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Understanding living cells as integrated systems, a challenge central to modern biology, is

complicated by limitations of available imaging methods. While fluorescence microscopy can

resolve subcellular structure in living cells, it is expensive, slow, and damaging to cells. Here,

we present a label-free method for predicting 3D fluorescence directly from transmitted light

images and demonstrate that it can be used to generate multi-structure, integrated images.

The various imaging methods currently used to capture details of cellular organization all

present trade-offs with respect to expense, spatio-temporal resolution, and sample perturbation.

Fluorescence microscopy permits imaging of specific proteins and structures of interest via label-

ing but requires expensive instrumentation and time consuming sample preparation. Critically,

samples are subject to significant phototoxicity1 and photobleaching2, creating a tradeoff between

the quality of data and timescales available to live cell imaging. Furthermore, the number of

simultaneous fluorescent tags is restricted by both spectrum saturation and cell health, limiting

the number of parallel labels which may be imaged together. Transmitted light microscopy, e.g.,

bright-field, phase, DIC, etc., in contrast, is a relatively low-cost, dye-free modality with greatly
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reduced phototoxicity and simplified sample preparation. Although valuable information about

cellular organization is apparent in transmitted light images, they lack the specificity inherent in

fluorescence labeling. A method which could combine the specificity of fluorescence microscopy

with the simplicity, modest cost, and much lower toxicity of transmitted light techniques would

present a potentially groundbreaking tool for biologists to garner insight into the integrated activi-

ties of subcellular structures.

Here, we present a convolutional neural network (CNN)-based tool (Fig. 1), employing

a U-Net architecture3 (methods, Supplementary Fig. 1) to model the relationships between 3D

transmitted light (bright-field and DIC) and fluorescence images corresponding to several major

subcellular structures (i.e., cell membrane, nuclear envelope, nucleoli, DNA, and mitochondria).

We show that our method can train a model to learn this relationship for the structure of interest

given only spatially registered pairs of images, even with a relatively small image set for training

(30 image pairs per structure). The resultant model can, in turn, be used to predict a 3D fluores-

cence image from a new transmitted light input. Model predictions for a variety of subcellular

structures can be combined, enabling multi-channel, integrated fluorescence imaging from a single

transmitted light input (Fig. 1d, e).

While the biological detail that can be observed in predicted images varies by subcellular

structure, many of the predicted images are quantitatively and qualitatively similar to ground truth

fluorescence images in 3D. Nuclear structures are well-resolved: images produced by the DNA

model (Fig. 1b) depict well-formed and separated nuclear regions as well as finer detail, including
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chromatin condensation just before and during mitosis, and the nuclear envelope model predic-

tions (Supplementary Fig. 2) provide a high-resolution localization of its 3D morphology. The

nucleoli model also resolves the precise location, number and morphology of individual nucleoli.

Models for several other structures also perform favorably upon visual inspection as compared to

ground-truth images. For example, the mitochondria model correctly identifies the regions of cells

with high numbers of mitochondria as well as regions which are more sparsely populated. In many

cases, individual mitochondria visible in the fluorescence data are also observable in predictions

(Supplementary Fig. 2). While predictions for microtubules and the endoplasmic reticulum do not

resolve individual filaments or detailed morphology, respectively, these models successfully cap-

ture broader 3D localization patterns of those structures. Given these promising results, we trained

the DNA model with an extended training procedure (DNA+) to evaluate whether our results could

be improved with additional training images and iterations. As expected, performance of the model

improved (methods, Fig. 1c, Supplementary Fig. 2). Most critically, all of these details can be ob-

served together in an integrated multi-channel prediction derived from a single transmitted light

image (Fig. 1d, Supplementary Fig. 2 and Supplementary Video). Examples for all fourteen

subcellular labeled structure models’ test set predictions can be found in Supplementary Fig. 2.

The models’ performance was quantified via the Pearson’s correlation coefficient on new pre-

dicted and ground truth fluorescence image pairs (Fig. 1c) from an independent test set (methods).

A theoretical upper bound was determined for ideal model performance based upon an estimate of

the signal-to-noise ratio (SNR) of the fluorescence images used for training (methods). Individual

structure model performance is well-bounded by this limit (Fig. 1c).
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To assess whether structure models trained solely on static images may feasibly be used to

predict temporal fluorescence image sequences from transmitted time-series imaging, we applied

models for several structures to a single transmitted light 3D time-series (Fig. 1e, Supplemental

Video 1). In addition to simultaneous visualization of several subcellular structures, characteristic

dynamics of mitotic events, such as the reorganization of the nuclear envelope and cell membrane,

are evident in the predicted multi-channel time-series (Fig. 1d). Due to the increased photoxicity

which can occur in extended, live cell time-series fluorescence imaging, this information would

otherwise be difficult to obtain, particularly in 3D. This result indicates that the models may be

sufficiently robust for time-series predictions for which no fluorescence imaging ground truth is

available, potentially greatly increasing the timescales over which cellular processes can be visu-

alized and measured.

This powerful method has inherent limitations and may not currently be well suited for all

applications. Because models must learn a relationship between distinct but correlated imaging

modes, predictive performance is contingent upon the existence of this association. In the case of

desmosomes or actomyosin bundles, for example, model performance for the presented training

protocol was comparatively poor, perhaps due to a weaker association between transmitted light

and fluorescence images of these structures (Fig. 1c, Supplementary Fig. 2). Also, the quality

and quantity of training data will likely influence accuracy of the model predictions, and we can-

not assess a priori how models will perform in biological contexts for which there are very few

or no examples in training or testing data. Specifically, models pre-trained using one cell type

(e.g. hiPSC) may not perform as well when applied to inputs with drastically different cellular
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morphologies (e.g. cardiomyocytes). Furthermore, predictions from inputs acquired with imaging

parameters identical to those used to compose a model training set are likely to provide the most ac-

curate results as compared to ground truth data. For example, we successfully trained fluorescence

models using both bright-field and DIC modalities. However, it would not be advisable to use a

model on inputs from one modality, when that model was trained with a different modality. More

subtle parameters can also matter, for example we observed a decrease in model accuracy when

predicting fluorescence images from input transmitted light stacks acquired with shorter inter-slice

intervals (⇠0.13 s) than that in training data (⇠2.2 s) (data not shown). Ultimately, when eval-

uating the utility of predicted images, the context for which those images will be used must be

considered. For instance, DNA or nuclear membrane predictions may have sufficient accuracy

for application to nuclear segmentation algorithms, but the microtubule predictions would not be

effective for assaying rates of microtubule polymerization (Fig. 1e, Supplementary Fig. 2).

Transforming one imaging modality into another could be useful to a variety of imaging

challenges, such as cross modal image registration, because it is challenging to automatically reg-

ister two modalities that have drastically different contrast mechanisms. To demonstrate the utility

of this method to solve such problems, we applied it to the registration of array tomography data4

of ultrathin brain sections (Fig. 2). In this technique, electron micrographs (EM) and ten chan-

nels of immunofluorescence images, including myelin basic protein (MBP-IF), are obtained from

the same sample but from two different microscopes and thus are not natively spatially registered.

Analogous to the relationship between transmitted light and fluorescence, while myelin wraps are

apparent in both modalities, the EM image lacks the specificity of the MBP-IF (Fig. 2). EM and
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IF images can be registered by hand through identification of corresponding locations and fitting

a similarity transformation, resulting in multi-channel conjugate EM images4. However, manual

registration is a tedious, time-consuming process. While automation would speed data processing,

there have been no successful attempts to date to automate this process via conventional statistical

image registration techniques. We trained a 2D version of the label-free tool on manually registered

pairs of EM and MBP-IF images and used hold-out EM images as input to predict the correspond-

ing MBP-IF images (Fig. 2a); conventional intensity-based matching techniques (methods) were

then used to register each MBP-IF prediction (and thus the EM image) to a target MBP-IF tile

(Fig. 2b). Successful registration was performed in 86 of 90 image pairs, suggesting the tool’s util-

ity may be extended to different imaging modalities and additional downstream image processing

tasks.

The label-free methodology presented here has wide potential for use in many biological

imaging fields. Primarily, it may be possible to reduce or even eliminate routine capture of some

images in existing imaging and analysis pipelines, permitting the same throughput in a far more ef-

ficient and cost-effective manner. Notably, data used for training requires little to no pre-processing

and relatively small numbers of paired examples, drastically reducing the barrier to entry associ-

ated with some machine learning approaches. Areas where this approach may prove of particular

value include image-based screens for cellular phenotypes5 and pathology workflows requiring

specialized staining6. The method is additionally promising in cases wherein generating a com-

plete set of simultaneous ground-truth labels is not feasible, such as with the live cell time-series

imaging example presented here. Finally, the tool permits the generation of integrated images by
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which interactions among cellular components can be investigated. This implies exciting potential

for probing coordination of subcellular organization as cells grow, divide, and differentiate, and

signifies a new opportunity for understanding structural phenotypes in the context of disease mod-

eling and regenerative medicine. More broadly, the presented work may suggest an opportunity

for a key new direction in biological imaging research: the exploitation of imaging modalities’

indirect but learnable relationships to visualize biological features of interest with ease, low cost,

and high fidelity.

Methods

Data for modeling training and validation The 3D light microscopy data used to train and test

the presented models consists of z-stacks of genome-edited human induced pluripotent stem cell

(hiPSc) lines, each expressing a protein endogenously tagged with either mEGFP or mTagRFP

that localizes to a particular subcellular structure7. The EGFP-tagged proteins and their corre-

sponding structures are: alpha-tubulin (microtubules), beta-actin (actin filaments), desmoplakin

(desmosomes), lamin B1 (nuclear envelope), fibrillarin (nucleoli), myosin IIB (actomyosin bun-

dles), sec61B (endoplasmic reticulum), STGAL1 (Golgi apparatus), Tom20 (mitochondria) and

ZO1 (tight junctions). The cell membrane was labelled by expressing RFP tagged with a CAAX

motif. Samples were prepared by plating cells on 96-well plates and allowing them to propa-

gate for four days. CellMask plasma membrane stain (ThermoFisher) and NucBlue DNA stain

(ThermoFisher) were added to the wells to final concentrations of 3⇥ and 1⇥ respectively. Cells

were incubated at 37 �C and 5% CO2 for 10min and gently washed with pre-equilibrated phenol
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red-free mTeSR1. Cells were imaged immediately following the wash step for up to 2.5 h on a

Zeiss spinning disk microscope. Images of cells with EGFP tags were acquired at 100⇥, with

four data channels per image: transmitted light (either bright-field or DIC), cell membrane labeled

with CellMask, DNA labeled with Hoechst, and EGFP-tagged cellular structure. Respectively,

acquisition settings for each channel were: white LED, 50ms exposure; 638 nm laser at 2.4mW,

200ms exposure; 405 nm at 0.28mW, 250ms exposure; 488 nm laser at 2.3mW, 200ms expo-

sure. The CAAX-RFP-based cell membrane images were taken with a 63⇥ objective, a 561 nm

laser at 2.4mW, and a 200ms exposure. We did not use the CellMask images in this report be-

cause the CAAX tagging provided higher quality cell membrane images. Time-series data were

acquired using the same imaging protocol as for acquisition of training data but on unlabeled,

wild-type hiPSCs and with all laser powers set to zero. Images were acquired with Zeiss ZEN

Blue 2.3 software at a bit-depth of 16 and converted to floating-point precision values before pro-

cessing. The images were resized via cubic interpolation such that each voxel corresponded to

0.29 µm⇥ 0.29 µm⇥ 0.29 µm. Pixel intensities of all input and target images were independently

z-scored. We paired fluorescence and corresponding transmitted light channels for each structure,

resulting in 13 image collections. For each collection, we allocated 30 image pairs to a training

set and all the remaining image pairs to a test set. The training set for the DNA+ model was

supplemented with additional images for a total of 540 image pairs.

For conjugate array tomography data 4, 16-bit images of 50 ultra-thin sections were taken

with a wide-field fluorescence microscope using 3 rounds of staining and imaging to obtain 10-

channel immunofluorescence (IF) data (including myelin basic protein, MBP) at 100 nm per pixel.
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5 small regions were then imaged with a field emission scanning electron microscope at a bit-

depth of 8 to obtain high resolution electron micrographs at 3 nm per pixel. Image processing

steps independently stitched the IF sections and one of the EM regions to create 2D montages

in each modality. Each EM montage was then manually registered to the corresponding MBP

channel montage with TrakEM28. To create a training set, 40 pairs of these registered EM and

MBP montages were resampled to 10 nm per pixel. For each montage pair, a central region of size

2544 px⇥ 2352 px was cut out and used for the resultant final training set. Pixel intensities of the

images were converted to floating-point precision were z-scored.

Model architecture description and training procedure We employed a convolutional neural

network (CNN) based on various U-Net/3D U-Net architectures3, 9 (Supplementary Fig. 1). In

recent years, they have been used in biomedical imaging for a wide range of tasks, including

image classification, object segmentation10, and estimation of image transformations11. The model

consists of layers that perform one of three convolution types, followed by a batch normalization

and ReLU operation. The convolutions are either 3 pixel convolutions with a stride of 1-pixel

on zero-padded input (such that input and output of that layer are the same spatial area), 2-pixel

convolutions with a stride of 2 pixels (to halve the spatial area of the output), or 2-pixel transposed-

convolutions with a stride of 2 (to double the spatial area of the output). There are no normalization

or ReLU operations on the last layer of the network. The number of output channels per layer are

shown in Supplementary Fig. 1. The 2D and 3D models use 2D or 3D convolutions, respectively.

Due to memory constraints associated with GPU computing, we trained the model on batches

of either 3D patches (32 px⇥ 64 px⇥ 64 px, z-y-x) for light microscopy data or on 2D patches
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(256 px⇥ 256 px, y-x) for conjugate array tomography data, which were randomly subsampled

uniformly both across all training images as well as spatially within an image. The training proce-

dure took place in a typical forward-backward fashion, updating model parameters via stochastic

gradient descent (backpropagation) to minimize the mean squared error between output and target

images. All models presented here were trained using the Adam optimizer12 with a learning rate

of 0.001 and with betas 0.5 and 0.999 for 50,000 mini-batch iterations. We used a batch size of 24

for 3D models and of 32 for 2D models. Running on a Pascal Titan X, driver version 375.39, each

model completed training in approximately 16 hours for 3D models and in 7 hours for 2D models.

Training of the DNA+ model was extended to 616,880 mini-batch iterations. For prediction tasks,

we minimally crop the input image such that its size in any dimension is a multiple of 16, to accom-

modate the multi-scale aspect of the CNN architecture. Prediction takes approximately 1 second

for 3D images and 0.5 seconds for 2D images. Our model training pipeline was implemented in

Python using the PyTorch package (http://pytorch.org) version 0.2.0.post2.

3D light microscopy model results analysis and validation For 3D light microscopy applica-

tions, model accuracy was quantified by the Pearson’s correlation coefficient between the model’s

output and independent, ground truth test images. For each model, a corresponding estimate of

noise was developed based upon image stacks taken of unlabeled, wild-type hIPSC cells for which

microscope settings were identical to those used during labeled acquisitions. For each image pre-

diction, we calculated a theoretical upper bound of model performance, based upon the assumption

that the variance of the unlabeled image stacks is a lower bound on the variance of uncorrelated,

random fluctuations N in the ground truth images T , which should not be predictable, such that at
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each voxel location: Tx,y,z = Nx,y,z+Sx,y,z, where S is the predictable signal in the image. The best

possible model would output exactly S, and thus the highest correlation between a model’s output

and the target is the correlation between T and S which can be calculated to be Cmax =
q

SNR
1+SNR

where SNR = <S2>
<N2> .

Registration across imaging modalities Here we employed a 2D version of our tool trained on

the montage pairs described above in ’Data for modeling training and validation’. For the test

set, each of the individual EM images (without montaging) from all five regions (a total of 1500

images) was used as an input to directly register to the corresponding MBP image in which it

lies. For this, each image was first downsampled to 10 nm per pixel without any transformations

to generate a 1500 px⇥ 1500 px image. This was then reflection padded to 1504 px⇥ 1504 px as

in3, run through the trained model, and then cropped back to the original input size to generate

an MBP prediction image. This MBP prediction image was first roughly registered to MBP IF

images using cross-correlation-based template matching for a rigid transformation estimate. Next,

the residual optical flow13 between the predicted image transformed by the rigid estimate and the

MBP IF image was calculated, which was then used to fit a similarity transformation that registers

the two images (implemented using OpenCV14). 90 prediction images were randomly selected

from the larger set, where more than 1% of the predicted image pixels were greater than 50%

of the maximum intensity, to ensure that the images contained sufficient MBP content to drive

registration. Ground truth transformation parameters were calculated by two independent authors

on this subset of EM images by manual registration (3-4 minutes per pair) to the MBP IF images

using TrakEM2. Differences in registrations (between authors and between the algorithm estimate
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and one of the authors) was calculated by the average difference in displacement across an image,

as measured in pixels of the target IF image.

Software availability Software and instructions for training the models is available at https:

//github.com/AllenCellModeling/pytorch_fnet.

Data availability Data used to train the 3D models is available upon request.
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Figure 1: Label-free imaging tool pipeline. a) Given the input of transmitted light and fluorescence image

pairs, the model is trained to minimize the mean squared error (MSE) between the fluorescence ground-

truth and output of the model. b) Example of a 3D input transmitted light image, a ground-truth confocal

DNA fluorescence image, and a tool prediction. c) Distributions of the image-wise correlation coe�cient

(r) between target and predicted test images from models trained on images for the indicated subcellular

structure, plotted as a box across 25th, 50th and 75th percentile, with whiskers indicating the last data

points within 1.5⇥ interquartile range of the lower and upper quartiles. For a complete description of

structure labels, see Methods. Black bars indicate maximum correlation between the target image and a

theoretical, noise-free image (Cmax; details of metric in Methods). d) Di↵erent models applied to the same

input and combined to predict multiple structures. e) Predicted localization of DNA (blue), cell membrane

(red), nuclear envelope (cyan) and mitochondria (orange) of a sample using bright-field input images taken

at 5-minute intervals. The center z-slice is shown. A mitotic event, along with stereotypical reorganization

of subcellular structures, is clearly observed. All results are independent from training data except where

explicitly labeled.
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Figure 2: Automating registration across imaging modalities. a) Electron micrographs are manually reg-

istered to myelin basic protein immunofluorescence (MBF IF) images, to produce training data for a 2D

model that can then predict MBP IF directly from electron micrographs. b) The trained 2D model was

subsequently used in an automated registration workflow. Model predictions were registered via a similarity

transformation to MBP IF images by searching with conventional automated computer vision techniques

(see Methods for details). The figure shows only a 20 µm⇥ 20 µm region from the 200 µm⇥ 200 µm MBP-IF

search image. c) Histogram of average distance between automated registration and manual registration as

measured across 90 test images, in units of pixels of MBP IF data. This distribution has an average of 1.16

± 0.79 px, where manual registrations between two independent annotators di↵ered by 0.35 ± 0.2 px.
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batch normConv 3 px, stride 1 ReLU
batch normConv 2 px, stride 2 ReLU

Concatenate
batch normTransposed Conv 2 px, stride 2 ReLU

Supplementary Figure 1: Diagram of CNN architecture underpinning presented tool. There are no batch

normalization or ReLU layers on the last layer of the network, and the number of output channels per layer

is shown above the box of each layer. Figured adapted from Ronneberger et al.
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Supplementary Figure 2: Additional labeled structure models and predictions for 3D light microscopy.

The top row shows results for the tool trained to predict DNA fluorescence images (as further described

in methods). From left, a single z-slice of a 3D transmitted light input image; a ground-truth (”target”,

observed) fluorescence image; an image predicted by the DNA model under standard training (as described

in methods); and an image predicted by an extended version of the DNA model (DNA+). The following 6

rows below are divided into two columns, each with paired images of a correspondingly labeled structure. In

each column, leftmost images show a single z-slice of a ground-truth (”target”, observed) fluorescence image

for the labeled structure, while images on right reveal an image predicted by the structure model under

standard training (as described in methods). From 2nd row left, moving across columns and down rows,

these structure models are presented by performance (as detailed in methods and as can be seen in Figure

1c): nucleoli, nuclear envelope, microtubules, actin filaments, mitochondria, cell membrane, endoplasmic

reticulum, nuclear envelope (DIC), actomyosin bundles, tight junctions, Golgi apparatus, and desmosomes.

All models trained on and used bright-field images as inputs (not shown), except where noted (nuclear

envelope, DIC). Z-slices were chosen in a curated fashion so as to highlight the structure of interest associated

with each model. Image-slice pairs were identically contrast stretched, such that black and white values

corresponded to the 0.1 and 99.9th percentiles of the target image intensity, respectively. All images shown

are independent from model training data. Scale bar is 20µm.
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Supplemental Video 1: 3D rendering of light microscopy prediction results. Movie illustrates the relationship

between 3D time lapse transmitted light input and multiple prediction images. First, individual z-plane

images from a 3D transmitted light are shown in succession. Next, individual predictions are shown overlaid

in color in the following order: DNA (blue), nucleoli (cyan), nuclear envelope (yellow), cell membrane

(magenta), and mitochondria (green). Next, a composite rendering of all channels is shown, followed by a

time lapse of single plane from the dataset shown in Fig. 1e. Finally, a volumetric 3D rendering is shown and

played through the individual timepoints 4 times, alternating between showing mitocondria and membrane,

along with the nuclear related structures. The boxed outline depicts the extent of the field of view of this

volume which encompasses 97µm⇥ 65 µm⇥ 19 µm.
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