	SD	 in	order	 to	 leave	a	single	contrast	 for	each	SD	conditions	which	

could	be	taken	to	the	2nd-level	(i.e.,	group-level).		

	

2nd-level	analysis		

For	 the	 analysis	 of	 the	main	 effect	 of	 unsigned	 prediction	 errors	we	 first	 created	 1st-level	

contrast	 in	 which	we	 combined	 the	 2	 EV’s	 for	 each	 separate	 SD	 condition,	 resulting	 in	 3	

contrasts	corresponding	to	the	3	different	SD	conditions	(SD5,	SD10	&	SD15).	We	modelled	

these	3	SD	contrasts	for	each	pharmacological	condition	separately	specifying	the	effects	to	

be	 dependent,	 and	 having	 equal	 variance.	 We	 subsequently	 tested	 for	 a	 main	 effect	 of	

prediction	error	by	doing	a	positive	2nd-level	contrast	on	the	parametric	modulators	for	the	

unsigned	prediction	error.	

To	 test	 for	 an	 effect	 of	 SD	 on	 the	 coding	 of	 unsigned	 prediction	 error	 and	 the	 effect	 of	

pharmacological	group,	we	extracted	the	parameter	estimates	(beta’s)	for	all	SD	conditions	

for	each	medication	group	separately	from	the	left	and	right	superior	frontal	cortex	clusters	

and	dACC	cluster	surviving	FWE<.01	coding	unsigned	prediction	errors;	for	each	cluster	we	

used	the	mean	values	per	cluster	per	participants	in	a	mixed-2-factor-ANOVA	with	a	3-level	

within	subject	factor	(SD5,	SD10	&	SD15)	and	a	3-level	between	subject	factor	(medication),	

and	 tested	 for	 main	 effect	 of	 SD	 and	 interaction	 between	 SD	 conditions	 and	medication	

using	 a	 mixed-model	 ANOVA	 in	 SPSS	 (version	 21).	 Specifically	 we	 used	 a	 linear	 contrast	

(termed	“linear	polynomial	contrast”	by	SPSS)	across	SD	 to	examine	 the	main	effect	of	SD	

and	 interaction	 between	 group	 and	 SD.	 When	 a	 significant	 interaction	 was	 found	 we	

explored	this	further	to	see	which	group	was	driving	the	interaction.		
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