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Abstract 

Simultaneous recordings of large populations of neurons in behaving animals allow detailed observation of 

high-dimensional, complex brain activity. However, experimental design and analysis approaches have not 

sufficiently evolved to fully realize the potential of these methods. We recorded whole-brain neuronal 

activity for larval zebrafish presented with a battery of visual stimuli while recording fictive motor output. 

These data were used to develop analysis methods including regression techniques that leverage trial-to-trial 

variations and unsupervised clustering techniques that organize neurons into functional groups. We used 

these methods to obtain brain-wide maps of concerted activity, which revealed both known and heretofore 

uncharacterized brain nuclei. We also identified neurons tuned to each stimulus type and motor output, and 

revealed nuclei in the anterior hindbrain that respond to multiple stimuli that elicit the same behavior. 

However, these convergent sensorimotor representations were only weakly correlated to instantaneous 

motor behavior, suggesting that they inform, but do not directly generate, behavioral output. These findings 

motivate a novel model of sensorimotor transformation spanning distinct behavioral contexts, within which 

these hindbrain convergence neurons likely constitute a key step.  

 

Introduction 

Understanding the functional organization of 

the brain requires recording and interpreting activity 

from large populations of neurons. Recent advances in 

functional imaging technology, including the 

development of sensitive fluorescent reporters of 

neuronal activity (Akerboom et al., 2012; Chen et al., 2013) 

and fast imaging techniques (Bouchard et al., 2015; 

Fahrbach et al., 2013; Tomer et al., 2012), have made 

simultaneous recording across large brain areas possible 

in many animal models (Lemon et al., 2015; Peron et al., 

2015; Prevedel et al., 2014; Schrödel et al., 2013). In the 

case of the larval zebrafish, the small size and 

transparency of the animal facilitates brain-wide optical 

interrogation of the nervous system (Ahrens et al., 2012; 

Friedrich et al., 2010; Orger, 2016; Orger et al., 2008; 

Portugues et al., 2014). Using light-sheet imaging 

techniques, the majority of the ~100,000 neurons in the 

larval zebrafish brain can be imaged simultaneously at 

single-cell resolution in a behaving animal (Ahrens et al., 

2013; Panier et al., 2013; Vladimirov et al., 2014) . 
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Such large-scale simultaneous imaging has the 

potential to broadly reveal functional interactions 

between neurons across the brain and facilitate discovery 

of previously unobserved activity patterns. However, the 

scope of brain activity that can be understood is still 

limited to activity patterns actually explored by the brain 

during the experiment. To maximize this “neural space” 

explored by the brain, we extended the scope of whole-

brain investigations by including a battery of different 

visual stimuli presented to each fish. Instead of focusing 

on only one behavior, we elicited phototaxis 

(Brockerhoff et al., 1995; Wolf et al., 2017), the 

optomotor response (Naumann et al., 2016; Orger and 

Baier, 2005), avoidance of visual looming stimuli (Dunn et 

al., 2016a; Lovett-Barron et al., 2017), and darkness 

responses (Burgess and Granato, 2007), as well as 

spontaneous behavior (Dunn et al., 2016b; Romano et al., 

2015), in the same fish, while simultaneously monitoring 

fictive behavior (Ahrens et al., 2012; Masino and Fetcho, 

2005).  Eliciting multiple different behaviors leads to 

datasets rich in neural dynamics, facilitating the 

extraction of a wide variety of functionally coupled sets 

of neurons. This also uniquely enables us to examine the 

same neurons in various behaviorally relevant contexts, 

and obtain a more comprehensive view of their 

converging or diverging contributions across different 

sensorimotor pathways.  

Inspecting and analyzing activity of ~100,000 

neurons poses a significant computational challenge, and 

requires the right tools. Many analysis approaches have 

been developed to interpret neural population activity 

data based on projections to low dimensional spaces 

(Cunningham and Yu, 2014; Freeman et al., 2014; Lopes-

dos-Santos et al., 2013), regression (Feierstein et al., 2015; 

Miri et al., 2011a; Portugues et al., 2014; Wolf et al., 2017), 

noise correlation (Averbeck et al., 2006; Cohen and Kohn, 

2011), and clustering (Romano et al., 2015, 2017). Here, we 

developed a combination of multiple analytical 

approaches to infer the organization of whole-brain 

activity during exposure to multiple stimuli, and 

quantified population dynamics both reflecting 

sensorimotor transformations and autonomous network 

activity across the brain. 

First, we used regression analysis to quantify how 

closely the activity of each neuron is related to the 

stimulus inputs and motor output. However, in cases 

where visual stimuli robustly drive behavior, it may be 

hard to determine if cellular activity is more closely 

related to processing of stimuli or execution of motor 

commands. We therefore established an analysis for 

decomposing motor activity into stimulus-driven and 

stimulus-independent components by exploiting 

periodicities in the presented sensory stimulation and 

examining trial-to-trial variation in the motor output. In 

order to investigate functional relationships among 

neurons that are related to neither stimulus input nor 

motor output, we developed a density-based 

agglomerative clustering method for discovering groups 

of neurons with similar dynamics. Although cells were 

grouped solely based on functional activity, many of the 

resulting clusters were anatomically compact, revealing 

known as well as previously uncharacterized brain 

structures.   

We also investigated how different sensory inputs 

diverge in the brain to represent different sensory 

features and then converge to trigger similar behavior 

(convergent stimuli) (Tononi et al 1998; Stein 1998; 

Hiramoto & Cline, 2009; Thill & Wilson 2016). We 

identified cells in the anterior hindbrain that are tuned to 

multiple different stimuli that induce right turns, along 

with their left turn counterparts. These cells are strongly 

correlated to the features of stimuli that drive a common 

behavior but are only weakly correlated to motor output, 

suggesting that they inform, but do not directly generate, 

behavioral output.   

We implemented our analysis tools with a custom 

graphical user-interface (GUI) for interactive and flexible 

data exploration. The code, and all the data, will be made 

publicly available (after peer review of this manuscript), 

to enable community efforts for mining these rich 

datasets to discover deeper structure in whole-brain 

neuronal activity and its relation to visual stimuli and 

behavior. 
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Results 

Whole-brain recordings of neuronal activity  

Using a light-sheet imaging system reported 

previously (Vladimirov et al., 2014) (Fig. 1a), we recorded 

the activity of the majority of neurons in the larval 

zebrafish brain simultaneously, while presenting the 

battery of visual stimuli and recording fictive swimming 

behavior. For each fish, calcium imaging data was 

recorded at ~2 volumes/sec for ~50 min (2.11 ± 0.21 

volumes/second; 6,800 ± 470 time frames, n = 18 fish) 

(Fig. 1b, Fig. S1e). The pan-neuronally expressed calcium 

indicator GCaMP6f (Chen et al., 2013) was localized to the 

cell nuclei by fusing it to the histone H2B protein 

(Vladimirov et al., 2014), which facilitates automatic cell 

segmentation performed via a template matching 

algorithm (Kawashima et al., 2016). We thus obtained the 

activity traces of ~80,000 cellular ROIs per fish (8.0×104 ± 

1.6×104 ROIs, n = 18; example traces in Fig. 1d), accounting 

for the vast majority of neurons in the brain with the 

exception of the most ventral part (Fig. S1a). During 

imaging sessions, fictive swim signals were detected by 

extracellular recordings of the descending axial motor 

neurons on each side of the tail (Ahrens et al., 2012; 

Masino and Fetcho, 2005). These recordings were 

reconstructed into fictive swim bouts, which were used 

to decode turns (Fig. 1d, bottom bar; Methods) (Ahrens 

et al., 2013; Dunn et al., 2016b). 

Blocks of visual stimulus patterns associated with the 

following behavioral paradigms were projected onto a 

screen below the fish during imaging (Fig. 1c). (1) 

Phototaxis. Larval zebrafish are attracted by light and are 

averse to darkness, and use spatial differences in 

luminance to guide their navigation (Brockerhoff et al., 

1995; Wolf et al., 2017). We presented a half-field dark 

stimulus on either the left or the right side, separated in 

time by a whole-field white baseline. (2) The optomotor 

response. This is a position-stabilizing reflex to whole-

field visual motion, in which fish turn and swim in the 

direction of perceived motion (Naumann et al., 2016; 

Orger and Baier, 2005). The stimuli used were whole-field 

stripes moving in different directions. (3) The visual 

escape (looming) response. In free-swimming fish, 

expanding discs elicit an avoidance response; although in 

tethered preparations fish often exhibit freezing 

behavior, there is still a strong sensory-related response 

in large areas of the brain (Dunn et al., 2016a; Lovett-

Barron et al., 2017). The looming stimuli were presented 

from either the left or right side of the fish. (4) The dark-

flash response. This reflex is characterized by large-angle 

turns in response to sudden darkening of the 

environment (Burgess and Granato, 2007; Chen and 

Engert, 2014). Alternating whole-field dark and bright 

stimuli were used for this stimulus block. (5) 

Spontaneous behavior. In the absence of visual stimuli, 

fish spontaneously swim in alternating sequences of 

repeated turns to the left and to the right (Dunn, Mu et al. 

2016). For this block, fish were imaged under 

homogeneous background illumination.  

 In order to make anatomical comparisons across 

experiments with different fish, we registered the 

functional imaging stacks to each other (Fig. S1b,c), and 

also to the Z-Brain atlas for larval zebrafish (Randlett et 

al., 2015) that contains molecular labels and definitions 

for known anatomical regions (Fig. 1e, Fig. S1d). To 

enable intuitive data analysis, we developed a custom 

interactive platform in MATLAB (Fig. S1f, code and data 

available online) to efficiently explore this data in both 

functional and anatomical contexts. All of the analysis 

presented here was performed using this GUI platform 

and associated scripts.  
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Identification of sensory and motor related 

neurons  

A first step towards understanding the brain’s 

sensorimotor transformations is identifying cells whose 

neural activity closely tracks the stimulus input or motor 

output. This type of analysis provides a survey of the cells 

that are likely involved in a given sensorimotor 

transformation. With whole-brain data including a broad 

range of stimulus types, one can simultaneously obtain 

comprehensive tuning maps for multiple stimulus types 

and motor outputs, which allows for comparing neural 

pathways for different stimuli. We describe below a 

highlight of results from the individual stimulus or motor 

maps and from comparing these maps. We first 

constructed left and right motor tuning maps by 

regressing whole-brain activity against fictive recordings 

of motor behaviors, from which turn direction can be 

reliably decoded (Dunn et al., 2016b)(Fig. 2a,b,c, Methods; 

see also Fig. S2g for left/right/forward maps). Despite the 

simplicity of the regression analysis (and limitations that 

we will discuss in the next section), these maps show a 

dense, lateralized and highly concerted neural population 

in the hindbrain (Fig. 2c), which is consistent with results 

from previous studies during spontaneous fictive 

swimming (Dunn et al., 2016b). A combined motor map 

incorporating results for multiple animals reveals well-

known motor-related anatomical landmarks with 

remarkable precision, including the RoV3, MiV1 and MiV2 

neurons (Fig. 2c, upper right inset) (Orger et al., 2008; 

Randlett et al., 2015).  

Next, we constructed sensory regressors (Fig. 2d, 

see Methods) and maps for each of the specific types of 

stimuli in this experiment, including phototactic (phT, Fig. 

2e), optomotor (OMR, Fig. 2f), looming (Fig. 2g), and 

dark-flash (Fig. 2h) stimuli. We first describe the results 

from the phototactic tuning maps, which show (left/right) 

symmetric/lateralized and anatomically dispersed activity 

in the midbrain optic tectum, as well as active 

populations in the cerebellum (Fig. 2e). The dominant 

responses to phT in the optic tectum come from the 

contralateral eye, which indicates that they respond to 

 

Figure 1. Whole-brain recordings of neuronal activity. (a) Schematic of experimental setup for fictive swimming combined with 

light-sheet imaging (see Methods). (b) Illustration of functional dataset format. Whole-brain volumes were imaged at ~2 

volumes/sec for ~50 min (2.11 ± 0.21 volumes/second; 6,800 ± 470 time frames, n = 18 fish). The activity traces of individual neurons 

were automatically extracted for 8.0×104 ± 1.6×104 cellular ROI’s per animal (n = 18). Scale bar, 50 µm. (c) Illustration of visual stimuli 

presented during functional imaging. Four stimulus paradigms from left to right: phototactic stimulus (phT), moving stripes 

(Optomotor response or OMR), expanding dot (looming or visual escape response), and dark flashes. (d) Example neuronal activity 

of single neuron ROI’s within an imaging plane in the tectal region in the midbrain. The stimulus (phototactic stimuli alternating with 

white background) is illustrated with a bar above the calcium traces, and the recorded fictive behavior is plotted at the bottom of 

the panel, with three plots indicating left turns, forward swims and right turns from top to bottom. (e) Image stacks were registered 

to the Z-brain reference brain atlas (Randlett et al., 2015) containing ~300 labels of anatomical regions. Scale bar, 50 µm. 
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the dark half of the stimulus. These OFF responses in the 

optic tectum are also ipsilateral to the activity in the 

hindbrain, which is more motor-related (Fig. 2c). In 

accordance with unilateral laser ablation experiments 

(Burgess et al., 2010), this suggests that the OFF pathway 

is also responsible for the lateralized anterior hindbrain 

activity. Indeed, regression maps based on individual 

components of the phototactic stimulus (bright whole-

field, bright half-field, and dark half-field/phototactic, Fig. 

S2h,i,j,k and Fig. 2e) further suggest that phototaxis 

behavior is more strongly driven by the dark half-field 

than the bright half-field component, because only the 

dark half-field/phototactic map contains neurons in the 

more caudal hindbrain that overlap with the motor 

tuning map.  

The moving stripes stimulus elicits strong and robust 

responses in the pretectum and anterior hindbrain, again 

consistent with previously reported data (Fig. 2f, see also 

Fig. S2d for OMR forward vs backward) (Naumann et al., 

2016). The looming stimulus evokes striking and 

bilaterally symmetric activity patterns in large areas of 

the hypothalamus, in stereotypical locations within the 

forebrain and diencephalon, as well as in the hindbrain 

(Fig. 2g). A comparison between the OMR and looming 

activity maps (Fig. 2f,g and Fig. S2l) shows that distinct 

areas of the anterior hindbrain are activated. In 

comparison, there is significantly more overlap between 

the maps for OMR and phototaxis (Fig. 2e,f, see also Fig. 

S2a). This suggests that sensory–motor processing 

pathways for OMR are more similar to phototaxis than 

escape responses. One caveat, however, is that while the 

OMR paradigm works robustly in tethered preparations, 

animals respond to looming stimuli much less frequently 

(see Fig. S2e,f for motor maps during OMR vs. looming), 

which may partially account for the distinct activity maps. 

The activity maps for dark and bright whole-field stimuli 

(Fig. 2h) are also bilaterally symmetrical and quite distinct 

from the other maps. Interestingly, most of the activation 

unique to the whole-field stimuli (i.e., not seen in the 

other 3 maps) is related to the bright stimulus and is 

located close to the midline in the midbrain area. This 

points to a specific region-of-interest for further analysis 

on the circuits involved in processing whole-field bright 

flashes. In summary, as a first-pass analysis in identifying 

neurons involved in sensorimotor transformations, the 

whole-brain stimulus and motor regression maps can 

already offer insights for distinguishing models and 

forming hypothesis for detailed analysis. 

Dissection of sensorimotor components based on 

trial-to-trial variations  

If the behavioral output were entirely independent 

of the stimulus input, then the separate stimulus/motor 

regression analyses above would provide an adequate 

description. However, for stimulus-evoked behaviors, 

there is generally a strong correlation between the 

stimulus and motor regressors. A simple regression 

analysis can therefore mix up stimulus and motor-related 

neuronal activity, limiting its effectiveness beyond 

identifying neurons with very high regression coefficients.  

To address this issue, we took advantage of the fact 

that the stimuli presented in our dataset are exactly 

periodic. Specifically, we expect the stimulus-driven 

component of motor activity to be approximately 

periodic (following the stimulus), and other independent 

motor activity to be spontaneous and aperiodic. The 

activity of each neuron can thus be decomposed into trial 

average (periodic) and residual (aperiodic) components, 

representing stimulus-driven and stimulus independent 

activity (Fig. 3a, columns). The trial average activity can 

be thought of as a generalization of stimulus regressors. 

Indeed, clusters of cells can be found with many types of 

periodic activity patterns (Fig. 3b), including but not 

limited to the simple regressors used previously in Fig. 2. 

By selecting cells based on the amplitude of the trial 

average, one can map generally the most stimulus-

responsive cells (as opposed to those exhibiting a 

particular stimulus pattern, as in Fig. 2) (Fig. 3c, see Fig. 

S3c for least stimulus-responsive cells). In this generalized 

sensory map, we find more cells broadly distributed in 

the optic tectum, forebrain, anterior hindbrain and 

cerebellum.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 27, 2018. ; https://doi.org/10.1101/289413doi: bioRxiv preprint 

https://doi.org/10.1101/289413


 

6 
 

 

Figure 2. Identification of sensory and motor related neurons. (a) Motor regression: motor regressors (for left, right turns, 

respectively) were constructed by convolving the processed fictive swimming traces with an impulse kernel. Brain activity from all 

cellular ROI’s is regressed against these regressors. The dF/F traces show the mean±SD for all ROI’s with r>0.5 for a single fish. (b) 

Distribution of regression coefficients for all cells in the example fish, as compared to data with shuffled time traces. (c) Left: 

anatomical map of all ROI’s with r>0.5 to either leftwards (red) or rightwards (cyan) motor regressors, from the same fish. Right: 

Average response maps across fish (n=16). Inset: activity in the proximity of the hindbrain spinal projection neurons that control 

turning (Orger et al., 2008), namely RoV3, MiV1 and MiV2 neurons; masks from Z-Brain Atlas. (d)  Stimulus regression, using 

phototactic stimulus as example. Fish were shown a periodic stimulus during imaging that consists of leftwards and rightwards 

phototactic stimuli separated by a whole-field bright background. The stimulus regressors (black) are constructed by convolving a 

binary step function with an impulse kernel of GCaMP6. The colored traces show the dF/F (mean±SD for all ROI’s with r>0.5) for the 

same example fish as in (a). (e, f, g, h) Average stimulus response maps for (e) phototactic stimuli (phT), (f) moving stripes 

(Optomotor response, or OMR), (g) expanding dots (looming or visual escape response), and (h) whole-field dark versus bright 

(dark-flash response). Scale bars, 50 µm. 
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Similarly, the motor outputs can also be decomposed 

into trial average and residual components, which 

represent stimulus-driven motor activity (motor avg.) and 

independent motor activity (motor res.) (Fig. 3d,e). To 

faithfully represent the relevant neural dynamics, we 

defined the motor outputs (left and right) as the activity 

of selected neurons that are most highly correlated to 

the fictive recordings (Methods; Fig. S3a,b). To explore 

the distinction between the two components of motor 

output, we plotted the regression coefficient of each cell 

to motor avg. and motor res. regressors in a two-

dimensional space (Fig. 3f, lower left, regressions to left-

side motor output for an example fish). We then plotted 

the anatomical locations of neurons that ranked highly 

(top 2%) in motor avg. only, motor res. only, or both (Fig 

3f, purple, green, and blue boxes, respectively). In this 

analysis, we found that constructing maps based on cell 

ranking, rather that absolute value of motor residual 

components, produced maps that are more robust when 

comparing across animals. The motor res. map (Fig. 3f, 

green box) is similar to the motor regression map shown 

in Fig. 2a, but contains neurons more exclusively in the 

hindbrain, consistent with the idea that selecting for the 

motor residual filters out motor activity that is driven by 

the stimulus. The motor avg. map (Fig. 3f, purple box) 

shows significant populations of neurons in the midbrain, 

which are highly consistent with anatomical regions 

(pretectum and nMLF) that are known to be central for 

the processing of these visual stimuli. The map also 

includes cells in the anterior hindbrain region (aHB), 

consistent with previous observations for OMR stimuli 

(Naumann et al., 2016). The intersection map (Fig. 3f, blue 

box) includes cells almost exclusively posterior to the 

rhombomere 2/3 boundary in the hindbrain. Compared to 

the motor res. map, cells here are more tightly clustered 

in the “hindbrain oscillator” (Ahrens et al., 2013; Wolf et 

al., 2017), also known as the “anterior rhombencephalic 

tuning region (ARTR)” (Dunn et al., 2016b), suggesting 

that this brain area may play an important role in the 

sensorimotor transformation (see also Fig. S5a,e).  

Our approach of dissecting motor activity into trial 

average and residual components can also be 

analogously applied along the laterization dimension 

between left and right motor outputs (Fig. S3e). 

Specifically, we extracted the average response across 

left and rightward stimulus presentations to form a 

bilateral component. Subtracting this bilateral 

component from the left and right motor outputs yields 

unilateral residual components. These unilateral motor 

outputs are more sensitively tuned to activity associated 

with turns in a particular direction, as opposed to 

forward swimming. Similar to the previous analysis, we 

produced tuning maps for cells ranking highly (top 2%) 

either in the bilateral (average) (Fig. 3g) component only, 

or the unilateral (residual) components only (Fig. 3h, see 

also Fig. S3f). These maps uncover more anatomical 

subtleties: the bilateral map features a tight pair of 

clusters in Rhombomere 5 near the MiD2 spinal 

projection neurons that to our knowledge has not been 

previously characterized, and the unilateral maps reveal a 

prominent pattern of contralateral correlations across 

the Rhombomere 2/3 boundary. 
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Figure 3. Dissection of sensory-motor components based on trial-to-trial variations. (a) Schematic illustration of sensory-motor 

decomposition of neuronal activity into periodic/aperiodic and motor/non-motor components. (b) Various functional clusters of cells 

with large periodic component for phototactic stimuli (cells selected for low variance across repetitions, curated k-means clusters 

from a single fish). Left: dF/F (mean±SD). (c) Average map of cells with most highly periodic activity. Cells are ranked by the variance 

explained by their periodic component. The top 2% of cells for each fish are selected, and the average from n=18 fish is shown. (d) 

Example decomposition of the motor output into periodic (motor avg.) and residual (motor res.) components. (e) Histogram of the 

fraction of variance explained by the periodic component of the motor output (n=17 fish, left and right motor outputs calculated 

separately). (f) Dissection of brain-wide trial-average and residual motor activity. Lower left panel: Scatter plot of regression 

coefficients for all cells with respect to motor avg. (y axis) and motor res. (x axis) regressors, for an example fish in relation to the 

left-side motor output. Top left, purple box: map showing cells ranking in the top 2% for motor avg. regression only. Bottom right, 

green box: map showing cells ranking in the top 2% for motor res. regression only. Top right, blue box: map showing cells ranking in 

the top 2% for both motor avg. and motor res. regressions. (g-h) Bilateral versus unilateral motor components. Analogously to 

subtracting the trial average from the full activity traces, here we obtain the frame-by-frame average of the left and right motor 

outputs (bilateral component) and calculate left-right residuals (unilateral components) for the left and right side, respectively (see  

Fig. S3e). (g) Cells ranking in the top 2% for bilateral regression only. Note the bilateral and dense cluster of cells at the red arrow 

locations in Rhombomere 5. (h) Cells ranking in the top 2% for unilateral regressions only. Dotted yellow lines: boundary between 

Rhombomeres 2 and 3. Scale bars, 50 µm. 
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Whole-brain functional clustering  

Although the sensorimotor system is central for 

understanding the functional organization of the brain, 

many neurons in the brain exhibit coherent activity that is 

not strongly correlated with either the visual stimuli or 

motor outputs. This should not be surprising, particularly 

because (1) we did not exhaust the sensory or behavioral 

repertoire of the animal, and our recorded motor 

correlates are restricted to swimming; (2) brain activity 

may be modulated by internal dynamics and brain states 

not directly related to stimuli or actions (Flavell et al., 

2013; Kawashima et al., 2016); and (3) the larval zebrafish 

brain is in a stage of rapid development in which young 

neurons are continuously incorporated into existing 

circuits (Boulanger-Weill et al., 2017). Thus, to generate a 

more comprehensive map of the functional organization 

of the larval zebrafish brain, we clustered neurons based 

on the correlations between their activities. This greatly 

reduces the dimensionality of the data without sacrificing 

biological interpretability (e.g. compare with spatial ICA 

in Fig. S4-1l-m).  

We devised an unsupervised density-based 

agglomerative clustering algorithm that groups neurons 

into functional clusters based on the functional activity 

alone (regardless of their anatomical location, see 

Methods and Fig. S4-1a; example clusters in Fig. 4a,b for 1 

example animal). The algorithm has a tunable threshold 

regulating how correlated the activity of cells within the 

same cluster should be (Methods). Cells that are not 

correlated to any cluster above this threshold remain 

unclustered. The value of the threshold affects the 

clustering as follows: as the threshold is increased, the 

activity of cells within clusters becomes more similar, and 

the clusters become more robust to a cross-validation 

test (Fig. S4-1d,e), but fewer cells are included in clusters, 

and the number of clusters is reduced. As the threshold is 

decreased, more cells are included in clusters, but some 

anatomically distinct clusters merge together into larger, 

more loosely associated groups of cells. For the ensuing 

analysis, we have empirically chosen a threshold (0.7) 

that balances this tradeoff.  With this criterion, each fish 

contains ~100-150 functional clusters, and each major 

brain area contains at least a few clusters (Fig. 4b). We 

find that the number of cells included in each cluster 

spans three orders of magnitude (Fig. 4d). Note that this 

size heterogeneity is not an artifact of poorly defined 

clusters, as the activity within each cluster is highly 

concerted (Fig. 4e; examples in Fig. 4a). 

We also examined the anatomical structure of these 

functionally identified clusters. Since the clustering uses 

no anatomical knowledge as input, emergent anatomical 

patterns in the clusters can reveal underlying 

organizational relationships between structure and 

function within the brain. Interestingly, most clusters are 

anatomically compact (Fig. 4f and Fig. S4-1c), suggesting 

that functionally related neurons are often organized into 

small brain nuclei (Fig. 4h). However, the spatial extent 

of clusters varies significantly (Fig. 4f tail), including 

prominent examples of spatially dispersed clusters that 

are spatially intermingled with other clusters (Fig. 4g). 

Many of the clusters exhibit substantial correlations 

with other clusters (Fig. 4i, correlation matrix across 

clusters). To capture the complex relationship between 

clusters, we also performed hierarchical ordering of the 

cluster centers (Fig. S4-1b,f). The blocks or branches of 

this hierarchy reveals additional functional organization 

on multiple broader scales (Fig. 4i, red block corresponds 

to the putative olfactory bulb neurons, see Fig. S4-2f). 

Similar to the analyses performed in Figs. 2 and 3, we 

situated clusters in sensory and motor dimensions by 

ranking them based on stimulus or behavior-related 

components (Fig. 4j,k). Regions that are most tuned to 

stimulus and motor are consistent with the cellular 

activity maps shown previously (Fig. 2c and Fig. 3f). 

However, these cluster-based maps also highlight 

clusters (for example in the forebrain) that lie on the 

lower end of both the stimulus and motor ranking maps, 

demonstrating coherent activity patterns that are not 

tied to either stimulus or motor. 

One might expect that many clusters would appear 

in similar anatomical locations across different individual 

animals. However, it is also possible that some functional 

clusters appear at different locations in different animals. 

To investigate this, we screened for clusters that have a 

similar anatomical counterpart in several individual fish. 

About half of all clusters are anatomically conserved 

according to our criteria (Fig. S4-1h; see Methods and Fig. 
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S4-1g for criteria). A population-averaged map of these 

anatomically conserved clusters (Fig. 4l) highlights the 

anterior hindbrain and ventral forebrain, among other 

regions, while clusters such as those in the optic tectum 

are absent, consistent with previous observations that 

stereotypy in the tectum is low (Portugues et al., 2014; 

Randlett et al., 2015).  

Unsupervised clustering faces the challenge of the 

lack of ground truth for validating the derived clustering 

structure. To address this, we first visualized our 

clustering result independently using an unsupervised 

data visualization method, t-SNE (i.e. the location of the 

neurons in the t-SNE plot are not informed by the 

clustering results) (Van Der Maaten and Hinton, 2008).  

The functional clusters are represented as isolated islands 

in the periphery of the t-SNE plot (colored dots), while 

unclustered cells (i.e., with noisy or idiosyncratic activity 

below the density threshold) congregate in the center 

(grey dots) (Fig. 4c). This suggests that our clustering 

results and the choice of clustering threshold are 

generally appropriate.  

To more systematically evaluate the clustering 

results, we performed a cross-validation analysis that 

compares clusters obtained using one half of the time-

series data versus the other half. We find that 76% of 

clusters are reliably obtained from both halves of the 

time-series data (Fig. 4m, top left; Methods and Fig. S4-

1e,n). A similar cross-validation method can be applied to 

investigate how cluster relationships vary across stimulus 

types (Fig. 4m, see also Fig. S4-1j,k). We find that at least 

35% of cluster assignments are retained across different 

stimuli, compared with 60-75% cross-validation within a 

single stimulus condition. Clusters obtained from the 

looming stimulus are the most distinct from other stimuli, 

which is consistent with the earlier observations from 

regression analysis (Fig. 2e-h). Interestingly, clusters 

identified from the spontaneous period (featureless 

environment) match significantly (≥50%) with clusters 

obtained from phototactic stimuli, moving stripes (OMR) 

or dark flashes conditions. These cross-validation results 

suggest that the organization of functional clusters can 

be variable and context-dependent.  

The regression and clustering approaches can be 

flexibly and interactively combined with anatomical 

knowledge to identify and investigate neural circuits (Fig. 

S4-2a). We found a rich variety of circuits, some of which 

span large distances across the brain, thanks to the 

whole-brain coverage of our data. We have included a 

few example circuits to demonstrate the effectiveness of 

this integrated approach (see Supplemental Text 

accompanying Fig. S4-2), including a jaw and gill 

movement control circuit (Fig. S4-2b), mesencephalic 

locomotion-related region (Fig. S4-2c), the raphe nucleus 

and the vagus cranial system (Fig. S4-2d,e), the olfactory 

bulb (Fig. S4-2f) , and a putative eye movement control 

circuit that we describe in detail below. 

 Abducens nucleus / eye movement control. Previous 

studies (Miri et al., 2011a, 2011b; Portugues et al., 2014) 

have located eye-movement related neurons in the 

hindbrain by correlating neural activity to eye-tracking 

data, but clear consensus is lacking about the precise 

location of this neuronal population in zebrafish. 

Although we did not have behavioral recordings of eye 

position, we could nonetheless identify clusters 

exhibiting functional and anatomical features that 

suggest these clusters are related to eye-movement 

control. Two pairs of anatomically compact clusters in the 

ventral hindbrain in rhombomeres 5 and 6 consistently 

appear in the whole-brain clustering for most fish, and 

can be manually identified in all fish by clustering neurons 

in the corresponding locations (Fig. 4n, arrows with tails; 

most caudal cluster corresponds to Z-Brain mask 

“6.7FDhcrtR-Gal4 Cluster 3”). The cells in these clusters 

stand out because their activity traces are highly 

correlated to each other (many correlations exceed 0.8, 

see Fig. S4-1o), but not significantly correlated to either 

the stimulus or the fictive swimming behavior (Fig. 4r). 

The anatomy of these clusters closely matches that of the 

abducens nucleus (ABD) characterized in goldfish, which 

consist of motor neurons (arranged in two nuclei in 

rhombomeres 5 and 6) that are electrically coupled by 

gap junctions (Cabrera et al., 1992; Gestrin and Sterling, 

1977). Indeed, the high correlations we observe within 

these clusters may be caused by gap junction 

connections. 
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Figure 4. Whole-brain functional clustering. (a) A diverse collection of automatically identified functional clusters from one example 

fish. After whole-brain clustering, the most dissimilar clusters were selected based on their hierarchical ranking. Each color represents 

one cluster. a1: functional activity profiles: normalized ΔF/F for each cell is plotted along the horizontal axis. a2: corresponding 

anatomical map. (b) Full set of individual clusters as z-projections (from the same fish), in groups of 6 per projection (for 

distinguishable color assignments). (c) Visualization of all clusters within one fish with t-SNE. For color assignment, the total of 139 

clusters (6,499 cells) were ordered by hierarchical clustering, and adjacent shades of hsv colors are assigned based on the resulting 

leaf order. Gray points represent cells that did not pass the clustering criterion i.e. not assigned to any cluster (1:10 down-sampled for 

clarity). (d) Histogram of size distribution of all clusters, pooled across fish (mean±SEM). (e) Histogram of average correlation between 

cells within clusters, pooled across fish (mean±SEM). (f) Histogram of average within-cluster anatomical distance, pooled across fish 

(mean±SEM). (g) Examples of anatomically dispersed clusters that are difficult to identify based on anatomical location, as they are 

intermixed with other clusters. (h) Examples of clusters that anatomically isolated. (i) Correlation matrix of all clusters from a single 

fish, ordered so that most similar clusters are adjacent. Submatrix indicated by red bar are putative olfactory bulb neurons (see Fig. S4-
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We then screened for putatively eye-movement 

related neurons by regressing to the cluster center of the 

ABD clusters (Fig. 4n). This analysis is analogous to Fig. 2c, 

except here the ABD activity is used as a proxy for motor 

output (i.e. eye movements). This revealed an additional 

pair of small clusters near the anterior border of the 

hindbrain that are tightly correlated to contralateral ABD 

clusters, which we identified as the oculomotor nuclei 

(OCM) based on anatomical labels in the Z-brain atlas (Fig. 

4n, arrowheads). In the goldfish, two groups of 

interneurons that are located in close proximity to the 

ABD nucleus project contralaterally to the OCM; thus 

close functional relationships between the ABD nuclei 

and contralateral OCM clusters are expected (Cabrera et 

al., 1992; Gestrin and Sterling, 1977). To characterize the 

sensory-motor organization of this circuit in more detail, 

we mapped the anatomical locations of highly motor 

(ABD) related cells, colored according to their functional 

activity in a sensory-motor space (Fig. 4p, amplitude of 

periodic component vs regression coefficient with left 

motor res., Fig. 4q, anatomical map, see Fig. S4-2g for 

corresponding figures for right motor res.). The two 

putative ABD clusters in the ventral hindbrain 

(rhombomeres 5 and 6) appear to have a core/shell 

anatomical structure: cells on the dorsal and anterior 

edges of the clusters are less motor correlated and more 

similar in activity to the OCM clusters. We also observed 

neurons in the more dorsal sections of the hindbrain with 

reduced motor correlation and enhanced sensory 

components. We speculate that these neurons could be 

responsible for the integration of sensory inputs for eye-

movement control. Based on this observation and studies 

of the circuit controlling eye-movement in the literature, 

we propose a diagram of eye-movement circuit with 

components consisting of the populations of neurons 

identified above (Fig. 4o). Using a combination of 

regression and clustering analyses on whole-brain activity 

data, we have been able to postulate a connectivity 

diagram for a circuit for which we have neither the motor 

output (eye-tracking) nor a robust stimulus drive (stimuli 

used here do not strongly drive eye-movement). This 

demonstrates the power of the whole-brain data and in-

depth analysis for generating circuit hypotheses that 

invite detailed follow-up studies. 

Multi-stimulus convergence 

In general, distinct sensorimotor pathways that 

culminate in the same behavioral output are expected to 

converge to a common motor pathway. In our 

experiments, different visual paradigms eventually 

converge at the motor system to generate swimming 

behavior (i.e. left and right turns). Here we asked where 

the first site of convergence between the phototaxis 

(phT) and ocular-motor response (OMR) sensorimotor 

pathways is located, defining convergent activity as 

scoring highly in regression to both phT and OMR stimuli 

that drive left turns, and likewise for right turns. A map of 

highly convergent cells (top 3%, Fig. 5a, see also Fig. 2e,f 

and Fig. S5b) reveals well-defined groups of neurons in 

the anterior hindbrain, specifically in Rhombomere 1 and 

2f). (j) Clusters for an example fish ranked from stimulus-related (periodic, as in Fig. 3c, red) to not stimulus locked (aperiodic, purple). 

(k) Clusters for an example fish ranked from motor-related (high regression coefficient to motor res., as in Fig. 3f, red) to not motor-

related (low regression coefficient, purple). (l) Average map of clusters conserved in anatomical space. Each of these clusters are 

selected for having anatomically corresponding clusters in at least 6 other fish (out of the 18 fish assessed, see Methods). Clusters are 

ranked and colored within fish as in (k). (m) Two-fold cross-validation (as in Fig. S4-1e) between multiple sets of stimuli within each fish 

(n = 6 fish), with scores indicating the fraction of cells in matched clusters over the total number of cells. Each fish in the analysis has 

been presented with all 5 different stimuli. The “all” category uses the combined data from all 5 stimulus periods. Color coding is the 

same as number labels. Scale bars, 50 µm. (n) Putative abducens nucleus (ABD) network for the control of eye-movements. Arrows: 

anterior and posterior clusters of the ABD map to Rhombomeres 5 and 6, respectively. Arrowheads: oculomotor nucleus (OCM) 

clusters. (o) Illustration of the proposed eye-control circuit. Red/blue indicates control of rightward/leftward eye movement. (p-q) 

Two-dimensional sensory-motor mapping as in Figure 3f, except using the average response of the abducens nucleus (curated ROI) as 

eye-movement regressors (instead of the tail-movement motor output). (p) Analysis of the sensory and motor activity of one example 

fish. Horizontal axis: stimulus component (square root of variance explained by periodic component of activity); vertical axis: motor 

component (regression coefficient with left motor res., as in Fig. 3d); Top 1000 motor ranked cells are plotted in colors, corresponding 

to (q). (q) Anatomical map of cells shown in (p). See Fig. S4-2g for corresponding figures for right motor res. (r) Putative eye-

movement traces, extracted from averaging the neural activity of highly concerted functional clusters representing the ABD nucleus. 

Red/blue: left/right. 
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the medial area of Rhombomere 2. This anatomical 

region is composed of several clusters with distinct 

functional activity, as revealed by whole-brain clustering 

(Fig. S5e). Interestingly, these clusters form 

medial/lateral stripes that may correspond to the 

neurotransmitter stripes in the ARTR (see also Fig. S5a) 

(Dunn et al., 2016b).  

With two types of stimuli, there are several types of 

responses we might expect to see, including cells 

corresponding to phT-only, OMR-only, both phT and 

OMR, and motor (Fig. 5b, Fig. S5h,i). It is also in principle 

possible for cells to respond to incongruent stimuli pairs, 

i.e. phT-left and OMR-right, or phT-right and OMR-left. 

Indeed, using regression, cells can be found that respond 

to both congruent (convergence cells) and incongruent 

stimuli pairs. However, the number of congruent cells is 

much greater than incongruent (Fig. 5c) and congruent 

cells are most numerous in the anterior hindbrain (Fig. 5d, 

Fig. S5c,d,g). Since the distinction between congruent 

and incongruent stimuli is defined by motor output, 

these observations suggest that the convergent activity 

in the anterior hindbrain plays an important role in the 

sensorimotor transformation.  

Because the behavioral response is similar for 

congruent phT and OMR stimuli, motor-related activity 

will by definition be somewhat convergent. However, 

motor-related activity is conceptually distinct from 

sensory convergent activity, which we define as being 

tuned primarily to congruent stimuli and not directly 

related to motor output. Thus, cells labeled as 

convergent (Fig. 5a) can be either sensory convergent or 

motor-related. The distinction between sensory 

convergent and motor-related activity can be understood 

via two competing circuit models. In a direct motor 

convergence model, sensory activity for phT and OMR 

converge directly on motor-related cell clusters (Fig. 5g, 

left). In a sensory convergence model, sensory activity 

first converges in sensory convergence clusters, which in 

turn activate the motor-related clusters (Fig. 5g, right).  

To distinguish the two models, we leveraged analysis 

of trial-to-trial variations (used similarly in Fig. 3). We 

would expect sensory convergent cells to exhibit 

concerted periodic activity during the presentation of 

both phT and OMR stimuli and lack aperiodic, motor-

related activity. Conversely, we expect motor-related 

cells exhibit aperiodic motor-related activity and lack 

periodic activity. To differentiate these two types of 

responses, we plotted cell activity of convergent sensory 

cells (top 5% for both regressions, similar to Fig. 5a) in a 

two dimensional sensory-motor space (Fig. 5e, red points) 

where the y axis quantifies sensory-related periodic 

activity and the x axis quantifies aperiodic motor activity 

(see legend for details). To facilitate comparisons, we 

also plotted all neurons (gray points), and highlighted the 

most sensory (blue points) and most motor (green points) 

cells, each matched in number to the convergent cells 

(red). Among the convergent cells, we observe strongly 

sensory convergent cells (Fig. 5e,f, orange dot and trace) 

and strongly motor-related cells (Fig. 5e,f, purple dot and 

trace), as well as cells intermediate between the two (Fig. 

5e,f, cyan dot and trace). The distribution of sensory 

convergent, intermediate, and motor-related cells is 

evident from the sensory-motor scatter plot (Fig. 5e, see 

also corresponding histograms top and right), with 

sensory convergent cells occupying the top left part of 

the plot, motor-related on the right, and intermediate 

cells in between. The distribution of cells in this sensory-

motor space varies somewhat across different fish and 

turning directions (see Fig. S5l for corresponding right-

turn activity), but in all fish a significant portion of 

sensory convergent cells overlap strongly with the most 

sensory cells (Fig. S5j,k).  

We also examined the anatomical distribution of 

convergent cells (Fig. 5h, left, multifish average), and 

compared them to the anatomical distribution of the 

most sensory-related cells and most motor-related cells 

(out of all cells) (Fig. 5h, middle; cells selected as in Fig. 

5e). There is considerable overlap between convergent 

cells and sensory-related cells in rhombomeres 1 and 2 in 

the hindbrain (Fig. 5h, right, purple cells), and much less 

overlap between convergent cells and motor-related cells 

in the more posterior hindbrain (rhombomeres 3 and 

higher). These maps are consistent with the hypothesis 

that there exists a population of sensory convergence 

cells that reside in the anterior hindbrain, while motor-

related cells tend to be located in more posterior 

segments. A similar analysis for a different pair of stimuli, 

namely OMR and looming, also identifies sensory 
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convergence populations (purple) in similar areas of the 

anterior hindbrain (Fig. 5i, arrows), but restricted to more 

lateral locations compared to the phT/OMR sensory 

convergence cells.  

We hypothesize that the existence of a significant 

population of sensory convergence neurons is an 

important step in the generalized sensorimotor 

transformation. The identification of such a population 

disproves the direct motor convergence model (Fig. 5g, 

left), and supports a sensory convergence model (Fig. 5g, 

right). The anatomical location of the sensory 

convergence cells, bordering both the midbrain (where 

neurons processing visual features reside) and motor 

nuclei such as the ARTR, makes it convenient to form 

synaptic connections with both. While additional 

experiments will be required to understand in more detail 

the role played by this sensory convergence area, our 

whole-brain imaging experiments have constrained 

possible circuit models and can precisely guide future 

investigations. 
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Figure 5. Multi-stimulus integration. (a) Average map across fish for the intersection of phototactic responsive cells and OMR 

responsive cells. Multi-stimulus responsive cells are concentrated in Rh.1 and the medial stripes of Rh.2. (b) Whole-brain regressions 

are performed to a set of regressors that include phT only, OMR only, phT&OMR joint (including congruent and incongruent), and 

motor output regressors. Cells that have a correlation coefficient >0.4 to at least one of these regressors are classified by their best 

regressor. Average functional activity of cells associated with each regressor is plotted (dF/F, mean±SD). (c) Quantification of the 

number of cells with activity classified as congruent or incongruent (n = 18 fish). Congruently tuned cells significantly outnumber 
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incongruently tuned cells. (d) Quantification of the number of convergent cells (normalized as fraction of total cells) for midbrain, 

hindbrain Rh1&2, and hindbrainRh3+ regions. Anterior hindbrain Rh1,2 contains the largest fraction of convergent cells. (e) Scatter 

plot of convergent activity in a 2-dimensional sensory-motor space. Each point represents a cell. Horizontal axis; motor component: 

regression coefficient of cellular activity with left motor res. (see Fig. 3d). The maximum value from phT or OMR blocks is plotted. 

Vertical axis: sensory component: square root of the variance explained by periodic component of activity. The minimum value from 

phT or OMR blocks is plotted. Red points: convergent cells, defined as the intersection of the top 5% of cells ranked by phT and OMR 

regression (as in Fig. 5a, but with 5% threshold). Blue points: top cells ranked by sensory component (same number of points as red). 

Green points: top cells ranked by motor component (same number of cells as red). Top and right: histograms of motor and sensory 

components, comparing distribution of convergent cells (red) to the most motor or sensory-related cells, respectively.  (f) Cellular 

activity for 3 example neurons shown in (e) during phT and OMR stimulus blocks. (g) Illustration of two alternative hypotheses for 

multi-sensory integration. Left: information from non-overlapping visual representations (e.g. phT, OMR) directly feeds into 

premotor systems, which then compete to produce different behaviors. Right: different visual representations first feed into a 

behavior-centric visual representation before affecting motor circuits. The present results support the second model, with the 

anterior hindbrain containing the behavior-centric, convergent visual representations. (h) Average anatomical maps (n = 11 fish) 

showing location of the cells represented in (e): top-ranking convergent cells (left map, red), sensory-related cells (middle map, blue) 

and motor-related cells (middle map, green), and merge (right map, overlap between sensory-related and convergent appears 

purple. Note significant overlap in the anterior hindbrain. Boundaries for Rhombomeres 1,2, and 3 are overlaid. Scale bars, 50 µm. (i) 

Same as (h), but for convergence between OMR and looming stimuli. 

 

 

Discussion 

In this study, we generated a multi-animal, whole-

brain, cellular-resolution dataset incorporating multiple 

stimulus paradigms and developed extensive analyses 

aimed at understanding the functional organization of 

the larval zebrafish brain. We mapped out the sensory 

and motor components of brain-wide brain activity and 

dissected the neural correlates of behavior in detail. To 

further extend the analysis beyond sensory and motor-

related neural dynamics, we developed a customized 

functional clustering method to reveal a comprehensive 

collection of representative neural activity profiles. Using 

a combination of analysis techniques, we identified and 

examined a circuit putatively involved in eye-movement 

control. Lastly, we identified anatomically well-structured 

functional groups in the anterior hindbrain that 

generalize stimuli that elicit similar turning responses.  

We started out with a relatively straight-forward 

regression analysis identifying cells tuned to specific 

stimuli or motor output (Fig. 2). We found that there is a 

relatively large and dense population of motor-related 

neurons in the hindbrain that also exhibit highly 

concerted activity, which may be somewhat redundant 

from the view-point of coding capacity. Interestingly, the 

hindbrain segments containing the most concerted 

activity occupy the same Rhombomere sections as the 

mammalian pons, and contain many homologous nuclei 

(Kandel et al., 2013). We speculate that evolutionarily 

older brain areas may generally rely on more concerted 

activity. Alternatively, highly concerted activity may also 

be a feature of a developmentally young brain, and 

motor activity may differentiate further in adult fish to 

allow for more nuanced motor control. 

Having identified cells related to sensory stimuli and 

motor outputs, we then sought to understand the 

sensorimotor transformation in more detail. The 

conceptual framework of the sensorimotor 

transformation is easy to oversimplify. Intuitively, it is 

tempting to think of the sensorimotor transformation as 

a one-dimensional axis in which the sensory input 

gradually morphs into motor output. However, in this 

framework, sensory and motor-related activity cannot be 

distinguished, because a motor neuron that is driven 

strongly by stimulus would be highly correlated to 

stimulus regressors as well. This one-dimensional model 

also fails to account for variability in the behavior (i.e. 

motor signals that occur unrelated to the stimulus). 

Motor variability thus plays a key role in expanding the 

sensorimotor framework (Renart and Machens, 2014). In 

our analysis, we extracted the trial-to-trial variation of the 

motor output to differentiate “purely motor” activity 

from sensory-related or sensory-driven components. We 

plotted anatomical tuning maps for the separate trial-

average and residual motor components (Fig. 3f), and 

found that cells related to motor variability are broadly 

distributed in the hindbrain exclusively posterior to the 

Rhombomere 2/3 boundary (Fig 3f, lower right). 
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Interestingly, the distribution of cells related to motor 

variability was largely overlapping with the distribution of 

all motor-related cells (Fig. 2c), and we did not observe 

any particular anatomical location exclusively correlated 

to motor variability. This suggests that motor variability 

does not come from a particular anatomical nucleus, but 

may instead depend on many contributing factors, such 

as neuromodulatory systems or internal states. It is also 

possible that behavioral variability originates as small 

perturbations that are amplified by the motor systems.  

We identified cells whose activity is highly correlated 

to both trial-average and residual motor activity, 

postulating that they play a key role in the sensorimotor 

transformation (Fig. 3f, upper right). However, a caveat is 

that correlation-based analysis cannot distinguish 

feedforward versus feedback motor-related activities. 

Determining the directionality of functional connections 

would probably require controlled perturbation 

experiments, although specialized computational analysis 

paired with high-framerate neural activity recordings may 

also be productive. One promising target for future 

studies would be to relate the functional relations within 

and between clusters to a systematic dataset of 

anatomical connectivity in zebrafish (Hildebrand et al., 

2017). 

It is important to note that the fast, near-

simultaneous nature of light-sheet imaging is crucial to 

our ability to dissect independent sensory and motor 

residual components. The residual (non-trial-average) 

activity of cells can only meaningfully be compared if 

activity of all cells is recorded nearly simultaneously, 

which requires the fast frame rates (~2-3 volumes/sec) 

characteristic of light-sheet data. Near-simultaneous data 

collection is also essential for the functional clustering 

analysis, which allowed us to identify concerted activity 

that is not strongly correlated to either sensory or motor 

events and requires concurrent observations of neuron 

groups in faraway brain regions.  

Our clustering algorithm is a variation of 

agglomerative clustering with additional specific features 

tailored to our data (see Methods) that endow our 

algorithm with robustness to noise and high 

computational efficiency; whole-brain single-cell 

resolution data (~100,000 cells, ~5000 time frames) can 

be efficiently clustered on a standard desktop computer 

on the timescale of minutes. The algorithm is sensitive 

enough to detect even very weak functional clustering 

patterns in the data, including artefactual signals 

resulting from the scanning laser itself (Fig. S4-1i, these 

artefactual clusters were thereafter excluded from 

analysis).  

In addition to identifying specific clusters, whole-

brain automatic clustering analysis reveals three broad 

characteristics of the functional organization of the larval 

zebrafish brain.  First, a significant percentage of neurons 

do not correlate strongly to any clusters (the unclustered 

neurons in Fig. 4c, see also Fig. S4e for varying 

correlation threshold), as has also been observed in other 

neural systems (Okun et al., 2015). Many of these 

functionally isolated neurons may be still be 

developmentally immature (Boulanger-Weill et al., 2017), 

as they are especially common in areas where young 

neurons are added to the rapidly developing brain (see 

Fig. S3c). Others may be computationally important 

despite remaining unidentified by clustering, and 

understanding their functional roles may require more 

complex analysis or perturbation experiments. Second, 

functional activity among different clusters varies 

gradually, and most clusters exhibit significant 

correlations with other clusters (Fig. 4i). Moreover, most 

characteristics of the clustering, including number of 

clusters, cross-validation score, and total number of cells 

included in clusters vary continuously with the clustering 

threshold (Fig. S4-1d).  This suggests that the functional 

relationship between clusters depends on the chosen 

correlation scale, and that there is no clear correlation 

scale where brain-wide organization is most evident. As a 

result, the relationships between functional clusters are 

complex and likely best described hierarchically (Fig. S4-

1f). Third, the extent to which functional clusters are 

anatomically conserved varies across the brain (Fig. S4-

1h); this is consistent with previous observations of the 

positioning of transgenic labels (Randlett et al., 2015). It 

still remains to be determined what factors are 

responsible for this observed stereotypy/variability of the 

functional organization. An intriguing hypothesis is that 

some, but not all, regions of the brain are self-organized 
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through experience-dependent plasticity, which may lead 

to across-animal variability on smaller anatomical scales.  

Starting with the experimental design incorporating 

different visual stimuli, we set out to understand in more 

detail how sensory representations converge before 

motor output. The overlap of different stimulus tuning 

maps (Fig. 2e-h) in the anterior hindbrain reveals that this 

area is generally important for sensory processing, and 

the concentration of convergent congruent activity in the 

same area (and relative lack of incongruent tuning) 

makes it a candidate circuit for informing behavior based 

on diverse sensory input. The distinction between the 

observed convergent sensory representation and more 

motor-related representations indicates that sensory 

convergence is at least a two-step process – first sensory 

convergence, then motor output (Fig. 5g, right model as 

opposed to left). However, it is important to realize that 

cellular responses form a continuum (Fig. 5e), and there 

exists a gradient between the purely sensory and and 

purely motor-related clusters in the hindbrain. The 

sensory convergent cells contain an abstraction of the 

stimulus, encoding “right-turn-eliciting stimuli” or “left-

turn-eliciting stimuli”, even in cases where the matching 

motor output is absent. This generalization of congruent 

sensory stimuli before the motor output ultimately may 

allow for a much more flexible and complex 

sensorimotor transformation.  

Based on our observations that sensory convergent 

cells are tuned to different congruent stimuli, it is 

reasonable to hypothesize that these cells may also 

integrate multiple simultaneously presented stimuli. In 

this context, the activity of the sensory convergent cells 

may encode the overall influence of the stimuli on the 

motor output. In cases where competing incongruent 

sensory stimuli are presented, such a role could be 

important for a type of decision-making. While our results 

based on serially presented stimuli do not directly 

address this hypothesis, they nevertheless suggest that 

the sensory convergent cells in the aHB may be a hub for 

decision-making computations. 

We have shown that in-depth explorations of 

functional whole-brain activity data can generate strong 

hypotheses about sensorimotor processing and the 

broader functional organization of the brain. The 

analytical methods presented here are also more 

generally applicable to other large-scale, high-resolution 

functional datasets. We have made our software 

platform and data openly available to facilitate further 

analysis and adaptation of this platform for other 

experimental studies. The analysis of the functional 

organization in brain-wide circuits is complementary to 

techniques of optical manipulation, electrophysiology, 

viral tracing, and connectomics, and in combination with 

these techniques, offers the potential to promote our 

mechanistic understanding of brain-wide circuits.  
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STAR Methods Text 

Contact for Reagent and Resource Sharing 

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead 

Contact, Xiuye Chen (xiuyechen@gmail.com).  

Experimental Model and Subject Details 

Transgenic zebrafish, panneuronally expressing calcium indicator GCaMP6 under the elavl3 promoter and nucleus-

targeted as Tg(elavl3:H2B-GCaMP6f), was used for imaging (Vladimirov et al., 2014). Zebrafish larvae (5 dpf – 7 dpf), were 

paralyzed with 1mg/ml alpha-bungarotoxin (Sigma-Aldrich), and embedded with 2% low melting point agarose. All 

experiments presented in this study were conducted in accordance with the animal research guidelines from the 

National Institutes of Health and were approved by the Institutional Animal Care and Use Committee and Institutional 

Biosafety Committee of Janelia Research Campus. 

Method Details 

Light-sheet imaging 

Light-sheet imaging experiments were performed with an experimental setup previously described (Vladimirov et al., 

2014), which achieves almost whole-brain imaging with concurrent presentation of visual stimuli and electrical 

recordings of fictive swimming. The imaging rate was about 2 brain volumes/s (2.11 ± 0.26 Hz), with the variability due to 

differences in the size of the brain for different animals (mainly because of the thickness difference). Each experiment 

lasted between 30 and 120 min. 

 

Cell detection 

After imaging acquisition, the time series of each plane was registered by custom-written C/CUDA software for the XY 

plane translation. Z-drift was corrected by first comparing patches of images with the nearby planes from the first 2 min 

of the recording, and then calculated by linear fitting the distance across the Z-planes. Only the parts of experiment 

when the XY- or Z-drift smaller than 1 um was used for further analysis.  

 Cells were detected from the time-averaged image. In the Tg(elavl3:H2B-GCaMP6f) line, calcium indicator was mainly 

localized in the nucleus and forms a bright disk on each plane, a property that facilitates neuron detection. First, GCaMP 

expression area was extracted by binary thresholding based on pixel intensity and local contrast. Second, each pixel 

was normalized locally by assigning a relative rank of intensity within a disk patch (radius = 4 µm), then further 

smoothed by a circular patch with radius of 1.6 µm. The center of a cell body was identified as being a local maximum 

point, and the calcium trace for the cell was calculated as the average over circular patch with radius 2.8 µm 

(Kawashima et al., 2016).  

 

Fictive behavior recording 

The fictive behavior setup has been previously described (Dunn et al., 2016b). Two suction glass pipettes (~45 µm inner 

diameter) were attached on the skin from each side of the tail. Gentle suction was applied to help the electrical contact 

with the motor neuron axons. These electrodes record spiking from multiple motor neuron axons, providing readout of 

intended locomotion (Ahrens et al., 2012; Dunn et al., 2016b; Masino and Fetcho, 2005). Extracellular signals were 

amplified (Molecular Devices, Axon Multiclamp 700B), fed into a computer using a National Instruments data 

acquisition card, and recorded by custom written C# software. The fictive swim bouts were first detected as previously 

described (Ahrens et al., 2012, 2013), then used to decode fictive turns (Dunn et al., 2016b). The extracellular signal from 

left and right side of the tail were recorded from two independent channels of the amplifier. The fictive swim signals 
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were calculated as the smoothed power of the deviation from baseline. Individual swim bouts were detected 

automatically, and then a weighted average swim bout amplitude was used to normalize and balance the signal from 

left and right channel. Each swim bout was weighted by a normalized rising exponential function, to take into account 

the fact that turns affect the start of swim bouts more heavily than the end of swim bouts. For the same reason, to 

determine the fictive turn amplitude and distance, filtered and normalized fictive signals during swim bouts were 

weighted with a decaying exponential function (tau = [bout duration]/3) to emphasize the initial burst that determines 

overall turn direction. Then the turn amplitude was calculated by the difference of weighted power divided by the sum 

of the weighted power from both sides: (PowerLeft  - PowerRight ) / (PowerLeft  + PowerRight).  The sum of the weighted 

power was used to measure the swim distance.  

 

Visual stimulation 

Visual stimulation patterns were generated by custom-written C# software, delivered by a projector with homogenous 

red light, and projected to a diffuser that was stuck to the bottom of the imaging chamber. The visual stimulation 

consisted of serial repetitions of different sets of patterns: For phototaxis, two patterns were presented: Left-Dark / 

Right-Bright, and Left-Bright / Right-Dark. After each pattern a period of whole field dark was presented. The dark area 

slightly crossed the midline in order to motivate the fish to swim towards the bright side. For moving grating 

stimulation, three or four directional drifting gratings were presented: forward, backward, left-ward, and right-ward. 

Forward and backward gratings moved along the body axis towards the head or the tail direction. Left- and right-ward 

gratings were oriented 120 degrees away from the head direction, either to the left or the right side. Grating speeds 

were as follows: Leftwards, rightwards, backwards: 0.4mm/sec. 6 degree/sec. Forwards: 1 mm/sec, 15 degree/sec. For 

spontaneous stimulation, the whole field was dark and no other visual feature was presented.   For dark flash 

stimulation, whole field dark and whole field light were presented alternatingly for 20 sec each. For looming stimulation, 

a bright background was presented, and a dot was expanded on either left or right side of the fish. Expansion lasted for 

5 seconds, and was followed by 25 seconds of whole field bright. 

 

Image Registration 

Nonrigid image registration was done with CMTK (http://www.nitrc.org/projects/cmtk/), similar to registration done for 

the Z-Brain atlas (Randlett et al. 2015). Additionally, one “bridge brain” was created by imaging the same fish both with 

the light-sheet microscope (used for the functional dataset in this study) and a confocal microscope (used for the 

creation of the Z-Brain atlas). Functional light-sheet datasets were first registered to the bridge brain, and the 

transformations from light-sheet to confocal for this bridge brain were subsequently applied to complete the 

registration. To obtain the anatomical location of individual cell-ROI’s in the transformed coordinates, we used the 

CMTK built-in command “streamxform”.  

 

MATLAB GUI 

A graphical user interface (GUI) was written in MATLAB® for interactive data visualization and analysis. For each fish, 

the functional data loaded consisted of one calcium trace per each segmented cell, calculated as change in fluorescence 

(ΔF/F). Also loaded were the annotated stimuli, fictive behavior, anatomical location of segmented cells (both raw and 

registered), anatomy stacks, and annotated Z-Brain masks. The GUI integrates most analyses used in this study, 

including but not limited to manual cluster selection, selection based on anatomy, set operations, regression methods, 

unsupervised clustering methods, storage of clusters, integration with the Z-Brain atlas, and various visualization and 

export options. The software was written and tested with MATLAB 2016a and running on Windows 7.  
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Automated Functional Clustering algorithm 

This algorithm was custom developed to suit this dataset, and the code is available as part of the GUI. We outline the 

algorithm below: 

1. Divide all cells into “functional voxels” (~10 cells each) 

a. Perform k-means clustering on all cells (k=20) 

b. Perform k-means clustering on outputs of (a) (k = ~400) 

c. Discard any cells whose correlation with the voxel average activity is less than $THRESH 

d. Discard any voxels with fewer than 5 cells 

2. Merge voxels into clusters based on density in functional space 

a. for each pair of voxels ij (starting from most correlated):  

if the correlation between voxel i and j is greater than $THRESH,  

and the correlation between the the voxel j and the centroid (average) of the cluster 

containing voxel i is greater than $THRESH: 

then group voxel j in the same cluster as i.  

b. discard any clusters with fewer than 10 cells 

3. Clean up clusters using regression to cluster centroids 

a. for each cell k: 

if the correlation to the closest cluster’s centroid is greater than $THRESH: 

include cell k in that cluster 

b. Discard any clusters with fewer than 10 cells 

4. Iterate merge and cleanup steps  

a. Perform step 2 and 3 once more, using clusters as input voxels.  

 

This clustering algorithm can either be applied to all cells in the brain or a chosen subset of interest, and the correlation 

threshold determining clustering stringency ($THRESH) can be adjusted to trade-off completeness and accuracy (see 

Results and Fig. S4-1d). For most analysis in the text, the value of $THRESH was 0.7. 

 

Clustering Cross-Validation 

We divided the data into two halves along the time dimension; where multiple stimulus repetitions were present, we 

used an equal number of repetitions for the two halves. We then use the Hungarian method (Munkres assignment 

algorithm) to match clusters produced from the two halves of the data based on the fraction of common cells 

contained in a pair of clusters. This matching index was also visualized as the total “mass” distributed along the 

diagonal entries (Fig. S4-1e). The cross-validation coefficient (Fig. 4m) is the fraction of cells that were assigned 

membership to the same cluster for both halves of the data. 

 

Screen for anatomically conserved clusters 

We used the following criteria to determine whether two clusters were considered occupying comparable locations in 

anatomical space. First, given a pair of clusters, we calculated the distance of all pairs of cells within each cluster (sets d1 

and d2), and the distance of all pairs of cells between the two clusters (d12). If the relative distance mean(d12) / 

min( mean(d1), mean(d2) ) was less than 2, we considered the clusters conserved (with some restrictions on cluster sizes 

to exclude outliers). For each cluster in a given fish, we compared it with all clusters in all other fish. If there were at 

least 6 other fish that contained at least 1 matched cluster based on the criteria above (multiple matching clusters were 

possible), this cluster was marked as a conserved cluster over the population (Fig. 4l).  
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Stimulus and motor regressors 

The set of stimulus regressors that represent different stimulus features (Fig. 2d-h) were generated by convolving box-

car regressors with a single exponential kernel for the calcium indicator GCaMP6s (half-time 0.4 sec, peak delay 0.08 

sec).  

Motor regressors were generated from recorded fictive behavior (forward, leftward and rightward swimming) 

convolved with the temporal filter of the calcium indicator (exponential function, half-time 0.4 sec, peak delay 0.08 sec). 

Though sufficient for some analyses (Fig. 2c), this simple convolution does not fully account for the relation between 

behavior and the nuclear-labeled calcium trace. In particular, the calcium traces of neurons in the motor region have a 

longer time constant than the convolved behavior. For some regression maps (Fig. 3d,f and Fig. 5e,h), we found that 

the results can be improved by using “motor seed” traces as the behavior regressor. The motor seeds are a small 

number of neurons manually selected in each fish based on two criteria: (i) the neurons have the highest correlations to 

the fictive behavior and (ii) they are located in the region of the hindbrain that is known to send output signals to drive 

swimming behavior. The average activity traces of the motor seed cells were denoted “motor outputs” in the 

manuscript (as opposed to “motor regressors”). In analysis for Fig. 2, the fictive motor regressors were used, whereas 

in Fig. 3 and Fig. 5, the motor outputs taken from motor seeds were used.   

 

Decomposing activity into trial averages and trial residuals 

For any trace, we index its value at trial k and time t (relative to the beginning of the trial) as𝑥𝑡,𝑘. Its trial average 

component is defined as 𝑥𝑡,𝑘
𝐴𝑣𝑔

=
1

𝑛
∑ 𝑥𝑡,𝑗

𝑛
𝑗=1  (n is the number of trials), and its trial residual component is𝑥𝑡,𝑘

𝑅𝑒𝑠 = 𝑥𝑡,𝑘 −

𝑥𝑡,𝑘
𝐴𝑣𝑔

. Importantly, 𝑥𝐴𝑣𝑔  and 𝑥𝑅𝑒𝑠  are orthorgonal, because ∑ 𝑥𝑡,𝑘
𝑅𝑒𝑠

𝑡,𝑘 𝑥𝑡,𝑘
𝐴𝑣𝑔

= ∑ ∑ (𝑥𝑡,𝑘 − 𝑥𝑡
𝐴𝑣𝑔

)𝑥𝑡
𝐴𝑣𝑔𝑛

𝑘=1 = 0𝑇
𝑡=1  (T is the 

period of the stimulus). In fact, 𝑥𝑅𝑒𝑠  is orthogonal to any trace that is periodic to the stimulus, according to the same 

argument. In particular, let S represent the subspace of all periodic traces locked to stimulus trials, then 𝑥𝐴𝑣𝑔   is the 

orthogonal projection of x in S.  

The sensory periodicity (as in Fig. 3f and Fig. 5e) is calculated as the square root of the fraction of the variance of 𝑥𝐴𝑣𝑔   

relative to x. The square root is taken so that the resulting index is comparable in scale to correlation coefficients (e.g. 

consider the correlation between the trial-average and the original trace) that we use in other analyses such as the 

correlation to motor-residuals and motor-averages. 

When applying the decomposition into trial-average and trial-residual to motor traces, the orthogonality of the 

decomposition removes the correlation between motor and stimulus, and regressing to motor_res hence improves the 

identification of motor related neurons as used in Fig. 3 and 5.  

As shown above, the motor-res is orthogonal to S. This means that 

(correlation to motor_res)2 + (sensory periodicity)2 =

the fraction of variance of 𝑥 within the joint subspace spanned by {motor-res, 𝑆} ≤ 1. Note that the subspace spanned 

by {motor-res, S} is the same as that spanned by {motor, S}. So the amount of remaining activity 

√1 − (correlation to motor-res)2−(sensory periodicity)2  represents activity beyond sensory and recorded motor 

behavior. 

Quantification and Statistical Analysis 

Fig. 2a, bottom: mean±SD dF/F plotted for cells with regression coefficient > 0.5 

Fig. 2b: shuffle traces obtained by randomizing time indices for activity traces 

Fig. 2c: cells with regression coefficient > 0.5 plotted, left: single fish, right: n=16 fish superimposed 

Fig. 2d: mean±SD dF/F plotted for cells with regression coefficient > 0.5 

Fig. 2e: cells with regression coefficient > 0.5 plotted, n=7 fish superimposed 
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Fig. 2f: cells with regression coefficient > 0.5 plotted, n=11 fish superimposed 

Fig. 2g: cells with regression coefficient > 0.5 plotted, n=9 fish superimposed 

Fig. 2h: cells with regression coefficient > 0.5 plotted, n=11 fish superimposed 

Fig. 3b: mean±SD dF/F plotted for cells within curated k-means clusters 

Fig. 3f, maps: top 2% of cells by regression rankings plotted for each fish, n=17 fish superimposed 

Fig. 3f, scatter plot: each cell represented by a point. x value is regression coefficient for motor res. for that cell. y  

value is regression coefficient for motor avg. for that cell. Data for a single example fish is shown, with motor 

regressors derived from the left-side motor output. See methods for definition of motor output, motor avg. 

and motor res. 

Fig. 3g, maps: top 2% of cells by regression rankings plotted for each fish, n=17 fish superimposed 

Fig. 4c: t-SNE for one example fish only 

Fig. 4d: Histogram of number of cells included in each cluster, mean±SEM across n=18 fish plotted for each bin 

Fig. 4e: Histogram for average correlation between cells for each cluster, mean±SEM across n=18 fish plotted for  

each bin 

Fig. 4f: Histogram of average anatomical distance between cells for each cluster, mean±SEM across n=18 fish  

plotted for each bin 

Fig. 4i: Matrix of Pearson correlation coefficients between pairs of clusters. 

Fig. 4l: Map of clusters that are conserved for at least n=6 fish. Conserved clusters are superimposed for a pool of  

n=18 fish. See methods for details of definition of “conserved”. 

Fig. 4m: Two-fold cross-validation showing fraction of clusters that pass a cross-validation test. See Methods for  

details of cross-validation. Average fraction of clusters shown for n=6 fish. 

Fig. 4n: Map of ABD clusters, n=17 fish superimposed. 

Fig. 4p: Each cell represented by a point. x value: square root of the variance explained by the periodic  

component of the cell’s activity. y value: regression coefficient for motor res. for that cell.  

Fig. 4r: Average activity of putative ABD nuclei for several fish. Each pair of red/blue traces show average  

left/right ABD nuclei activity for one fish.  

Fig. 5a: phT and OMR maps show top 3% of cells by regression coefficient ranking. Convergence map shows  

cells included in both phT and OMR maps.  

Fig 5b: Cells that have a correlation coefficient > 0.4 to at least one of the regressors shown are classified by their  

best regressor. mean±SD dF/F plotted for cells all taken from the same fish. n refers to the number of cells 

included in each category. 

Fig. 5c: Number of congruent and incongruent cells (as defined in Fig. 5b) for n=18 fish. mean±SEM shown in  

red. p<.001, Student’s t-test. 

Fig. 5d: Number of convergent cells (defined in Fig. 5a) found in different brain areas for n=18 fish. mean±SEM  

shown in red. 

Fig. 5e: scatter plot: each cell represented by a point. x value: regression coefficient for motor res. for that cell. y  

value: square root of the variance explained by the periodic component of the cell’s activity. Data for a  

single example fish is shown, with motor regressors derived from the left-side motor output. Red points: 

convergent cells, defined as intersection of top 5% phT and OMR regression maps. Blue points: top cells ranked 

by y value, same number as red cells. Green points: top cells ranked by x value, same number as red cells. Top: 

histogram of x values for red and green cells. Right: histogram of y values for red and blue cells.  

Fig. 5h: Maps of red, green and blue cells (defined as in Fig. 5e), superimposed for n = 11 fish.  

Fig. 5i. Similar to Fig. 5h, but for OMR and looming convergence, rather than phT and OMR. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 27, 2018. ; https://doi.org/10.1101/289413doi: bioRxiv preprint 

https://doi.org/10.1101/289413


26 
 

Data and Software Availability 

Software and instructions for downloading the data will be made available after peer review of this manuscript. 

Supplemental Material 
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Figure S1. (a) Results of automatic cell segmentation based on nucleus-localized calcium indicator. GCaMP6f was expressed 

panneuronally under the elavl3 promotor. Inset shows good coverage of segmented ROI’s (red dots) within one imaging plane (total 

number of segmented ROI’s in this animal: 92,538). (b) Overlaid z-projection image of three animals (shown in red/green/blue 

channels, respectively) before and after registration to an average image stack. (c) Registration to the Z-brain reference atlas. 

Pseudocolors are applied to the z-planes before registration (red through purple: ventral to dorsal). (d) Number of cells included in 

selected anatomical regions according to the Z-brain atlas. Left panel: main brain divisions. Middle and right panel: smaller regions 

and anatomical features. Grey dots represent data from individual animals (n=18), with mean±SEM shown in black. (e) Whole-brain 

calcium activity averaged per cell over time, shown in pseudo-colors, for one example animal. (f) Interface of the custom interactive 

software that was used to develop the analyses presented in this study. Snapshot shows selected neurons sorted into clusters 

(indicated by different colors), with their functional activity shown in grayscale in the left panel and their anatomical locations in the 

right panel.  
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Figure S2. (a) Correlation analyses between regressions, for single example fish. Top and middle panel: Covariance matrix or 

‘Representational Similarity matrix’ (Kriegeskorte et al., 2008), showing the relationship between whole-brain responses 

characterized through the various stimulus/motor regressors (see Methods). phT: phototactic stimulus; BH: Bright half-field stimulus; 

see Fig. S2h. For the middle panel, moving stripes (OMR) were presented in left/right/forward/backward directions, and the fictive 

recording is parsed into left/right/forward swims regressors. Bottom panel: (direct) correlation coefficients between the regressors 

(without regressing over cells). This correlation analysis complements the visual comparison of tuning maps that only feature highly 

correlated neurons. (b) Histograms of regression coefficients for all cells from a representative fish, using various regressors. ‘L(R) 

on’: Bright half-field for the left (right) side being bright. Horizontal axis: Pearson correlation coefficient. (c) Single fish example of 

regression with phototactic regressors. Note that the left side of the hindbrain shows high levels of responses, indicating that 

leftwards swims are highly correlated with the leftward phototactic stimulus. The finer distinctions between stimulus responses and 

stimulus-driven motor responses are made in Figure 3. Such asymmetries in behavior (and the corresponding neural correlates) are 

also typical at the single-animal level (d) Motor map during OMR for forward and backward regressors (e) Motor map during OMR 

for left and right regressors. (f) Motor map during looming, generated using the behavioral and neural data only during the looming 

stimulus period. Although the looming stimulus robustly elicits escape responses in freely swimming fish, in tethered preparations 

there are few behavioral responses. (g) Three-way contrast map for left/right/forward swimming. Regression was performed using 

the 3 fictive swim regressors for left/right/forward (red/green/blue) respectively, and individual cells are colored based on their best 

regressor. (h) Stimulus regressions using phototactic component regressors. Fish were shown a periodic stimulus during imaging 

that consists of leftwards and rightwards phototactic stimuli separated by a whole-field bright background. The stimulus regressors 

(black) are constructed by convolving a binary step function with an impulse kernel of GCaMP6. Bright whole-field and bright half-

field regressors are shown. See Fig. 2d for phototaxis regression. The colored traces show the dF/F (mean±SD for all ROI’s with r>0.5) 

for the same example fish as in (a). (i) Map for bright whole-field regressor. (j) Map for the pair of bright half-field regressors. See 

Fig. 2e for map for the phototaxis regressors. OTc: optic tectum. aHB: anterior hindbrain. Cb: cerebellum. (k) Comparison between 

phototactic stimulus regression (e, red channel) and bright half-field regression (d, green channel). Yellow indicates overlap between 

the two color channels. (l) Regression map comparing looming (green, same as Fig. 2g) and OMR (red, same as Fig. 2f) regressors. 
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Figure S3.  (a) Comparison between raw motor recordings, parsed fictive swims, and the ‘motor-seeds’ extracted directed from 

calcium activity (see Methods). Upper row: fraction of variance explained by the trial-average (tAvr) component of the motor 

regressor. Lower row: correlation between the full motor regressor and the tAvr component of the motor regressor. The motor 

outputs showed increased variance explained and correlations, suggesting that they more faithfully represent motor activity 

patterns. (b) Average anatomical map of the cells used to define motor output (ROI’s with highest correlation to the recorded fictive 

behavior, constrained within Rhombomeres 4 and 5; see Methods). Red: left motor; cyan: right motor. (c) Average map of least 

stimulus-locked (least periodic) cells (compare to Figure 3c). The bottom 5% of cells for each fish were selected, and the average from 

n=18 fish is shown. (d) Forward-swimming map produced by regressing against a pair of forward-swim motor outputs, which were 

semi-manually extracted from the pair of clusters indicated with red arrows in Fig. 3g. Higher correlation with the left versus right 

seed is shown in red versus cyan, but the difference between the two seeds is very small. (e) Illustration of the left/right motor 

average and residual. The residual for each side was calculated by subtracting the respective motor activity from the left/right 

average. (f) Related to Fig. 3g; Left: regression map of top 2% of cells ranked by left/right average. Right: regression map of top 2% of 

cells ranked by left/right residual.  
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Figure S4-1. (a) Illustration of customized unsupervised clustering algorithm. A density based screen of all cells in functional space 

was followed by agglomerative clustering with an upper bound on within-cluster dissimilarity (see Methods). (b) Results of the 

automatic clustering algorithm applied to an example fish. The total 139 clusters (6,499 cells) were ordered by hierarchical clustering, 

and the rainbow colors were assigned based on the resulting leaf order. (c) Pearson correlation coefficient matrix between all 

clusters from (a), calculated with the cluster-average. (d) Various clustering statistics as a function of clustering “stringency” 

threshold (which corresponds to a correlation value), for n = 15 fish (different colored lines). Top: number of clusters. Middle: two-

fold cross validation scores, as in (e). Bottom: total number of cells included in all resulting clusters. A threshold of 0.7 was used to 

obtain results shown in Fig. 4. (e) Two-fold cross validation. Clusters produced from the first versus second half of the time-points of 

the data were matched, and a score was calculated as the fraction of number of cells that were assigned to matched clusters over 

the total number of cells. This was also visualized as the total “mass” distributed along the diagonal entries. (f) Hierarchical 

clustering diagram of clustering results for an example fish (not the same color code as (b)). (g) Illustration of the distance measure 

used in Fig 4l for assessing whether two clusters were conserved in anatomical space. (h) Per fish percentage of clusters (from 

automatic clustering results) that have anatomically corresponding clusters in at least 6 other fish (out of the 18 fish assessed) as in 

Fig 4l. (i) Clusters from the default clustering (stringency threshold = 0.7) that were identified as artifacts. Inset: for clarity, subset of 

clusters shown with functional traces. For most of these clusters, the cells within the cluster were aligned along one dimension, e.g. 

their projections appear as very dense dots (arrows). The dimension corresponds to one of the two laser scanning directions 

(anterior-posterior, and left-right). A simple script was used to screen out clusters that have very small standard deviation along 

these physical dimensions. (j-k) Cross-validated clusters between two stimuli: phototaxis and OMR (moving gratings). (j) All clusters 

obtained from the phototaxis data from one fish. (k) Cross-validation was performed on automatic clustering results for phototaxis 

versus clustering results for OMR; only cells that were matched in both cross-validation sets were shown, colored according to their 

original clusters in (j). (l-m) Spatial ICA (Hyvärinen and Oja, 2000) as comparison to our clustering method. (l) Functional activity and 

anatomical map of ICA clusters (number of clusters matching that of our clustering method for better comparison). (m) A smaller 

selection of clusters with higher within-cluster correlation shown for clarity. The left half of the hindbrain motor area (arrowhead) is 

missing. (n) Anatomical map of cross-validated clusters (colors ranked as in Fig. 4j), averaged across all fish. Clusters with at least 5 

corresponding cells across cross-validation sets were selected. Scale bars, 50 µm. (o) Histogram of number of cells within OCM 

clusters that were very highly correlated to the cluster mean (>0.8 correlation). Results shown for n = 17 fish, with 2 OCM clusters per 

fish.  
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Figure S4-2. (a) Flowchart for interactive ROI selection (using the GUI), showing approximate guidelines. (b) Identification of a 

distinct network related to the trigeminal motor neurons (posterior clusters of nV, arrowheads), characterized by strong, sparse 

firing (shown in a representative fish). Red/green/blue: network divided into three clusters by k-means that show subtle differences; 

signal/noise was highest for the green cluster. Inset: anatomical masks for the trigeminal motor neurons from the Z-brain reference 

atlas - some of these neurons were located within the mask locations. (c) Mesencephalic locomotion-related region (pink cluster) 

and related functional network, shown as a total of 5 k-means clusters (distinct colors). Inset: pink cluster shown with anatomical 

masks from Z-Brain Atlas. Arrow: (red) mask for “Mesencephalon vglut2 cluster 1”. Arrowheads: pair of (green) masks for 

Mesencephalon nucMLF (nucleus of the medial longitudinal fascicle). Right: Average functional activity of clusters shown in Fig. S4-

2c showing Mesencephalic locomotion-related networks. (d) Raphe networks. Left: dorsal raphe nucleus and related networks, 

shown as 3 k-means clusters. Arrow: dorsal raphe nucleus (as identified by functional clustering). (e) Inferior raphe nucleus and 

related network, shown as 6 k-means clusters. (f) Olfactory bulb functional clusters. Left: map of 31 automatically identified clusters 

shown in different colors (colors assigned according to hierarchical ranking of clusters). Inset: Olfactory bulb region. Clusters 

corresponding to subnetwork outlined in red in the correlation matrix in Fig. 4i. (g) Related to Fig. 4p,q. Left: Two-dimensional 

sensory-motor plot as in Fig. 4p, showing activity related to right motor output (Fig. 4p is left). Middle: Similar to Fig. 4q, but showing 

both right and left motor output maps (Fig 4q is the same as the lower left panel). Right: Same analysis as middle, but averaged for 

n=17 fish. 

 

Supplemental Text Accompanying Fig. S4-2. 

Jaw and gill movement control. In Fig. S4-2b we show a set of clusters with striking functional characteristics that are 

found in all animals: extremely sparse and strong activity bouts are observed above a quiet baseline. These clusters 

were first selected from the whole-brain clustering based on their sparse activity and then extended to include related 

neurons by regression to their activity. Dividing this larger group into three clusters (k-means, red/green/blue) also 

revealed subtle differences in functional fingerprints that were consistent across fish, e.g. the caudal population 

(mainly green) showed a higher signal-to-noise ratio. Some of these neurons were located in the region annotated in 

the Z-brain atlas as the Trigeminal Motorneurons posterior cluster of nV, while others were found in a characteristically 

elongated shape in the dorsal-caudal-lateral hindbrain. Previous studies suggest that the trigeminal motor neurons 

innervate the muscles of the mandibular arch to control jaw movement and are conserved among vertebrates 

(Higashijima et al., 2000). We hypothesize that these groups of neurons are part of the circuit involved in jaw 

movement control. 

Mesencephalonic locomotion-related region. Through our automated clustering, we often observed a prominent cluster 

in the midbrain (Fig. S4-2c, arrow) that corresponds well to an anatomical mask in the Z-Brain atlas defined from a 

transgenic line (Mesencephalon vglut2 cluster 1), and is located between the left and right nucMLF (nucleus of the 

medial longitudinal fascicle). The functional activity of this cluster was highly related to the forward swimming network 

(see Fig. 3g, S3d, S3f), yet distinct from other clusters within the network (Fig S4-2c, right). Given the role of the 

nucMLF in controlling forward swimming and that electric stimulation in this area can drive swimming behavior (Severi 

et al. 2014; electrodes placed near the nucMLF in that experiment), it would be very interesting to further investigate 

the potential role of this cluster in locomotion generation.  

Olfactory bulb. When all automatically identified clusters from a single fish were ranked hierarchically, we observed that 

a relatively large subnetwork of small clusters (adjacent in the hierarchical tree; Fig. 4i, outlined in red) were almost 

exclusively localized in the olfactory bulb area (Fig. S4-2f left panel), and although their functional activity was not 

highly correlated between clusters, they shared a similar “texture” in the temporal domain (Fig. S4-2f, right panel). The 

activity of these clusters was not highly correlated to either the visual input or the motor output. We hypothesize that 
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these clusters represent the functional organization of the olfactory bulb, possibly demonstrating spontaneous activity, 

given a lack of olfactory stimulation in our experiments (Churchland et al., 2010). 

Raphe nucleus and the vagus cranial system. When screening for clusters with negative correlation to the motor output, 

we consistently found an elongated cluster along the midline in the anterior hindbrain that matches the anatomical 

location of the dorsal raphe nucleus (Fig. S4-2d, left panel). Regression to the raphe activity also consistently revealed 

two symmetrical groups of neurons in the caudal hindbrain that coincide with the anatomical map of the vagus motor 

(nX) neurons that control gill movement (Chandrasekhar et al., 1997; Higashijima et al., 2000), suggesting an intriguing 

functional connection between the two systems that has not to our knowledge been reported before. In future 

experiments, it would be interesting to verify and interpret this connection between the two systems. These 

functionally identified networks also often had anatomically well-clustered and symmetrical features, as shown here for 

the inferior raphe nucleus (Fig. S4-2e).   
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Figure S5.  (a) Regression maps using the average response of ARTR as regressor (Dunn et al., 2016b). Inset: manually curated ROI’s 

for ARTR, separating the medial and lateral stripe for each of the left/right side. Arrowhead: regression to the lateral ARTR stripes 

identifies cells in contralateral Rh.1. (b) RGB overlay image of phT only (red), OMR-only (blue) and joint-phT-OMR (blue) cells. 

Individual cells selected by t-test p<0.001 (leftward-stimulus selectivity contrasted with rightward-stimulus selectivity). (c) 

Quantification of number of unimodal/bimodal cells in the midbrain and hindbrain, respectively, for n=11 fish. Black line: group 

average. Red lines: standard error of the mean. (d) Ratio of bimodal cells over the total number of stimulus selective cells (unimodal 

plus bimodal). This ratio is significantly higher in the hindbrain (Rh.1 and Rh.2) than in the midbrain (two-tailed t-test, p<0.001). (e) 

Anterior hindbrain clusters as obtained by whole-brain clustering, single fish example. Z-Brain anatomical borders for rhombomeres 

(Rh) 1-3 are drawn for reference. Arrow: ARTR. (f) Left: average map of functional clusters colored by rank as stimulus-locked (i.e. 

periodic) (red) to not stimulus locked (purple). Right: average map of functional clusters colored by rank for motor res., from most 

motor related (higher regression coefficients) (red) to least motor related (purple). Similar to single fish map shown in Fig. 4k. Note 

yellow clusters in the anterior hindbrain that rank relatively highly in both stimulus and behavior. (g) Number of convergent cells as a 

function of threshold (rank %) for (1) midbrain (2) hindbrain Rh1,2 and (3) hindbrain Rh3+.  Across the whole range of thresholds, the 

hindbrain Rh1,2 contains significantly more convergent cells than the midbrain and hindbrain Rh3+ regions. (h) Whole-brain 

regressions were performed to a set of regressors that include phT specific-, OMR specific-, and phT&OMR joint-regressors. For cells 

that have a correlation coefficient >0.4 to at least one of these regressors, they were classified by their best regressors into 6 groups, 

color-coded and identified by labels. Average functional activity of these 6 groups of neurons is shown (mean±SD). (i) Right panel: 

anatomical map for single stimulus regressors. Left: anatomical map for convergent regressors. Note that most of these cells are 

found in Rhombomeres 1&2 of the anterior hindbrain. (j) Related to Fig. 5e. Regression coefficient to motor res. for (1) top 5% of cells 

by motor res. (2) top 5% convergent cells (3) all cells. Corresponds to the x values of the green, red, and gray dots in Fig. 5e, except 

for all fish and both left and right motor outputs. Note that convergent cells are significantly less motor-related than the most motor-

related cells. (k) Related to Fig. 5e. (Square root of) variance explained by their periodic component of activity for (1) top 5% of cells 

by periodicity (2) top 5% convergent cells (3) all cells. Corresponds to the y values of the blue, red, and gray dots in Fig. 5e, except for 

all fish and both left and right motor outputs. Note that convergent cells are as periodic as the most sensory-related cells. (l) Same as 

Fig. 5e., except for right motor output (Fig. 5e shows data for left motor output). Note that convergent cell activity was less related 

to right motor output than left. Asymmetric left/right activity patterns and behavioral responses were not uncommon. 
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