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ABSTRACT 23 

 The evolution of the placenta is an excellent model to examine the evolutionary processes 24 

underlying adaptive complexity due to the recent, independent derivation of placentation in 25 

divergent animal lineages. In fishes, the family Poeciliidae offers the opportunity to study 26 

placental evolution with respect to variation in degree of post-fertilization maternal provisioning 27 

among closely related sister species. In this study, we present a detailed examination of a new 28 

reference transcriptome sequence for the live-bearing, matrotrophic fish, Poeciliopsis prolifica, 29 

from multiple-tissue RNA-seq data. We describe the genetic components active in liver, brain, 30 

late-stage embryo, and the maternal placental/ovarian complex, as well as associated patterns of 31 

positive selection in a suite of orthologous genes found in fishes. Results indicate the expression 32 

of many signaling transcripts, “non-coding” sequences and repetitive elements in the maternal 33 

placental/ovarian complex. Moreover, patterns of positive selection in protein sequence 34 

evolution were found associated with live-bearing fishes, generally, and the placental P. 35 

prolifica, specifically, that appear independent of the general live-bearer lifestyle. Much of the 36 

observed patterns of gene expression and positive selection are congruent with the evolution of 37 

placentation in fish functionally converging with mammalian placental evolution and with the 38 

patterns of rapid evolution facilitated by the teleost-specific whole genome duplication event. 39 

INTRODUCTION 40 

 The study of the placenta provides insight into the evolutionary relationships of 41 

biological phenomena such as complexity, live-birth and genetic conflict. A great deal of 42 

research has focused on the function and development of mammalian placentas, uncovering the 43 

unique regulatory, genetic, and evolutionary nature of this structure. Studies of gene regulation in 44 

the mammalian placenta show a suite of unique features including genomic imprinting (Bressan 45 

et al. 2009), non-coding RNAs (Koerner et al. 2009), and DNA methylation and histone-46 

modification mediated transcription (Maltepe et al. 2010). The placenta also has been shown to 47 

be a tissue that utilizes genes derived from the co-option of retroelements for unique functional 48 

purposes (Lavialle et al. 2013). Additionally, the placenta has been used as a model for 49 

examining the evolution of tissue-specific novelties, such as newly derived cell-types (Lynch et 50 

al. 2011), placental variation among eutherian mammals (Carter and Mess 2007), and genomic 51 

imprinting related to viviparity (Renfree et al. 2013). 52 
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Placentation is typically studied in mammals, but fish present a compelling study system 53 

for examining contributing factors to the evolution of this complex organ. The Neotropical fish 54 

family Poeciliidae is comprised of approximately 200 species, all of which, with one exception, 55 

give live birth. The majority of these poeciliids are lecithotrophic (i.e. yolk-feeding), wherein 56 

eggs provide all necessary nutrients to support the embryo through development to birth. 57 

However, placenta-like structures that permit post-fertilization maternal provisioning have 58 

evolved independently in multiple poeciliid lineages, specifically within certain groups such as 59 

species in the genus Poeciliopsis, within the last 750,000 years (Reznick et al. 2002). Unlike 60 

comparisons between eutherian and marsupial mammals, who last shared an ancestor with their 61 

non-placental monotreme counterparts (i.e. the egg-laying platypus and echidnas) ~200 million 62 

years ago (Meredith et al. 2011), species within Poeciliopsis offer the opportunity to investigate 63 

more “recent” changes leading to viviparity and placentation. The relatively recent adaptation of 64 

placentation has resulted in wide variation among Poeciliopsis species with respect to the extent 65 

of maternal provisioning. The extent of maternal investment across species ranges from highly 66 

matrotrophic (i.e. placentotrophic) to lecithotrophic, including intermediate, or “partial”, 67 

placental species. These transitional states and independent evolutionary events make this system 68 

particularly powerful for examining factors contributing to the evolution of placentation (see 69 

Pollux et al. 2009 for review). 70 

Although fish placentas exhibit functional convergence, they are diverse in structure, 71 

with poeciliid placentas bearing features distinct from mammalian placentas. In poeciliids, the 72 

maternal portion of the placenta is derived from the ovarian follicle. Fertilization occurs within 73 

the ovarian follicle wherein the embryo will subsequently develop. Within placental Poeciliopsis 74 

species, nutrient exchange occurs across an enlarged pericardial sac that contributes to a large, 75 

highly vascularized belly sac (Turner 1940). In the closely related poeciliid species Heterandria 76 

formosa, functionally convergent placental structures are notably divergent in structure; the 77 

aforementioned sac structure covers regions more anterior on the developing embryo (Turner 78 

1940). While specializations to the follicular epithelium, such as a thick, vascularized follicle 79 

wall with dense microvilli and specialized cytoplasmic organelles are common features in the 80 

maternal poeciliid placenta, much remains unknown about the ontogeny of the poeciliid 81 

follicular placenta (Turner 1940; Grove and Wourms 1991). 82 
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To define the genetic components contributing to placental function and examine the 83 

selective forces influencing the evolution of this unique poeciliid fish lineage, we constructed a 84 

new reference transcriptome for the placental fish Poeciliopsis prolifica, the blackstripe 85 

livebearer. A placental tissue-specific transcriptome profile was generated by comparison to non-86 

placental tissues from P. prolifica, while patterns of protein evolution were compared with other 87 

closely and distantly related fish species. P. prolifica is a highly matrotrophic poeciliid fish that 88 

shares a hypothesized lecithotrophic common ancestor with recently diverged lecithotrophic 89 

sister taxa (Reznick et al. 2002), thus presenting a model system for examining evolutionary 90 

genetic changes proximal to the emergence of the placenta. Notably, we find evidence indicating 91 

genetic parallelism, both in function and evolution, of the fish placenta and the mammalian 92 

placenta. 93 

METHODS AND MATERIALS 94 

Samples 95 

Tissue samples were harvested according to an IACUC approved protocol from captive 96 

populations of Poeciliopsis prolifica raised at the University of Connecticut. Original stocks 97 

were obtained from stock populations at the University of California-Riverside under care of Dr. 98 

David Reznick and from Ron Davis, a live-bearer hobbyist in Florida. Both populations 99 

originated from the same sample population from the Rio El Padillo in Mexico. Tissues were 100 

isolated from fish dissected on ice, immediately snap frozen with liquid nitrogen, and stored at -101 

80° C. For this study, four sample types were isolated: female brain, liver, whole embryo, and 102 

the maternal placental/ovarian tissue complex (MPC). Whole female brain was dissected from 103 

the skull and is inclusive of the olfactory bulb, cerebrum, optic lobe, cerebellum and medulla 104 

oblongata (to the tip of the spinal cord). Due to its delicate nature, maternal placental tissue was 105 

isolated by dissecting whole ovary from pregnant females, excising any fertilized and observable 106 

unfertilized eggs, tearing open ovarian follicles, removing developing embryos from those 107 

follicles, and reserving the remaining maternal placental/ovarian tissue complex (MPC) that 108 

included both ovarian follicles and some remaining ovarian tissue (Figure S1). Late-stage (i.e. 109 

nearly full-term) whole embryos, identified by full pigmentation, large size, an ability to persist 110 

after being excised from ovarian follicle, and being "late-eyed" (Stage 5 as described by 111 

(Reznick 1981)) were sampled and stored with belly sacs intact.  112 
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 113 

Sequencing 114 

Two types of sequencing platforms, Roche 454 and ABI SOLiD, were implemented in 115 

this study. For 454 sequencing, RNA was isolated from 20 different individuals by 116 

homogenizing and disrupting selected tissue samples with syringes in a Trizol solution. Due to 117 

individual isolation yields, required template inputs for library construction, and to compensate 118 

for among-individual variation, each RNA sample was then pooled by tissue type and mRNA 119 

was isolated from 5-10 µg of total RNA using the Poly(A) Purist kit (Ambion). All RNA 120 

samples were assessed for quality on a Bio-Rad Experion both pre- and post-Poly(A) extraction. 121 

Sequencing libraries were made following standard RNA-Seq library construction protocol for 122 

454 sequencing and sequenced on a Roche 454 Sequencer. To generate SOLiD sequencing data, 123 

tissues for three individual MPCs and an embryo from one of these same females were first 124 

stored in RNALater and then at -80° C. RNA was isolated by disruption and homogenization of 125 

tissues using a Polytron and the RNAeasy mini kit (Qiagen). DNA was removed from each 126 

sample by TurboDNAse (Ambion) and validated for sample integrity using an Agilent 127 

Bioanalyzer. ERCC spike-in controls (Life Technologies) were then added to each sample and 128 

ribosomal RNA (rRNA) was removed using the Ribozero kit (Epicenter). Final RNA-Seq 129 

libraries were constructed from the resultant mRNA sample using standard SOLiD transcriptome 130 

library construction protocols. Libraries were sequenced on an ABI SOLiD 5500xl. 131 

Assembly 132 

 Post-sequencing, all 454 reads were trimmed using 454 Newbler software to remove bar 133 

codes and the program CUTADAPT v1.2.1 (Martin 2011) to remove adapter sequences and trim 134 

low quality regions of reads. Seqclean was then used to remove poly-A tails. CUTADAPT was 135 

also used for trimming out all barcode and adapter sequences as well as quality trimming for 136 

SOLiD libraries. All SOLiD libraries were then screened against an in-house database of rRNA 137 

sequences to remove any rRNA sequences that may have not been removed in the rRNA-138 

depletion step. All remaining SOLiD reads were normalized using the Trinity-associated in silico 139 

k-mer normalization protocols. All trimmed 454 reads and normalized SOLiD reads from all 140 

tissues were then input into the Trinity transcriptome assembler (release 7/17/2014) (Grabherr et 141 
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al. 2011). Following the Trinotate pipeline (release 4/30/2015) for annotating predicted 142 

transcripts (Haas et al. 2013), open-reading frames (ORFs) were predicted using Transdecoder 143 

(release 1/27/2015). All transcripts and predicted proteins were then annotated via homology 144 

against the SwissProt/Uniprot database and assigned any associated Gene Ontology (GO) terms 145 

and eggNOG orthologs group membership. Predicted proteins were also searched for PFAM 146 

protein domain and identification as a signaling protein using SignalP (v4.1) (Nielsen 2017), 147 

transmembrane protein using TMHMM (v2.0) (Krogh et al. 2001), or ribosomal RNA using 148 

RNAmmer (v1.2) (Lagesen et al. 2007). All transcripts were examined for any additional 149 

homologies against the NCBI nr database using BLASTX and annotated using BLAST2GO 150 

(v2.5.0) (Conesa et al. 2005). Any transcript without an nr BLASTX-hit was also searched 151 

against the NCBI nt database with BLASTN. Finally, all transcripts were assessed with 152 

BLASTN for homology with known non-coding RNAs (ncRNAs) identified in zebrafish (Danio 153 

rerio) (Ulitsky et al. 2011). Databases versions for all homology searches were all updated on 154 

7/1/15 before this analysis was completed. 155 

 Tissue-specific gene expression patterns were surveyed by mapping reads to the Trinity 156 

assembled transcriptome sequence, quantifying read coverage among transcripts, and testing for 157 

differences among comparison groups. Mapping was performed using BWA (v0.7.7)(SW 158 

algorithm) (Li and Durbin 2010) for all 454 data, and Bowtie2 (v4.1.2) (Langmead and Salzberg 159 

2012) for all SOLiD data. Gene expression and read counts were estimated for all transcripts 160 

using the program eXpress v1.5.1 (Roberts and Pachter 2013). Count data from 454 mapping 161 

was passed through R-based DESeq2 analysis (Love et al. 2014) to assess significant differences 162 

in pairwise comparisons of gene expression patterns among tissue samples, while correcting p-163 

values for False Discovery Rates (FDR) due to multiple comparison tests. Since sequencing 164 

libraries were generated from pooled samples, they were assumed to represent an “average” 165 

perspective. Due to the lack of replicates of pooled samples, best practices outlined in the 166 

DESeq2 manual were used to generate dispersion estimates by comparing counts among tissue 167 

types as opposed to between replicates. This process should be conservative with respect to false 168 

positives since it errs on the side of using larger than necessary dispersion values. FPKM 169 

(fragments per kilobase per millions reads) values were then used in BioLayout Express3D 170 

(v3.2) (Theocharidis et al. 2009), along with the MCL (v12-068) clustering algorithm (van 171 

Dongen and Abreu-Goodger 2012), to generate a preliminary 3-D gene atlas of co-expressed 172 
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genes clusters. Due to modest read coverage of 454 sequencing libraries, only “highly” 173 

expressed genes (an FPKM value > 50 in at least one tissue) were included in clustering 174 

analyses.  175 

Evolutionary Rates 176 

 Evidence of positive selection in the evolutionary rates of poeciliid genes was tested 177 

using the branch-sites models implemented in the program PAML v4.7 (Yang 2007).  cDNA 178 

resources for six other species of fish whose genome and gene models have already been 179 

described were downloaded from ENSEMBL and compared to our sequences for P. prolifica. 180 

These species included the following: Danio rerio, Gadus morhua, Takifugu rubripes, 181 

Oreochromis niloticus. Gasterosteus aculeatus, and Xiphophorus maculatus (Figure S2). Of 182 

these six species, X. maculatus is the most closely-related species to P. prolifica; both are in the 183 

family Poeciliidae. However, X. maculatus differs significantly from P. prolifica in reproductive-184 

style since it is a lecithotrophic (yolk-feeding) live-bearer with no evidence of post-fertilization 185 

maternal provisioning. P. prolifica is highly matrotrophic, with sufficient post-fertilization 186 

maternal provisioning to sustain an eight fold increase in dry mass between the fertilization of 187 

the egg and birth (Pires et al. 2007). Predicted coding sequence regions for P. prolifica were 188 

compared to cDNA reference sequences for each species using reciprocal best BLAST hit 189 

approaches (TBLASTX in this case) to identify orthologous genes between species. Once 190 

orthologs were identified, all orthologous gene clusters that lacked a predicted ortholog for any 191 

species (i.e. no reciprocal best BLAST hit found) or, when examining high-scoring segment pair 192 

(HSP) alignment regions, that yielded a multiple sequence alignments less than <200 bp long 193 

were discarded. Using in-house Python scripts, the remaining orthologs were passed through a 194 

series of analysis steps. Groups of orthologs were first reconstructed in the same strand and 195 

aligned using the codon-guided multiple sequence alignment (MSA) algorithm MACSE v 0.9b1 196 

(Ranwez et al. 2011). MSAs were cleaned using trimAl (Capella-Gutiérrez et al. 2009) to 197 

remove all gaps both from within, and at the ends of, the aligned sequences. MACSE includes 198 

the convenient feature of assessing frameshift and stop codon issues associated with multiple 199 

sequence alignment. Thus, in order to avoid confounding alignment problems related to poor 200 

data quality, low scoring MSAs and true pseudogenized gene sequences, all of which would 201 

contribute to false positives in subsequent PAML analyses, this feature was leveraged to identify 202 
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and remove any MSA with either a frameshift ambiguity or base ambiguity from further 203 

analysis.  204 

The remaining MSAs were then analyzed in PAML with three different phylogenetic 205 

“foregrounds” to test for positive selection in rapid codon evolutionary rates: P. prolifica only, X. 206 

maculatus only, and all poeciliids. These three levels of examination provided a proxy test of the 207 

evolutionary changes possibly associated with three reproductive-styles, respectively: 208 

matrotrophic viviparity, lecithotrophic vivparity, and vivparity (generally). Classification of sites 209 

having significant evidence for being under positive selection required a significantly better fit of 210 

the branch-sites alternative model of positive selection over the null model (implemented as 211 

described in the PAML manual – Model 2A vs. Model 1A – with a χ2
 test using p-value < 0.05 as 212 

the threshold for identifying significant improvements in maximum likelihood model fit) and 213 

identification using the Bayes empirical Bayes (BEB) method (p-value >0.95). All sites and 214 

predicted proteins were compared among different “foreground” analyses to classify protein 215 

evolution associated with the aforementioned reproductive-style that these species represent.  216 

A distance-based gene family tree for the RAB11 family-interacting protein gene family 217 

(RAB11FIP) was constructed using neighbor-joining tree methods to describe the general 218 

patterns of gene duplication and evolution in fishes. Jukes-Cantor distances among protein 219 

sequences were used to generate tree topology. All sequences included in this gene family tree 220 

where gathered by identifying any P. prolifica predicted protein sequence with homology to 221 

RAB11FIPs in Danio rerio using BLASTP (e-value < 1e-5) and using those predicted proteins to 222 

identify any other existing protein sequences for RAB11FIP genes in fishes using BLASTP (e-223 

value <1e-5; taxonomically restricted search to “bony fishes” – taxid: 7898). MUSCLE v3.8.31 224 

(Edgar 2004) was used to generate a multiple sequence alignment for all sequences and CLC 225 

Genomics Workbench v7.5 was used to generate a tree with 100 bootstraps. To focus analysis on 226 

RAB11FIP genes only, all clusters of genes identified as the protein UNC-13 (a homologous 227 

gene to RAB11FIPs) were trimmed from final tree. 228 

Data Availability: 229 

All read data was deposited in the NCBI SRA database under the following accession numbers: 230 

SRR1639275, SRR1640127, SRR1640137, SRR1640160, SRR1640171, SRR1640200, 231 
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SRR1640209, SRR1640216, and SRR1640219 under the BioProject PRJNA266248. All custom 232 

scripts are available here: 233 

https://github.com/juefish/Jue_et_al_G3_P_prolifica_transcriptome.git. 234 

RESULTS 235 

Assembly Statistics 236 

 De novo assembly of 3,696,154 Roche 454 and 159,802,508 SOLiD reads (post-237 

trimming, see Table S1 for library details) yielded a transcriptome of 331,767,677 Mb (43.74% 238 

GC) with 478,065 predicted transcripts (TSA Reference ID: GBYX00000000.1). Average contig 239 

length was 639 bp and N50 was 885 bp. These contigs were grouped into 319,532 components, 240 

which are analogous to estimated “genes” or groups of isoforms (Table 1). While some of these 241 

predicted transcripts could be spurious or fragmented results from the assembler, 236,360 242 

(49.4%) of these predicted transcripts were well-supported with read depth of coverage >10x, 243 

representing a very diverse transcriptome (Table 1).  244 

 Within this assembled transcriptome, 113,240 transcripts (23.6% of total) were predicted 245 

to have a protein open-reading frame (ORF) (Figure 1), with over 80% of these predicted 246 

proteins (both total transcripts and genes) carrying homology with a protein in the 247 

UniProtKB/Swiss-Prot database, and >75% of those showing associations with known Pfam 248 

domains (Figure 1). Functional Gene Ontology (GO) annotations were identified for the majority 249 

of these sequences with homology to nr database reference sequences, representing a multitude 250 

of functional elements, spanning a range of categories in the Gene Ontology (Figure 2). Another 251 

41,851 transcripts with no BLAST result at all (8.7%) showed similarity to REPBASE repetitive 252 

element sequences, including 1,747 transcripts from 1,043 predicted genes that incorporated 253 

repetitive element genes (Table S3). These transcripts span a wide-range of repetitive element 254 

origins, including elements known to have specific placental function in mammals such as 255 

retrotransposon-derived protein PEG10-like. Another 286 transcripts carry regions identified by 256 

homology with non-coding RNAs from D. rerio. These transcripts represent a variety of non-257 

coding RNAs that may be involved in gene regulation (Table S4). For instance, one identified 258 

transcript shows homology with cyrano, a lncRNA demonstrated to be necessary for proper 259 

embryonic development and interacting with a known miRNA miR-7 (Ulitsky et al. 2011). A 260 
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small number (24) of these transcripts showed evidence for bidirectional transcription and, thus, 261 

candidates for active functioning in gene regulation through complementary base-pairing with 262 

coding transcripts.  263 

Tissue Specific Gene Expression 264 

Using MCL clustering of gene expression estimates, we generated a preliminary gene 265 

atlas for P. prolifica to identify clusters of co-expressed transcripts among four different sample 266 

types: MPC, female brain, liver, and late-stage developing embryo, hereafter referred to as 267 

"tissues". Before clustering, pairwise tests for significant differences (p-value <0.05 after 268 

correction for FDR) in gene expression using DESeq2 were conducted across all transcripts in all 269 

tissues and revealed 45, 108, 18, and 24 transcripts were specifically expressed in MPC, whole 270 

embryo, brain and liver, respectively. For MCL clustering analysis and gene atlas construction, a 271 

subsample of the 6,839 most highly expressed transcripts (FPKM values >50 in at least one of 272 

the four tissues) were included in the analysis. This subset further reduced the number of 273 

identifiable (via pairwise comparisons) tissue-specific transcripts included in the atlas that were 274 

significant for tissue-specific expression to 24, 36, 4, and 5 for MPC, embryo, brain and liver, 275 

respectively. Using the tissue-specific gene expression patterns of these transcripts (Figure S3) 276 

and the MCL clustering algorithm, nine co-expressed gene clusters were identified (Figure 3). 277 

Cluster 1 was the largest cluster and generally associated with transcripts that have high 278 

expression in the brain, but showing some co-expression with other tissues, particularly MPC 279 

and embryo. Cluster 2 was generally associated with transcripts highly expressed in embryo, 280 

cluster 3 was associated with transcripts highly expressed in MPC, and cluster 4 was associated 281 

with transcripts highly expressed in liver. Clusters 5 to 9 (which represented only 2.2% of the 282 

transcripts in the atlas) were defined by expression across multiple tissue types, displaying gene 283 

expression profiles indicative of “house-keeping”-like genes (Figure S3). Transcripts with 284 

significant evidence for tissue-specific expression largely supported these cluster classifications 285 

with 32 of the 36 aforementioned “embryo”-specific genes in cluster 2 and all 24 of the MPC 286 

genes in cluster 3. Brain and liver clusters were less clearly supported with none of the four 287 

“brain” genes in cluster 1 and only one of the five “liver” genes in cluster 4; however, the 288 

number of transcripts in these clusters was so low that detectability may have been limited. 289 

Transcripts involved in progesterone signaling pathways were observed as highly expressed in 290 
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placental tissues. Overall, 242 transcripts with ORFs were identified as having GO-associations 291 

with progesterone regulatory pathways, including Protein DEPP (decidual protein induced by 292 

progesterone), suggesting that similar developmental patterns in cell differentiation and 293 

specialization maybe be occurring in fish as it does in mammals during pregnancy (Watanabe, et 294 

al. 2005). 295 

Repetitive Element Transcripts 296 

 Repetitive element gene expression was observed across various tissue samples and a 297 

subset of the gene atlas clusters. Of the clustered 454 expression data, the MPC cluster (#3) had 298 

the highest number of repetitive element transcripts, with a total of 9 transcripts; the “brain” 299 

cluster (#1) had the second highest repetitive element transcript count at five transcripts. Cluster 300 

2 (embryo), cluster 4 (liver), and cluster 5 (multiple tissues) had 2, 1, and 1 transcript(s), 301 

respectively. Only one transcript of these 18 transcripts found in the gene atlas clusters 302 

(identified as a transposable element tc1 transposase) showed no expression in placenta; all 17 303 

other transcripts were expressed (>50 FPKM) in MPC (eight of these transcripts were also 304 

identified as homologs to transposable element tc1 transposases). One transcript (a reverse 305 

transcriptase) was also identified using the aforementioned pairwise significance testing 306 

(DEseq2, p-value < 0.05) as more expressed in MPC as opposed to other tissues (FPKM MPC = 307 

155.7 vs. FPKM average_other_tissues = 5.07). The three MPC SOLiD libraries also indicated high 308 

levels of MPC gene expression of repetitive element-derived transcripts. From the SOLiD RNA-309 

Seq data, 98% of the 1,747 transcripts from the broader transcriptome reference sequence and 310 

originating from repetitive elements were expressed in either MPC or embryonic tissues, with 311 

227 predicted transcripts from 199 predicted genes expressed either only in the MPC or >5 fold 312 

greater expression in MPC over embryonic tissues (Table S3). Approximately an equal number, 313 

213 predicted transcripts and 199 predicted genes were found associated with embryonic tissues 314 

using the same criteria (Table S3). Eight transcripts had an FPKM value of >50 across and were 315 

identified as four gene families that included an envelope protein, a partial pol protein, a tc1 316 

transposase and a tc3 element. In addition to the gene classes mentioned above, other repetitive-317 

element transcripts were identified as retrotransposon-derived protein PEG10-like, 120.7 kDa 318 

protein in NOF-FB transposable element, retroviral polyprotein, and transposable element tcb1 319 

transposases. These transcripts appeared unique to the poeciliid lineage, showing between 50% 320 
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and 70% similarity to other repetitive element reference sequences from other species, with only 321 

retrotransposon-derived protein PEG10-like showing high similarity (88%) with reference 322 

sequences from the NCBI nr database. 323 

Transcripts with Unknown Function 324 

The majority of these clusters of highly expressed genes consisted of transcripts with no 325 

known annotation. Of the highly expressed transcripts described in these clusters, 79.4% 326 

(n=6260) were not identifiable via BLAST searches of SwissProt/UniProt, nr and nt databases 327 

(e-value < 1 x 10-5). A large number (786, or 12.6%, of the total unknowns) of these predicted 328 

transcripts had evidence for some type of repeat in their sequence, with 761 of the repeats 329 

identified as either a simple repeat or low complexity sequence, indicating that the sequence may 330 

be part of a non-coding region (Wren et al. 2000; Morgante et al. 2002; Liu et al. 2012). Many 331 

of these sequences are likely either species-specific 5’ or 3’ UTRs or previously undescribed 332 

non-coding RNAs. For example, another four of these transcripts in this cluster were associated 333 

with known non-coding RNA sequence from D. rerio (3 with miRNAs and 1 with a lncRNA); 334 

however, given that all of these sequences were much longer than miRNA size (312-982 bp) and 335 

not readily identifiable as miRNA precursors (Liu et al. 2015), they are more likely to be binding 336 

sites for such targets than host transcripts. Another 49 transcripts had predicted ORFs associated 337 

with them, but no BLAST annotation and thus appear to be novel protein sequences. Of these 49 338 

predicted proteins, two were identified as prospective signaling peptides, one of which was a 339 

member of the MPC gene cluster. The other “signaling” peptide and two other predicted proteins 340 

were identified as transmembrane proteins. The signaling/transmembrane protein was a member 341 

of the “house-keeping gene” cluster (but most highly expressed in liver), while the other two 342 

transmembrane proteins were associated with either the “brain” cluster or the “embryo” cluster. 343 

Notably, the “embryo” cluster member was also highly expressed in MPC (FPKMembryo=53.5; 344 

FPKMplacenta=39.5). Given exhaustive attempts to annotate these sequences and the fact that they 345 

are highly expressed transcripts, these sequences appear to be novel to this species.  346 

Protein Evolutionary Rates 347 

Reciprocal best BLAST hits of the cDNA coding sequence against the predicted and 348 

known cDNAs for six fish species with sequenced genomes revealed predicted P. prolifica 349 
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transcripts to have 12,631 orthologs with Danio rerio, 14,761 orthologs with Xiphophorus 350 

maculatus, 12,899 orthologs with Takifugu rubripes, 12,316 orthologs with Gadus morhua, 351 

13,388 orthologs with Gasterosteus aculeatus, and 13,282 orthologs with Oreochromis niloticus. 352 

Out of all of these orthologs, only 5,398 were shared orthologs for all seven species (including P. 353 

prolifica). Within this shared ortholog set, 963 ortholog alignments showed evidence of open-354 

reading frame indels in at least one species’ orthologous sequence, resulting in a frame-shift in 355 

predicted codon sequences (Table S5). These frame-shifts could be the result of errors in a given 356 

fish reference sequence or bona fide mutations in a specific species. While all species showed 357 

evidence for frame-shifts, transcript sequences from D. rerio, P. prolifica, and X. maculatus had 358 

a higher proportion of orthologs with an identified frame-shift than the remaining species (Table 359 

S5). Additionally, 978 ortholog groups were discarded from the PAML analysis due to 360 

ambiguous bases (“N”) in the reference sequences; this was a disproportionately acute issue with 361 

G. morhua sequences (912 orthologs).  362 

Within the final set of 3,457 orthologs employed in our PAML analyses, 2,298 sites 363 

across 404 predicted proteins were identified as undergoing positive selection. Of these sites, 364 

917, 1104, and 247 were associated with P. prolifica, X. maculatus, and both poeciliids, 365 

respectively (Figure 4, Table S6-S13). The predicted proteins carrying these sites covered a 366 

wide-range of biological functions (Figure S4) with no overall significant enrichment for any 367 

specific functional GO terms relative to the overall transcriptome annotation. Comparisons 368 

between the matrotrophic P. prolifica and lecithotrophic X. maculatus orthologs with sites under 369 

positive selection showed genes under positive selection in P. prolifica to be significantly 370 

enriched for a variety of GO terms over those found in X. maculatus (Figure 5, FDR p-value < 371 

0.05). The terms were generally associated with Biological Processes related to biosynthesis and 372 

regulatory processes, Molecular Functions terms related to nucleic acid binding, and Cellular 373 

Components terms related to the nucleus. Of these sites, 1,376 occurred in regions of these open-374 

reading frames that carried no discernable, previously known protein domain defined by Pfam 375 

database searches. Thus, these sites indicate possible novel functional domains for these proteins 376 

in P. prolifica.  377 

While the majority of proteins undergoing positive selection (67%) had less than five 378 

sites identified as under positive selection, many of the genes under positive selection exhibited 379 
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evidence for extensive rapid evolution (Table S7). For instance, the GRAM domain-containing 380 

protein 4, GRAMD4, carries 94 sites identified as evolving rapidly in X. maculatus. These sites 381 

account for 16% of the entire protein sequence for this gene. None of these sites overlap with the 382 

known GRAM protein domain, indicating that this region may be an important novel functional 383 

domain. GRAMD4 is a membrane protein known to be a tumor suppressor in apoptotic pathways 384 

associated with mitochondria (John et al. 2011). Insulin-like growth factor 1a receptor (IGF1RA) 385 

is another gene that has a large number of sites under positive selection in X. maculatus. Overall, 386 

96 sites within IGF1RA were shown to be under positive selection, with eight sites showing 387 

changes in both poeciliids, while the remaining 88 were restricted to X. maculatus (Figure 6). 388 

Protein lengths for IGF1RA vary among species. In our P. prolifica assembly, we have predicted 389 

only 711 residues for this protein, but our sequence may be incomplete as it lacks a 3’ UTR 390 

region. Within X. maculatus where there is a complete predicted gene sequence (1,332 aa), these 391 

96 sites account for ~7% of the gene sequence. Of the 96 sites, 48 are located within the Furin-392 

like domain of the protein, 36 are in one of the Receptor L-domains, one is in the Fibronectin 393 

type III domain, and 11 are found outside of any known protein domain.  394 

P. prolifica generally showed different genes under positive selection than X. maculatus 395 

(Figure 4; only 17.1% of the 404 orthologs under positive selection showed positive selection in 396 

both species). For example, RAB11 family-interacting protein 4-like (RAB11FIP4), one of the six 397 

types of RAB11 family-interacting proteins found in fishes (Figure S5), has 16 sites under 398 

positive selection in P. prolifica, but none in X. maculatus, while another member of that same 399 

gene family, RAB11 family-interacting protein 1-like (RAB11FIP1), has 5 sites under positive 400 

selection in X. maculatus and 1 in both X. maculatus and P. prolifica (the 2 species have 401 

different residues at that site). These sites may be associated with novel functional domains 402 

because each of these sites were identified as being extracellular for both RAB11FIP1 and 403 

RAB11FIP4 using the transmembrane identification algorithm TMHMM; however, none of these 404 

sites are located within any “known” functional domain (Figure 6). Patterns of gene evolution 405 

across fish species show that the rapid gene evolution may be likely facilitated by multiple 406 

incidences of gene duplication. Along with IGF1RA, RAB11FIP gene family members showed 407 

family-wide evidence for gene duplication events and both RAB11FIP genes that were shown to 408 

be under positive selection had expressed paralogs in the reference transcriptome sequence 409 

(Figure S5). These duplications likely occurred after the whole genome duplication event 410 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 27, 2018. ; https://doi.org/10.1101/289488doi: bioRxiv preprint 

https://doi.org/10.1101/289488
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 16 

experienced by all fishes (Jaillon et al. 2004) since there is only one copy of each family member 411 

found in the gar, Lepisosteus oculatus, (Figure S5) which has not undergone the teleost fish 412 

whole genome duplication event.  413 

DISCUSSION 414 

We have developed the most thorough transcriptome reference for a placental fish to 415 

date, providing a significant extension to earlier work in a sister taxa (Panhuis et al. 2011), in 416 

order to better understand the genetics and evolution of placentation in fish. Our sequence 417 

assembly has been extensively annotated for functional content and provides a solid foundation 418 

for establishing genomic resources for this genus. Identified transcripts cover diverse functions 419 

and, given the sampling of both poly-A selected and ribo-depeleted RNAs across multiple 420 

tissues, provide a comprehensive assessment of both protein-coding and non-coding RNA genes 421 

organism-wide. In addition to its general descriptive characteristics, this transcriptome reference 422 

has also provided us with important insights into the genetics of this placental species. 423 

There appears to be parallels in placental evolution in eutherian mammals and P. 424 

prolifica, highlighted by the extensive presence of expressed repetitive elements in fish MPC 425 

tissues. Eutherian mammals often utilize repetitive element components as functional 426 

contributions to placental and embryonic development, including endogenous retroviral envelope 427 

proteins (Mi et al. 2000), DNA transposon regulatory machinery (Lynch et al. 2011), and/or gag 428 

and pol domains of LTRs (Ono et al. 2001). A total of 98% of the transcripts associated with 429 

retroelements exhibited high expression to either placental or embryonic tissues. These 430 

transcripts included a variety of orthologous genes associated with placental function in 431 

mammals, such as PEG10, an imprinted gene expressed in the placenta of mammals. The 432 

extensive presence of progesterone signaling-related genes also parallels mammalian placental 433 

function, particularly functions associated with the corpus luteum (Gemmell 1995) and decidual 434 

cells (observed expression of Protein DEPP in fish MPC parallels that also described in 435 

mammalian placental and embryonic tissues (Watanabe et al. 2005)). Alternatively, expressed 436 

repetitive element transposases may be co-opted genes involved in more general gene regulation 437 

as transcription factors or DNA-binding proteins with centromeric functional roles (Feschotte 438 

2008). The identification of seemingly convergent gene expression of genetic elements of similar 439 

type, but different lineage and an apparent implication in the function of the independently 440 
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derived placental tissues of fish and mammals leads to a hypothesis that similar molecular and 441 

cellular adaptations are functioning in both systems. 442 

 There was also extensive evidence for placental tissue usage of novel genes and 443 

transcripts as functional components specific to this family of fishes and, possibly, restricted to 444 

this species. Tissue-specific patterns of high gene expression implicate many novel components 445 

to be active in the MPC. Most of these novel, predicted transcripts lacked homology to genes in 446 

any existing genetic resource, strengthening support for their designation as “novel”. In total, 447 

17.6% of the predicted protein sequences in the reference transcriptome could not be associated 448 

with any existing reference sequence via exhaustive comparison to known protein and coding 449 

sequence databases. Mis-assembly and/or chimeric reads could only explain a minority of these 450 

“unknowns” as the depth of coverage was generally high for these genes and, as evidenced by 451 

the clustering analysis, many of these transcripts are highly expressed. Many “unknowns” (~9%) 452 

were found to contain repetitive elements or have sequence homology with non-coding RNAs, 453 

implicating the co-option of rapidly evolving elements in the origins of this novel transcriptional 454 

diversity. As our pairwise ortholog identification shows, the closer the phylogenetic species 455 

comparison is, the greater the proportion of the transcriptome we could identify and annotate 456 

(e.g. 14,761 orthologs were found in X. maculatus vs. 12,631 orthologs in D. rerio for a 16.9% 457 

increase in the number of identified orthologs). Overall, novel transcripts would appear to be 458 

significant contributors to placental function in Poeciliopsis. This prediction is also congruent 459 

with mammalian placental systems, wherein many of the transcripts observed associated with 460 

placental development and function are derived from lineage-specific co-option and 461 

domestication of typically inactive retroelements (Emera and Wagner 2012). 462 

Role of Protein Evolution/Positive Selection 463 

 Using our reference sequence, we identified genes under positive selection in both 464 

matrotrophic (P. prolifica) and lecithotrophic (X. maculatus) species of livebearing poeciliid 465 

fishes. Overall, genes identified as under positive selection did not disproportionally represent 466 

any specific functional group, indicating that any genetic signal of adaptation identified in this 467 

analysis covered a wide-array of functional components in the Poeciliidae. However, the 468 

statistically significant differences in functional groups among the lecithotrophic X. maculatus, 469 

and the matrotrophic P. prolifica undergoing positive selection indicate that there may be 470 
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selective bias in the types of genes contributing to the rapid evolution of placentation in this 471 

group. The identification of genes related to biosynthesis and gene regulation, especially those 472 

associated with DNA-binding in nuclear regions, are significantly over-represented in genes 473 

under positive selection in our placental species. That these functional categories would be under 474 

strong selective pressure is consistent with the inherent requirement for placental tissues to 475 

develop quickly to support embryonic growth as well as the potential for parent-offspring 476 

intragenomic conflict. The unexpectedly extensive protein-coding sequence evolution is highly 477 

relevant to continued interest in the relative contribution of either changes at the protein-coding 478 

level or those in gene regulation contributing to evolutionary patterns (Hoekstra and Coyne 479 

2007; Lynch and Wagner 2008; Stern and Orgogozo 2008).  480 

While the majority of genes under positive selection contain only a few sites that are 481 

rapidly evolving, some genes exhibit evidence of surprisingly large regions of their coding 482 

sequence under Darwinian selection. Evidence of gene duplication would appear to facilitate the 483 

potential for positive selection. For example, while the insulin-like growth factor signaling axis 484 

is a key regulator of embryogenesis and fetal growth in all vertebrates (Schlueter et al. 2007), 485 

there is considerable redundancy in many of its components in fishes due to the ancient WGD 486 

(Jaillon et al. 2004). Specifically, there are multiple copies of insulin growth factor receptor 1 487 

(paralogs A and B). It has been established for the genus Poeciliopsis that IGF2 has evolved 488 

under positive selection that is hypothesized to be driven by parent-offspring conflict (O’Neill et 489 

al. 2007). While IGF2 is excluded in our analysis due to stringency filters (it has a large indel 490 

region in P. prolifica and the HSP alignment region was too short for inclusion), IGF1RA (also 491 

known to be expressed in fish gonadal tissues (Mei et al. 2014)) was shown to have extensive 492 

evidence for rapid evolution in this group with eight sites evolving rapidly in all Poeciliidae and 493 

84 sites under positive selection in just X. maculatus. These 92 sites cover both conserved 494 

protein domains and unannotated regions of the protein. The signal for positive selection on both 495 

IGF2 and IGF1RA in poeciliids may reflect the opposing parent-specific expression (imprinting) 496 

of IGF2 and its antagonistic receptor IGF2R in mammals. However, if conflict is driving this 497 

pattern, then it seems to be pushed to extremes in the non-placental X. maculatus, where IGF2 498 

has also been shown to be under positive selection (Schartl et al. 2013). This would appear to 499 

contradict assumptions of the hypothesis that parent-offspring conflict would be more extensive 500 

in placental species (Zeh and Zeh 2008); alternatively, this observation may indicate that conflict 501 
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manifests itself differently in the absence of material exchange between mother and fetus. For 502 

instance, selection may be acting on the duration of ovoviviparous development in X. maculatus, 503 

where different paternal genomes compete for gestational space within the mother, while the 504 

maternal genome dictates the length of her pregnancy and maximum occupancy of gestational 505 

spaces. 506 

While, speculatively, IGF1RA may exhibit evidence for selective pressure due to genetic 507 

conflict in the lecithotrophic X. maculatus, it is possible that other biological processes specific 508 

to viviparous reproduction are also under selection in P. prolifica. For example, the RAB11FIP 509 

genes show lineage-specific patterns of protein evolution, indicating different selection pressures 510 

in P. prolifica and X. maculatus. RAB11FIP-associated proteins are typically identified by the 511 

presence of a C-terminal Rab-binding domain and are involved in vesicle transport and recycling 512 

(Lindsay 2004), protein trafficking and sorting (Peden et al. 2004) and recycling of membranes 513 

in cytokinesis (Wallace et al. 2002). It is unclear precisely why these genes are under positive 514 

selection in these fish, but given their defined functions they may be responding to lineage-515 

specific selection pressure involving cellular transport related to the evolution of live-bearing. 516 

Gene duplication is likely providing a considerable contribution to the potential for these genes 517 

to undergo changes due to positive selection (e.g. Steinke et al. 2006). Just as in the IGF1R 518 

genes, each of these two RAB11FIP genes has a closely related paralogous copy that showed no 519 

evidence for positive selection (Figure S5). 520 

Overall, our study demonstrates patterns of both sequence and functional convergence of 521 

the poeciliid placenta with the therian mammalian placenta. In contrast to predictions that genetic 522 

components would be distinct to the poeciliid lineage given the relatively recent convergent 523 

derivation of the fish placenta from the pericardial sac and it highly dissimilar structural form, 524 

many of the genetic components that contribute to mammalian placental development and 525 

function are also involved in the fish placenta. While it could be predicted that at least some of 526 

the types of genes involved in placentation in both lineages would be similar with respect to 527 

cellular function and functional requirements of any placenta in maternal-fetal exchange, it is 528 

notable that we find parallel evolutionary mechanisms, beyond such cohorts of genes, evident in 529 

the co-option of retroelements and gene duplication as key contributors to the evolution of this 530 

complex organ.  531 
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 681 

Figure Legends: 682 

Figure 1. Distributions of various transcriptome annotations for Poeciliopsis prolifica reference 683 

transcriptome predicted transcripts (blue) and alternatively-spliced variant groups, representing 684 

“genes” (red). 140,709 transcripts (29.4% of total) exhibited identifiable homology (e-value < 1 685 

x 10-5) with protein reference sequences in the NCBI nr database and another 29,199 (6.1%) 686 

transcripts showed similarity (e-value < 1 x 10-5) with nucleotide reference sequence in the NCBI 687 

nt database. 16,277 (11.6%) and 6,772 (4.8%) transcripts are associated with transmembrane 688 

(TMHMM) and signaling (SignalP) proteins. 8,181 showed greater than 70% coverage of known 689 

UniProtKB/Swiss-Prot orthologs; 3,785 transcripts were identified as containing the complete 690 

ORFs of conserved orthologs in UniProtKB/Swiss-Prot database (Table S2).  691 

Figure 2. Level 2 gene ontology term distributions for reference transcriptome of Poeciliopsis 692 

prolifica. 693 

Figure 3. Three-dimensional gene atlas derived from gene expression data for maternal 694 

placental/ovarian complex (MPC), late-stage embryonic, brain, and liver tissue. Proximity in 695 

space indicates similarity in gene expression profile across tissues. Clusters were defined using 696 

MCL clustering algorithm on highly expressed genes (>50 FPKM in at least on tissue type) from 697 

Roche 454 RNA-seq. Clusters 1-4 are mostly, though not exclusively, made up of transcripts that 698 

are tissue-specifically expressed, while clusters 5-9 consist of transcripts that are highly 699 

expressed across multiple tissues. Each of these clusters (1-9), had 2,940, 1,734, 1,638, 373, 65, 700 

30, 28, 25, and 5 members, respectively. 701 

Figure 4. Venn diagrams showing patterns of shared and unshared proteins and sites within 702 

protein under positive selection among the three foreground taxon groupings tested with PAML. 703 

Figure 5. Distribution of GO Terms that were differentially represented in genes identified to be 704 

under positive selection in the matrotrophic/placental(PL) Poeciliopsis prolifica and 705 

lecithotrophic(LC) Xiphophorus maculatus. GO terms include categories from all three main 706 

ontologies (Biological Processes; Molecular Functions; Cellular Components). 707 
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Figure 6. Diagrams of insulin growth factor-1 receptor-A (IGF1RA) from Xiphophorus 708 

maculatus, and RAB11 family-interacting protein 1-like and 4-like (RAB11FIP1 and 709 

RAB11FIP4, respectively) from Poeciliopsis prolifica showing known protein domains, indel 710 

regions among species (identified using regions of multiple sequence alignment), and sites 711 

identified as being under positive selection from PAML analysis in live-bearing poeciliids, the 712 

lecithotrophic Xiphophorus maculatus, or the matrotrophic Poeciliopsis prolifica. 713 
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Figure S1. A and B. Intact ovary removed from gravid female. Scale bar = 0.5mm. B. Outlines of the different 
embryos within the ovary shown in A. a. maternal/placental ovarian tissue complex (MPC) with late stage 
embryo removed, b. Very Late-eyed stage embryo (i.e. nearly full term, Stage 6), c. Early-eyed stage embryo 
(Stage 3), d.-f. Late-eyed stage embryo (Stage 5).
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Figure S2. Species tree used in PAML. Tested foregrounds 
of live-bearing Poeciliids generally, lecithotrophic 
live-bearers, and matrotrophic live-bearers using the clade of 
Poeciliids, the Xiphophorus maculatus lineage, and the 
Poeciliopsis prolifica lineage, respectively for each case.
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Figure S3. Average expression in fragments per kilobase per million base pairs 
(FPKM) in each tissue grouped by cluster genes indicating which clusters are associ-
ated with which tissues. Standard error bars shown. MPC indicates maternal placen-
tal/ovarian complex tissue sample.
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fied as having sites under positive selection in poeciliids.
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Figure S5. Phylogenetic distance-based gene-family tree for RAB11 family-interacting proteins (RAB11FIPs) in fishes. 
Each color represents different gene family member protein group. RAB11FIPs found in Poeciliopsis prolifica in enlarged 
fonts. Proteins with sites found to be under positive selection in PAML analysis in bold italics; specifically, RAB11FIP1 
in P. prolifica and X. maculatus and RAB11FIP4 in P. prolifica only.
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