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Abstract

Planar cell polarity (PCP), the ability of a tissue to po-
larize coherently over multicellular length scales, pro-
vides the directional information that guides a multi-
tude of developmental processes at cellular and tissue
levels. While it is manifest that cells utilize both intra-
cellular and intercellular mechanisms, how they couple
together to produce the collective response remains an
active area of investigation. Exploring a phenomeno-
logical reaction-diffusion model, we predict a crucial,
and novel, role for cytoplasmic interactions in the large-
scale correlations of cell polarities. We demonstrate
that finite-range (i.e. nonlocal) cytoplasmic interactions
are necessary and sufficient for the robust and long-
range polarization of tissues — even in the absence of
global cues — and are essential to the faithful detection
of weak directional signals. Strikingly, our model re-
capitulates an observed influence of anisotropic tissue
geometries on the orientation of polarity. In order to fa-
cilitate a conversation between theory and experiments,
we compare five distinct classes of in silico mutants with
experimental observations. Within this context, we pro-
pose quantitative measures that can guide the search for
the participant molecular components, and the identifi-
cation of their roles in the collective polarization of tis-
sues.

1 Introduction

The development of a multicellular organism demonstrates
the striking coupling of cellular states across large dis-
tances. While the study of gene expression has been the
focus of research over the last 50 years, how these cel-
lular states are coupled remains less explored, and at the
forefront of research in developmental biology. As such,
the coordination of cellular processes (e.g. cell division
and rearrangements) on multicellular length scales are cru-
cial to the emergent phenotype of an organism and re-
quires the faithful transduction of directional information
across tissues. Planar cell polarity (PCP) is understood to
be the mechanism responsible for such tissue-wide signal-
ing [1–8]. At the cellular level, polarity is defined as the
asymmetric (i.e. anisotropic) localization of membrane as-
sociated proteins on the apicolateral cell junctions which is
prompted and reinforced, in part, through cytoplasmic in-
teractions and feedback loops [1, 3–6, 8–11]. Long-range
polarization, then arises as a consequence juxtacrine sig-

naling through which adjacent cells manage to align their
polarities. In spite of the commonly accepted picture of
the coupling between the cytoplasmic and intercellular in-
teractions, the underlying mechanisms required for estab-
lishing the long-range planar polarity is yet to be eluci-
dated [1, 3, 12, 13]. These intra- and intercellular interac-
tions are largely carried out via two PCP pathways: “core-
PCP” and “Ft/Ds” [3,6–8]. In order to construct our model,
we adopt the core-PCP as a generic pathway, and use it as
a reference system to clarify the phenomenology.

Molecular components. The core-PCP pathway consists
of six known proteins: Fz and Vang, which form complexes
by binding to Fmi on the cell-cell junctions. Through for-
mation of transmembrane Fmi-Fmi homodimers, the two
complexes of Fz-Fmi and Fmi-Vang bind asymmetrically
across the lateral junctions of two adjacent cells and form
heterodimers [9, 11]. Additionally, within a given cell, Fz
and Vang leverage the physical interaction between their re-
spective cytoplasmic proteins (Dsh/Dgo for Fz, and Pk for
Vang) to segregate and localize to the opposite sides of the
cell [14,15]. Although the presence of Dsh, Dgo, and Pk is
found to be unnecessary for intercellular interactions, they
facilitate segregation, and their absence impairs the long-
range polarization [16–18]. One of the main goals of this
paper is to address the significance of such cytoplasmic in-
teractions in cellular polarization, as well as their interplay
with juxtacrine signaling in establishing large-scale polar-
izations.

Global Cues. Although the emergence of long-range po-
larization occurs through cell-cell interactions, external
cues are believed to be necessary for fixing the direction
of polarization [3, 4, 6, 18, 19]. The graded distribution of
regulatory factors across a tissue, morphogens [6, 20, 21],
mechanical signals [4, 5, 8, 13, 22–25], and geometric cues
[26–30], are speculated to provide such global cues. Elon-
gation in particular, has been observed to induce polariza-
tion either parallel or perpendicular to the axis of elonga-
tion. At a subcellular level, the polarization of microtubules
and vesicle trafficking is also proposed to be acting as a
bias to determine PCP orientation [29,31–34]. In the mam-
malian cochlea and skin [19] polarization is perpendicu-
lar to the elongation axis. In mice, elongation along the
medial-lateral axis has been suggested to orient the polar-
ization along the anterior-posterior axis [30]. The present
model aims to bring a mechanistic understanding to the po-
tential role that cell geometry can play in the polarization
of a patch of cells.
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Geometry and timescales. Several studies (like [35–37])
have proposed underlying physical mechanisms of PCP
in ordered and isotropic systems. Establishment of long-
range polarization during the course of development, how-
ever, can precede the formation of an ordered lattice, e.g.
margin-oriented polarity in the prepupal Drosophila wing
[5,12,24], suggesting that it is important to understand how
PCP manages to propagate through disordered as well as
elongated tissues. Quantitative measurements, in particu-
lar FRAP measurements of PCP proteins suggest turnover
timescales to be much shorter than the timescales of cell re-
arrangements [ref: Personal communication Bellaiche].
Thus, in order to study the characteristic patterns of PCP, it
suffices to focus on a frozen geometry of tissue [5].
Physical considerations. We find it crucial to clarify the
term “long-range”, used frequently throughout this paper.
The Mermin-Wagner theorem states that “true long-range”
ordering is prohibited in 2D systems with continuous (e.g.
rotational) symmetries, except at zero stochastic noise. The
long-range order is referred to as the algebraic decay of
correlation functions with distance. Below we will see that
the magnitude of noise in our system drops as 1/

√
Nmol.,

with Nmol. the number of molecules participating in bind-
ing/unbinding reactions. Thus in the limit of large Nmol. →
∞, the long-range order is achieved. For finiteNmol., a state
of quasi-long range order might exist.
Outline and Results. The objectives of this paper are
threefold. First, we describe a phenomenological reaction-
diffusion model that includes the cytoplasmic interactions
of like and unlike complexes, which couple a cell’s geom-
etry to its polarity. We investigate the role of cytoplasmic
interactions in establishing the long-range polarization, and
show that nonlocal interactions mediated by diffusive cy-
toplasmic agents promote the segregation of unlike com-
plexes and are crucial to stabilizing the global alignment
of polarity. Furthermore we demonstrate that in elongated
tissues, nonlocal interactions stabilize the polarization axis
perpendicular to that of elongation. Finally, to demon-
strate the significance of nonlocal interactions, and promote
a conversation between theory and experiments, we study
five types of in silico mutants within the context of the
model and identify phenotypic similarities with observed
mutants.

2 Model

We introduce a set of reaction-diffusion (RD) equations that
describe the dynamics of heterodimer binding-unbinding at
cell-cell junctions. Each cell is assumed to contain a finite
pool of proteins A and B, which in their active state bind
and form dimers at cell-cell junctions. The linear densi-
ties of total (bound plus free) A and B, are denoted by a0
and b0, and are assumed to be the same for all cells across
the tissue. Assuming that transcriptional timescales far ex-
ceed the kinetic timescales of protein-protein interactions,
a0 and b0 can be treated as time-independent.

At any point r on a junction shared by cells i and j, the
concentrations of bound A and B localized on the i side
are denoted by uij(r) and vij(r), respectively. Consis-
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Figure 1: A schematic of the relevant cytoplasmic interactions.
Membrane proteins A and B asymmetrically bind the transmem-
brane proteins T, and form the dimers A-T : T-B across the junc-
tions. At the junction shared by cells 1 and 2, two dimers of op-
posite directions are shown. The nonlocal interactions mediated
by cytoplasmic proteins, couple the bound proteins A and B on
different junctions. All pairs of complexes in a given cell, interact
with one another, with exponentially decaying magnitudes; the
like (unlike) complexes promote (inhibit) the membrane localiza-
tion of one another. In order to keep the picture clear, we have not
shown all the pairwise interactions, but only the generic ones.

tently with this notation, the corresponding concentrations
on the j side are denoted by uji(r) and vji(r), such that
uij(r) = vji(r). The key assumption in this model is that
within each cell, the formation of a dimer at a point r is
nonlocally enhanced by like dimers, and its dissociation is
enhanced nonlocally by opposite dimers. In short, bound
A nonlocally helps stabilizing of A and destabilizing of B;
and vice versa. This represents an indirect positive feed-
back between A and B in the adjacent cells: promoting (in-
hibiting) A in the same cell indirectly brings more (less) B
to the other side of the junction. The nonlocal interactions
are diffusively mediated through the cytoplasm; character-
ized by a single length-scale. The RD equations governing
the binding/unbinding dynamics read:

duij(r)
dt

= κafi b
f
j

(
1 + α

∑
{k}i

∫
i∩k

dr′Kuu(r− r′)uik(r′)
)

− γuij(r)
(

1 + β
∑
{k}i

∫
i∩k

dr′Kuv(r− r′)vik(r′)
)

+ η(r, t). (1)

The notations adopted here are as follows:
∑
{k}i is the

summation over all neighbors {k} of cell i; and
∫
i∩k dr′,

represents integration over the junction shared by cells
i, k. In the above equation, the first and second terms
on the r.h.s. correspond to the formation and dissocia-
tion rates, respectively. κ is the bare rate of formation.
Based on the assumption that diffusion of unbound pro-
teins is rapid we posit that the pool of free proteins are
uniformly distributed on the perimeter of a cell. Therefore,
the formation rate of uij(r) is proportional to the densi-
ties of free A in cell i, afi , as well as that of B in cell
j, bfj . In the second term, the dissociation rate is pro-
portional to local concentration of the dimer itself, with
the bare rate γ. The formation/dissociation processes are
amplified by like/unlike dimers, respectively, through the
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nonlocal terms, α
∑
{k}i

∫
i∩k dr′Kuu(r′ − r)uik(r′) and

β
∑
{k}i

∫
i∩k dr′Kuv(r′ − r)vik(r′), that characterize co-

operative formation and dissociation. The functional form
of the kernelsKuu(r′−r) andKuv(r′−r) and their coeffi-
cients α and β, are introduced below. Finally, the last term
η(r, t) is a stochastic Gaussian white noise: 〈η(r, t)〉 =
0, and 〈η(r, t)η(r′, t′)〉 = η2

0δ(r − r′)δ(t − t′), which
arises from the molecular noise of chemical reactions and
stochasticity in the upstream signaling pathways. The for-
mer, modeled as a Poisson process, is considered the dom-
inant source of noise [36], with a magnitude scaling as
η0 ∼ 1/

√
Nmol., where Nmol. is the number of molecules

per area of the lateral interfaces. More precisely, the num-
ber of participating molecules is Nmol.u/a0, where u is ap-
proximately the average value of u, and a0 = 1 is the unit
of concentration. Using the variance of the number of reac-
tions per unit time, that is given by the r.h.s. of Eq. (1), the
noise level, is estimated to be of order η0 ' 0.01 – 0.1, for
Nmol. ' 1 – 5 ×103, the approximate number of Frizzled
molecules in the Drosophila wing [36].

The densities of free A and B are obtained by subtracting
the densities of bound proteins from the total densities:

afi = a0 −
1
Ci

(∫
9i
drui(r)

)
, (2)

and a similar relation for bfi , by replacing a0 ↔ b0 and
ui(r) ↔ vi(r). Here ui(r), vi(r) are the densities of
dimers at point r on the boundary of cell i; Ci is the perime-
ter of cell i. We define the cellular polarization with respect
to the centroid of cell i at Ri (see Appendix (B)):

Pi =
∫
9i
dr r−Ri

|r−Ri|
ui(r). (3)

We calculate all the quantities in units where a0 = γ =
`0 = 1, where `0 is the length of edges in an equilat-
eral hexagon, or the average length of a potentially dis-
ordered cell. The coefficients κ = 10 and α = β = 5
are held fixed for all the cases discussed throughout the
paper. In the following we will see that in certain situ-
ations, an alternative, but related, definition of polariza-
tion simplifies the analysis of the behavior of the system.
We define two local variables: the cross-junctional polarity
pij(r) = uij(r) − uji(r) = uij(r) − vij(r), and the total
concentration of dimers, sij(r) = uij(r) + vij(r). Indeed,
the second definition contains more information, and the
cell polarities can readily be extracted from the junctional
variables; see Appendix (B), for further discussion.
Nonlocal Interactions. The kernels Kuu(r′ − r) and
Kuv(r′ − r), identify the functional form of the interac-
tions between the concentrations of like and unlike dimers,
respectively, and are taken to be exponentially decaying:
Kuu(r) = exp(−|r|/λuu) and Kuv(r) = exp(−|r|/λuv),
where λuu, λuv are the characteristic length scales of u-u
and u-v interactions, respectively. This functional form can
be interpreted as an interaction mediated by diffusing cyto-
plasmic proteins with diffusion constant D and the degra-
dation rate τ−1, such that γτ � 1; thus λ =

√
Dτ . The

diffusion time of cytoplasmic proteins is of the order of

∼ 10 min., much shorter than polarization dynamics which
occurs on timescales of a few hours. We assume λuu and
λuv are of the same orders of magnitude in the main text,
and consider other cases in Appendix (D.4). The coeffi-
cients α, β, which parametrize the strength of cooperative
interactions, are proportional to c0

A,B, the concentration of
bound cytoplasmic protein to A and B at the junctions.
Correlation Function. The correlation function of polar-
ization is defined as a measure of alignment of polarity:

S(r ; t) = N−1
c

∑
i

∫ 2π

0

dθ

2π P(ri ; t) ·P(ri + r ; t), (4)

is the spatial average over the entire sample with Nc cells,
at time t. Rotational invariance requires S(r; t) to depend
only on r = |r|. The correlation length is thus defined as

ξ(t) =
∫
dr r S(r; t)∫
dr S(r; t)

. (5)

A simpler measure for the global orientational order is
O(t) = P (t)

/
Q(t), with P (t) = |〈P(t)〉|, and Q(t) =

〈|P(t)|〉, in which 〈•〉 denotes spatial average. Thus O(t)
saturates to unity for perfect alignment.
Geometrical Disorder. The edge lengths are `i = `0 + εi,
where εi ∈ [−ε0,+ε0] with uniform distribution, and
〈εiεj〉 = ε20δij/6; see Appendix (C). In 2D, lattice defects,
i.e. non-hexagonal cells appear above a certain level of
quenched disorder corresponding to ε0 ' 0.25. In dis-
ordered cases, we use ε0 ' 0.5 and density of defects
nd ' 0.6, corresponding roughly to the statistics of larval
and prepupal Drosophila wing [12]; see Appendix (C).
Limit of Strictly Local Interactions (SLI). In the limit of
small λ/`µ, we get for the kernels, αµKµν = 2αλδµν ,
where δµν is Kronecker delta. We define the coefficients of
self-interaction, αs ≡ αµKµµ = 2αλ, and similarly for
βs, both of which are independent of µ. So in the SLI limit,
the equations take the following form:

duµ
dt

=κafi b
f
j (1 + αsuµ)− γuµ(1 + βsvµ) + ηµ(t). (6)

Before studying the real two-dimensional systems we
briefly address the structure of steady-state solutions of the
equation in 1D systems, in deterministic limit.

2.1 One-dimensional Arrays of Cells

Reviewing the one-dimensional case is valuable since it
is more amenable to analytical treatment, hence some in-
sight. Secondly, it captures some features of the 2D sys-
tems, in particular when the sixfold symmetry is broken,
either explicitly by initial/boundary condition and/or geo-
metrical anisotropy, or spontaneously, the system behaves
much like a one-dimensional array with effective param-
eters. Therefore we first study the RD equations in one
dimension in the mean-field (MF) approximation.

The ordered system at the MF level, i.e. ∀i : `i = `0,
ui = u and vi = v, hence afi = af and bfi = bf , ex-
hibits a bifurcation from unpolarized to polarized state, as
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Figure 2: (a) shows numerical solutions of the average polariza-
tion against B0/A0, with A0, B0 the total number of proteins per
cell, for different values of length disorder ε0 = 0 to 0.6. In
ordered arrays, the critical value is b∗0 ' 0.23. The plot is ob-
tained by ensemble averaging over 1000 realizations of quenched
disorder, in arrays of 1000 cells. (b), (c) show the heatmaps of po-
larization of different sites in units of a0`0, versus time (vertical
axis) at B0/A0 = 0.3. (b) An ordered array with small bias, and
(c) a highly disordered array ε0 = 0.6, with large initial bias.

the control parameter b0/a0, is increased above a critical
value [38]. The MF polarization reads:

p = ±
(
s2 − 4

αβ

)1/2
, (7)

in which s = u + v. The bifurcation, thus, takes place
at s∗ = 2/

√
αβ or in terms of actual control parameter:

b∗0 = γ/κα

1−
√

1/αβ
+
√

1
αβ . This result implies the divergence

of the critical value s∗ (or b∗0), for αβ → 0, indicating that
the emergence of polarization requires cooperative interac-
tions. Numerical solutions are presented in Fig. (2a), for
a system with constant A0, B0, the total number of pro-
teins per cell. Therefore, in a general disordered system
with `i = `0 + εi, the concentrations a0 = A0/`i and
b0 = B0/`i are randomized. Like a system with random
critical point, the singularity is smeared out for ε0 6= 0.

From numerical solutions illustrated in Fig. (2b) and
(2c), it is clear that in the limit of small stochastic noise
and initial bias, the steady state is not guaranteed to be
uniformly polarized in biologically relevant time scales of
real systems. Initial imbalance of protein distributions is
defined as p0 = |u0 − v0|, with u0, v0, the spatial aver-
ages of initial dimers’ concentrations. The bias is defined
as δp0/p0 ' σ0, where δp0 is the magnitude of spatial
fluctuations of initial polarity. Thus, small and large bias
limits correspond to σ0 & 1 and σ0 . 1. While in or-
dered systems, a moderate initial bias suffices to achieve a

uniform polarization, the patterns of polarity in highly dis-
ordered systems are robust and largely determined by the
microscopic geometry of quenched disorder. Therefore we
observe already in 1D, how quenched disorder imposes un-
desirable solutions, impairing the faithful transduction of
information through PCP signaling. The situation gets only
worse in two dimensions. One of the goals of this paper is
to find mechanisms that circumvent this issue.

3 Two-dimensional Systems

The systems in one and two dimensions show inherently
different behavior. In 1D, the proteins have only two junc-
tions to localize at. This limited number of choices and the
resultant predictability is absent in two dimensions. Due to
the large number of possible steady states in 2D, the ini-
tial configuration influences the final state. We show in
this section that within certain regimes of model parame-
ters, NLI destabilizes a great portion of unpolarized fixed
points, in favor of polarized ones. However, NLI comes
with a drawback; increased sensitivity to the cellular geom-
etry. Quenched disorder can thus have detrimental impacts
on long-range polarity, since the individual cell polarity is
coupled to local geometry. Therefore there exists a com-
petition between the two effects: the benefit of segregation
and disadvantage of sensitivity to local geometry. The lat-
ter is more pronounced in isotropic tissues, whereas elon-
gation reduces this sensitivity. We find the optimal range
of the NLI length scale, λ, that assists with establishing the
long-range alignment.

(a1) (a2)

= = 0

(b)

= =

Figure 3: Cartoons of trivial (a1,a2), and nontrivial (b) mean-field
solutions. In trivial solution, the translational invariance holds
along each axis with nonzero (a1) and zero (a2) polarities. The
latter is destabilized by any finite-range cytoplasmic interactions
that induces segregation. In (b) the only constraint is uniform
afbf across the tissue, hence three incoming and three outgoing
dipoles, and unequal cell polarities. In (b) the dipoles of the cen-
tral cell and its right neighbor are shown for example.

3.1 Strictly Local Interactions (SLI)

The regime of SLI is defined as λ/`0 → 0, and corresponds
to the short-range cytoplasmic interactions. In Sec. (2) we
simplify Eq. (1) in the SLI limit. Here we present numeri-
cal solutions, but first we attempt to gain some insight using
analytical approximate solutions. The definition of mean-
field (MF) approximation in this system is uniform levels
of afbf . This assumption is justified by the diffusive na-
ture of p, s dynamics (see Ref. [38], and SI. Fig. (3a)). On
the other hand, because of the symmetry of an equilateral

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 27, 2018. ; https://doi.org/10.1101/289520doi: bioRxiv preprint 

https://doi.org/10.1101/289520
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a1)

(a2)

80 100

(b1)

Q(t)

P (t)

O(t)

�t
60

NLI

0 20 40

0.0

0.5

1.0

1.5

2.0

2.5

SLI
Elongated

NLI

(b2)

�t
0 20 40 60 80 100

0

4

8

12

16

20

Elong. NLI

NLI

SLI

⇠/
ce

ll
d
ia

m
et

er

NLI

SLI

Figure 4: Generic steady states of two systems with identical parameters α = β = 5, κ = 10, b0 = 0.8 > b∗0 and random initial
condition, for (a1) SLI limit (λ = `0/100), and (a2) NLI of range λ = `0/2, length disorder ε0 = 0.5, and nd ' 0.6. The big arrows
are to clarify the direction of dipoles. The time evolution of Q, P , and O, for isotropic systems with SLI and NLI, as well as elongated
systems with NLI are shown in (b1). The curves corresponding to Q overlap to a large extent, which implies SLI systems are capable
of polarizing individual cells, but fails to align the dipoles on larger scales. Comparing the curves of P , it is evident that alignment
of cell dipoles requires NLI mechanism. This can also be seen in (b2) in which correlation length of SLI remains at around 4 cell
diameters, whereas those of NLI systems grow until they reach the system size. The orange flat orange line in (b1) is the upper limit of
O, which saturates at unity for perfect alignment. In all cases, the behaviors of all functions remains qualitatively the same for different
realizations of quenched disorder and initial conditions.

system, where α, β coefficients are identical for all edges,
we expect the steady-state magnitudes of p, s to be the same
on all edges. Thus, three edges will be carrying inward and
the other three carrying outward dipoles. The simplest of
all MF solutions are those wherein translational invariance
exists along each of the three axes separately, hence 23 = 8
trivial configurations. The two types of trivial MF solu-
tions can be seen in Figs. (3a1) and (3a2): sixfold symmet-
ric configurations with nonzero net polarization, and two
unpolarized states. There exist other types of solutions sat-
isfying the MF criterion, in which translational invariance
of polarity is not preserved; see Fig. (3b) for an example.
We call these nontrivial MF solutions and are elaborated
on in Appendix (D.3). It is easy to see that the nontrivial
solutions, hugely outnumber the trivial ones (only 8 config-
urations). As such, starting from a random initial condition
with no global cue, the system will tend to settle in a non-
trivial fixed point, like the one depicted in Fig. (4a1). Since
the analysis of nontrivial solutions provides intuitive argu-
ments as to why SLI is insufficient to obtain long-range po-
larization, while NLI does indeed steer the system towards
uniform polarization, we highly encourage the reader to pe-
ruse Appendix (D.3). Here, we only discuss the trivial so-
lutions, since in the end we will see that NLI, suppresses
a great deal of nontrivial solutions, as well as unpolarized
trivial solutions. The RD equations in 2D are precisely the
same as that in 1D, except the pool of proteins A and B is
shared between six edges. For the polarized trivial MF so-
lution, in isotropic hexagonal lattice, the net cellular polar-
ization equals pc = pe(1−2 cos(2π/3)) = 2

√
s2
e − 4/αβ,

where pe, se are the values of p, s for one edge. For ordered
lattices, the SLI critical point is thus b∗0 ' 0.23.

Simulations of systems with random initial states and
weak global cues, reveals that SLI is incapable of establish-
ing the long-range alignment of polarity. A generic steady
state of such systems, the time evolutions of Q(t), P (t),
and their ratio O(t), as well as the correlation lengths ξ(t),

are plotted in Figs. (4a1), (4b1) and (4b2), respectively. To
simplify the comparisons, Figs. (4b1) and (4b2) include
corresponding quantities of other cases of study, that are
discussed in the next two sections. One important obser-
vation is the significantly rapid dynamics of polarization
of SLI case, in particular P (t), acquiring its steady state
value within a time scale of the order of . 5(γt). This is
due to the huge basin of attraction in SLI limit; any initial
state is most likely very close to a fixed point, to which it is
quickly attracted. This effect which happens at very small
stochastic noise in SLI limit, is reminiscent of the glassy
state, where quenched disorder provides a rough energy
landscape making disordered configurations locally stable
fixed points (more on this in the discussion section).

3.2 Nonlocal Interactions (NLI)

Nonlocal interactions, as introduced in Sec. (2), include
finite-range interactions between the bound proteins within
a cell. This interaction, in actuality, is mediated by
cytoplasmic proteins, which enhance the segregation of
membrane-bound proteins. For simplicity we take the form
of interactions between like and unlike dimers to be identi-
cal. In one-dimension NLI leads to redefinition of αs, βs,
due to self-interactions of edges and merely shifts the bifur-
cation point b∗0. The interesting role of NLI is revealed in
two dimensions, among which are the alignment over large
length scales, and the readout of geometrical information.
Intuitively, the NLI facilitates the segregation of unlike pro-
teins to two sides of the cell, by nonlocally attracting the
like, and repelling the unlike dimers. Effectively, nonlo-
cal interactions exclude the two MF solutions with zero-net
polarizations in Fig. (3b2). Segregation makes the sys-
tem behave more like a one dimensional lattice, by split-
ting each cell into two “effective edges”. For these reasons,
the MF approximations with renormalized parameters, are
more valid in systems with NLI compared to SLI.
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While in relatively ordered tissues with NLI, and in the
absence of an external cue, the orientation of polarization
is determined purely by chance, namely stochastic noise
and initial conditions, highly disordered systems show ro-
bustness against such random factors, and the fixed points
of polarization fields are determined collectively by the ge-
ometry of the lattice. This stabilization of the fixed point
becomes progressively more pronounced with increasing
range of NLI and/or level of the quenched disorder. Ex-
ternal cues of sufficiently large magnitudes can reorient the
polarity towards the favored direction. Including a global
cue in the form of constant gradient, we observe that NLI
significantly enhances the susceptibility of the polarization
field to the global cues. In particular, we find that, (i) the
minimum strength of the cues required to rotate the polarity
is much smaller in NLI systems compared to SLI, (ii) the
response of the polarity is faster in NLI systems, and that
(iii) unless the tissue is fairly ordered, ε0 . 0.2, systems
with SLI do not respond properly to the cues. As such NLI
is a key to the detection of directional cues The impacts
of the bulk and boundary cues are discussed in Appendix
(D.4).

Using numerical simulations, with fixed aforementioned
values of model parameters, we find a range of interaction
length scale, 0.1 . λ/`0 . 1, for which the NLI guar-
antees the alignment of polarization at large length scales.
This range also depends on the distance from the critical
point. We focus on the parameters deep in the polarized
regime, b0/a0 = 0.8. A typical configuration of the steady
states is illustrated in Fig. (4a2). The dynamics ofQ and P ,
shown in Fig. (4b1), implies that the emergence of collec-
tive polarization from an initially random cell dipoles, con-
sists of two processes: (i) the segregation of PCP proteins
within each cell and saturation of the amplitude of polarity,
accompanied by the appearance of polarized domains of a
few cells, which is followed by (ii) the subsequent coarsen-
ing and alignment of the domains on the tissue-wide scales.

Comparing the dynamics of SLI and NLI in Figs. (4b1)
and (4b2), the role of cytoplasmic nonlocal interactions in
cell-cell interactions, becomes immediately evident. Al-
though polarization of individual cells is easily carried out
in both SLI and NLI (see Q(t)), long-range alignment of
polarity (see P (t), O(t) and ξ(t)) which requires intercel-
lular communications, demands the presence of cytoplas-
mic interactions. Another important point to note is that the
evolution of P (t) of systems with SLI and NLI, occur on
remarkably different timescales. As briefly discussed in the
previous section, in systems with SLI, the average polar-
ization reaches its final negligible value within timescales
. 5(γt) corresponding to polarization of individual cells,
because of the proximity of all initial conditions to a fixed
point, and the immediate approach to the basin of attrac-
tion. On the contrary, the additional steps of coarsening
and alignment of polarized domains in the NLI case, occur
on timescales almost one order of magnitude longer than
SLI, i.e. ' 20 – 50 (γt).

Finally, for λ/`0 & 1, all edges within a cell strongly
couple to each other, thus the segregation cannot be accom-
plished, and the polarized state is unstable.

(a1) (a2)

(b)

2
0

ce
ll
s

20 cells

(a3)

= 0==

Figure 5: In (a1) the axis of elongation passes through a vertex,
and the edges parallel to elongation wins the polarization com-
petition; twofold symmetry like in 1D. (a2) and (a3) correspond
to elongation perpendicular to an edge, therefore the two pairs
of elongated edges compete: (a2) represents a polarized state,
whereas (a3) is unpolarized. The latter is precluded by nonlo-
cal interactions. (b) shows the final state of polarization in an
elongated tissue along the horizontal axis, with E = 0.4.

3.3 The Effect of Cell Elongation on Polarization

Elongation is considered, in many systems, a symmetry-
breaking global cue. This is not due to a naı̈ve incorpora-
tion of length in the definition of the polarization, but the
short junctions are indeed depleted of proteins [30]. Here
we show that NLI endows the longer junctions with larger
absorbing power than shorter ones, hence the stable per-
pendicular polarization.

The anisotropy of a cell i, is characterized by a traceless
and symmetric nematic tensor, with the diagonal and off-
diagonal elements, ±εi,1 and εi,2, respectively. The index
of tissue elongation reads E = N−1

c

∑Nc
i=1(ε2

i,1 + ε2
i,2)1/2;

see Appendix (E.1). There are two possible choices for
elongation axis. Elongation parallel to a pair of edges re-
duces the sixfold symmetry to a twofold associated to long
junctions, and a fourfold, Fig. (5a); and vice versa if the
elongation is perpendicular to a pair of edges; Figs. (5b,5c).
In both cases, the system behaves qualitatively like a 1D
problem extended in the direction perpendicular to elonga-
tion axis.

The elongated systems involve three different length
scales and three regimes. With L the length of long junc-
tions, we have: (i) λ . `0 < L, (ii) `0 . λ < L and
(iii) `0 < L < λ. For (i),(ii), NLI leads to the separation
of positively and negatively polarized edges. For elongated
cells, any subset of three adjacent edges includes one and
only one long edge. From symmetry considerations, it fol-
lows that the longer edge is always the middle one of the
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three. Finally, the third regime λ & `0, L, is unstable, like
the last regime discussed in isotropic case (λ & `0). Time
evolutions of Q(t), P (t) and O(t) are shown in Fig. (4b1).
We thus show that the observations of the experiments are
consistent with nonlocal interactions. Furthermore the pre-
dicted onset of the perpendicular polarization as a function
of elongation index, E∗ ' 0.1, is in a very good agreement
with that observed in the experiments [30]; see SI. Fig (4d).

3.4 Mutants and The Associated Phenotypes

PCP mutants exhibit lack of orientational order of e.g.
hairs, bristles. that are induced either autonomously or non-
autonomously by the mutant clone [6,10,39–41]. The phe-
notypes are commonly used to specify the role of the cor-
responding protein in the PCP pathway. Here we introduce
possible classes of mutations within the framework of our
model, and explore their phenotypes. In our model the ran-
dom orientation or lack of polarization can be the signature
of, (I) lack of sufficient protein B, i.e. b0/a0 � 1; and/or
(II) absence of NLI, i.e. λ/`0 � 1. In the main text, we in-
vestigate the properties of these two mutant types, and ask
whether or not shortage of a membrane protein, or the sup-
pression of NLI in a patch of cells, reproduces the observed
phenotypes. The results of numerical solutions are illus-
trated in Fig. (4a1) and Fig. (4a2). In Appendix (F), we dis-
cuss three more mutant types. Type III corresponds to lack-
ing cytoplasmic proteins; type IV, to irregular and severed
cell geometries; and type V, to double-mutant lacking both
membrane proteins. Type IV is of great interest as it was
suggested in [24], that in the absence of global cues, e.g.
ft− in Drosophila wing, irregular cell packing disrupts the
polarity. Experiments on double mutants Vang−fz−, sug-
gest that they show less non-autonomous phenotypes com-
pared to single mutants [16,42]. Thus within the framework
of our model, we examine double-mutants, in which both
membrane proteins A and B are lacking, and verify that
the prediction of our model is consistent with experiments.
The comparison of double and single mutants are crucial
to our understanding of the mechanisms of the intercellu-
lar signaling [18]. We present and discuss type-I, II and III
mutants in Appendix (F.1), (F.2) and (F.3), respectively. Fi-
nally, under certain circumstances, topological defects and
domain walls appear in tissues, either as transient or perma-
nent polarity defects. These effects and their corresponding
figures are discussed in Appendix (F.4).

The two types of mutants I and II, can be discerned both
qualitatively and quantitatively. In Figs. (6b1) and (6b2),
we see that in both cases, the mutant clones have small
net magnetization compared to the surrounding WT cells:
Pmut/P tot. � 1. In type I, this is due to inability of individ-
ual cells to polarize due to lack of B proteins, whereas in
type II is a consequence of random orientation of dipoles.
The average of magnitudes Qmut, behaves differently in
type I and II mutants. In type I, the magnitude of dipoles
in the bulk of mutant patch is distinguishably smaller than
WTs Q

(I)
mut/QWT < 1, thus the hairs grow rather apico-

basally with no preferred orientation; Fig. (4b1). The
largest contribution to Q

(I)
comes from the mutant bound-

ary cells, with radially outward dipoles. This is checked
by enlarging the size of the patch such that the ratio of the
number of cells at the boundary to that of the bulk of the
patch drops. In type-II mutants, the polarizations of in-
dividual cells are comparable to those of WTs, but are in
random directions; like QSLI in Fig. (4b2). In type-I, the
mutant cells not only fail to polarize, but also distort, non-
autonomusly, the WT polarization at a distance of a few
cell diameters from the mutant boundary. The ring of em-
anating dipoles at the clone’s boundary arises from the lo-
calized A proteins, attracted by the surrounding WTs (note
that polarization is defined in terms of localized A, hence
outward dipoles). Unlike type I, the non-autonomous ef-
fects of type II are minimal, causing minor deflections of
dipoles enclosing the mutant patch, with WT dipoles’ ori-
entations more or less tangent to the WT-mutant border-
line. Interpreting the two mutant types, our model predicts
non-autonomous phenotypes in the absence of membrane
proteins (type-I), while lacking cytoplasmic diffusive in-
teractions causes only autonomous phenotypes. These re-
sults are in good agreement with the experimental observa-
tions of Fz− (or Vang−), and Dsh−, i.e. the membrane and
loss of function of cytoplasmic proteins in the core-PCP,
which show non-autonomous and autonomous phenotypes,
respectively [6, 9, 16, 24, 35, 39, 42, 43].

We believe that our analysis of mutant phenotypes can be
used as a reliable diagnostic for characterization of the role
of various PCP components. The significant differences in
non-autonomous effects on the polarization patterns of the
WTs, in particular the radial orientation of dipoles in type
I, and the crescent of vanishing polarization in the WT re-
gion is a fast qualitative way of identifying the source of
mutation. Furthermore, the ratio Qmut/Qtot. can serve as
a quantitative indicator of mutant types. What observable
doesQmut represent in an experiment? In unpolarized cells,
hairs grow perpendicularly to the apical surface (i.e. along
z-axis). The in-plane projection of the hair lengths that is
easily observable in all images, is thus a measure of the av-
erage magnitude of polarization Q, and can be used in the
taxonomy of mutants, and identification of the role of the
corresponding component in the PCP pathway.

4 Summary and Discussion

In an attempt to understand the connection between cell-
cell communications and intracellular interactions, and
based upon a few realistic assumptions deduced from
the recent experimental studies, we devised a generalized
reaction-diffusion model by incorporating the nonlocal (i.e.
finite-range) cytoplasmic interactions, into the interactions
between membrane proteins. In line with our phenomeno-
logical approach we remain agnostic to the details of the
cell biological processes, but we suggest that cytoplas-
mic proteins such as Dsh, Dgo, and Pk, could potentially
mediate these interactions. Although the functional form
of interactions are assumed to be exponentially decaying
(diffusion of a degrading protein), any finite-range kernel
would produce qualitatively the same results. Assuming
λuu = λuv , and for the specific set of model parame-
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Figure 6: Steady-state of polarization in tissues with mutant clones at the center (red dipoles), depicted in (a1) type-I, with b0 = 0.1a0,
and (a2) type-II with λ/`0 = 0.01. (b1) and (b2) show the time evolutions of Q(t), P (t), andO(t), for the whole tissue (solid curves),
and mutant clones (dashed curves). Type I mutant patch lacks B protein, hence suppressed cell polarity. A proteins are attracted to the
boundaries of the patch by B proteins in the surrounding WTs, and create radially outward polarization and non-autonomous formation
of a crescent of vanishing dipoles. Type II lacks NLI; thus the cells are individually polarized like in SLI systems, but fail to align their
dipoles. The WT dipoles avoid the mutant patch and become nearly tangent to the mutant-WT boundaries.

ters we chose, the optimal range of interactions to achieve
long-range polarization is found: 0.1 . λ/`0 . 1. In Ap-
pendix (D.4), we demonstrate the results of the simulations
for cases where the ranges of interactions λuu and λuv are
incomparable. Although in this paper we defined and used
dipole-dipole (including the magnitudes) correlation func-
tions, the angular correlations show very similar behavior
(results not shown). We further examined the response of
polarization to external cues, and concluded that, NLI sys-
tems are more efficient in detecting and responding to the
weak global cues, and indeed, are essential to the orien-
tational order of the collective polarity of the tissues, that
are moderately disordered, e.g. before the formation of the
hexagonal order.

Since the PCP organization occurs in two dimensions,
we find it crucial to make a few clarifying comments on the
relevance of the Mermin-Wagner theorem to our system.
Firstly, we emphasize that the lack of order in SLI limit is
fundamentally outside the scope of Mermin-Wagner theo-
rem, in which the entropic cost of the long wavelength fluc-
tuations prohibits “true” long-range ordering, i.e. algebraic
decay of correlation length, in 2D systems with continuous
symmetries. For fixed other parameters, the phase diagram
of our model consists of two control parameters, (i) η0, and
(ii) λ/`0. Whereas in the NLI regime, there exists a tran-
sition from disordered to ordered phase as the temperature
is lowered (not explored here), the SLI limit does not show
ordering even at zero temperature, i.e. strictly determinis-
tic dynamics. As was shown in Fig. (4b1), in both cases
of SLI and NLI, the first stage of dynamics corresponds to
saturation of the spin magnitudes, after which the system
behaves (qualitatively) like a 2D ferromagnet. In analogy
with the XY-model, the spin-spin coupling constant in our
system is an increasing function of λ/`0, which is negligi-
ble in the SLI limit. Furthermore, it is noteworthy that un-
like spin glasses, the glass-like state of the SLI limit is not
induced by the quenched (geometrical) disorder. Indeed,
SLI’s glassy state exists even in perfectly ordered systems.

We next investigated the role of cell elongation as a

symmetry-breaking cue, and showed that NLI endows the
longer junctions with more “protein-absorbing” power, and
that this effect is beyond the superficial shape effect aris-
ing from the definition of polarity. Intuitively, the elon-
gation drives the behavior and the fixed point of the sys-
tem towards an effectively 1D array of cells. We shall em-
phasize that this prediction is only valid under the follow-
ing assumptions: (a) polarization is predominantly induced
by reaction-diffusion processes, and (b) no mechanical dy-
namics (like tissue flow or cell division) are involved. In
other systems, e.g. wing of Drosophila, where the polar-
ization is observed to be parallel to the elongation axis the
polarization of microtubules is believed to be the dominant
mechanism [33]. The relative rates of cell division and PCP
relaxation, is another parameter that can induce perpendic-
ular or parallel polarizations [5].

Finally we examined the predictions of our model in the
cases of five mutant types, in which (I) one of the mem-
brane proteins (B) is lacking, and (II) the nonlocal cyto-
plasmic interactions are absent, hence a clone with SLI,
(III) the cooperative interactions are suppressed, (IV) ge-
ometrical irregularity is enhanced, and (V) both membrane
proteins (A and B) are missing, i.e. double-mutants. The
corresponding phenotypes were identified, and for distin-
guishing type I from II, we proposed a measure, i.e. aver-
age in-plane projection of the hair length. The results, as
discussed in Sec. (6) exhibit good similarity with experi-
mental observations, and lend more support to the signifi-
cant role of NLI in the signaling pathway. In Appendix (F),
we discuss the other three types. Type-III in which coop-
erative interactions are suppressed is interpreted as mutants
lacking of cytoplasmic proteins. It is important to distin-
guish type II from III, both of which involve cytoplasmic
proteins. Type II corresponds to loss of function (diffu-
sion) of proteins like Dsh that mediate the nonlocal inter-
actions, yet the local interactions are not impaired. In type
III, the cytoplasmic proteins are absent altogether. Type IV
is also of great interest, as it was suggested in [24], that
cell packing impairs Fz feedback loops in the absence of
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global cues, i.e. Fat, in the Drosophila wing. Finally, the
double mutants lacking both membrane proteins A and B
are investigated in type V. Interestingly, the type-V pheno-
types show less non-autonomy than single mutants (type I),
which is consistent with the observations in experiments.
The results of all simulations are presented in Appendix
(F).

Although our model is not the first phenomenological
approach to the problem of PCP, we claim that the fea-
tures included in this model, and its predictions, capture
a broader range of recently observed phenomena. Some of
the successful previous studies (e.g. [18,38]) consider one-
dimensional arrays of cells. Although the general frame-
works proposed in such studies have provided us with valu-
able insights, two-dimensional systems have to overcome
the issues associated with the large number of fixed points
in SLI. Other successful models such as that studied in
Ref. [13], infer effective interactions from the observed re-
sponse of the polarization to a combination of processes;
cell elongation, cell rearrangements, and divisions. How-
ever the model does not aim at explaining the underly-
ing mechanisms of emerging polarity at the cellular level.
Among the models derived from subcellular interactions,
the one put forward by Burak and Shraiman [36], is closely
related to ours. In spite of the similarities in the general
mathematical approaches to the problem, there exist differ-
ences at the level of phenomenology of interactions, e.g.
in the direct vs. indirect implementation, as well as the
locality/nonlocality of the cytoplasmic interactions. Fur-
thermore, having included the nonlocal cytoplasmic inter-
actions we found it crucial to address the impacts of ge-
ometrical information such as quenched disorder and tis-
sue anisotropy. Finally, we studied the possible mutants
within the scope of our model. Former studies, such as
in Refs. [24] and [35], have investigated the phenotypes in-
duced by irregular geometry as well as domineering nonau-
tonomy, and proposed mathematical models with parame-
ters inferred from measurements. Adopting a phenomeno-
logical approach, we tried to keep the number of model pa-
rameters as few as possible in order to determine the mini-
mal set of criteria to achieve the large-scale PCP alignment.
The successful reproduction of the perpendicular axes of
polarity and elongation, as well as some of the experimen-
tally observed phenotypes, suggests that our phenomeno-
logical model captures the salient features of the generic
cytoplasmic and intercellular interactions, and has the pre-
dictive power of identifying the roles of various proteins in
PCP pathways.

We believe that, in spite of several attempts to under-
stand the mutual interplay of PCP and tissue mechanics, a
unified perspective of the relevant physical mechanisms is
yet to be discovered. Therefore, the mutual signaling of
mechanical properties and polarity, both of which depend
on the geometry and contribute to the dynamics of the
tissue flow is among the most important problems to be
considered in the future. Our study lays the groundwork
for further investigations in this direction, by clarifying the
response of polarization to the cell geometry of the tissue.
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Appendix

A The Model and Its Ingredients

We begin by writing the full reaction-diffusion equations for the binding/unbinding dynamics of the local density of the complexes
complexes [A:B], namely uij(r). The corresponding equation for [B:A] or vij(r), is obtained by simultaneous replacements: a ↔ b
and u↔ v.

duij(r)
dt

= κafi b
f
j

(
1 +α

∑
{k}i

∫
i∩k

dr′Kuu(r− r′)uik(r′)
)
− γuij(r)

(
1 + β

∑
{k}i

∫
i∩k

dr′Kuv(r− r′)vik(r′)
)

+ η(r, t), (A.1)

where γ−1 is the timescale associated with complex dissociation. As mentioned in the main text, the kernels K(r) are assumed to be of
the form of exp(−|r|/λ), which was motivated by the diffusive nature of the cytoplasmic proteins carrying the interactions. Although
the kernels couple the concentrations of the complexes on the boundaries of the cells, the coordinate r can in principle represent any
point within the cytoplasm as well as the junctions. Suppose that a cytoplasmic protein C, obeys a diffusion equation with degradation
time τ :

∂c(r, t)
∂t

= D∇2c(r, t)− τ−1c(r, t). (A.2)

Assuming the degradation and hence dynamics of C takes place on a much faster timescale than that of PCP, i.e. γτ � 1, it suffices to
only consider the steady-state solutions of protein C. Now for CA/B cytoplasmic protein of A/B we have (A/B means A or B):

DA/B∇2cA/B(r, t)− τ−1
A/BcA/B(r, t) = 0, cA/B(r = 0, t) = c0

A/B ∝ [A] or ∝ [B]. (A.3)

Here, r = 0 corresponds to the specific junction on which the concentration of A is measured, and from which C diffuses. Superimpos-
ing the concentrations of C at a given point r, the total amount of C emanating from all points around the cell reads:

cA/B(r, t) =
∫
9
dr′c0

A/B(r′) exp(|r− r′|/λA/B). (A.4)

Here, λA/B =
√
DA/BτA/B are the diffusion length of proteins CA and CB. The diffusing proteins enhance the formation of like

complexes and suppress that of unlike complexes. This nonlinear effect in turn, depends on the respective interactions with the target
complexes. Altogether, the coefficients are lumped into the phenomenological constants α and β.

For notational convenience, in the following paragraphs greek letters label edges, e.g. µ ≡ i∩ j. Using Eqs. (A.1) and the definitions
of afi and bfj , we can solve for the dynamics and the steady states of uµ(r). Evidently, solving the above integro-differential equations
is a cumbersome task. One possible simplification is “junctional” averaging: uµ =

∫
µ
dr′uµ(r′)/`µ, in terms of which we have:

duµ
dt

= κafi b
f
j

(
1 + αµ

∑
ν∈i

Kµνuν
)
− γuµ

(
1 + βµ

∑
ν∈i

Kµνvν
)

+ ηµ(t). (A.5)

In the above equation, αµ = α/`µ, βµ = β/`µ, and for the kernels Kµν = Kνµ =
s
µ,ν

drdr′K(r− r′). The diagonal elements equal

Kµµ = 2`2
µx
−2
µ

(
e−xµ + xµ − 1

)
, (A.6)

in which xµ = `µ/λ. Finally, the stochastic noise is renormalized: 〈ηµ(t)ηµ(t′)〉 = η2
0`µδ(t − t′). We see from the above equation

and Eq. (A.1) that all the points on a given edge satisfy the same equations, and are only distinguished from points on other edges by
the term bfj , i.e. the amount of free B in a neighboring cell j. Therefore, in this model, the assumption of uniform density on a junction
is a reasonable one, provided λ/` is small enough that different junctions do not interact. It is noteworthy, however, that in reality
the core proteins for example Flamingo and Frizzled in the prepupal and pupal wing of Drosophila, are observed to be persistently
localized at subdomains of plasma membranes, called “puncta” [44].

Limit of Strictly Local Interactions (SLI). In the limit of small λ/`µ, we get for the kernels, αµKµν = 2αλδµν , where δµν is
Kronecker delta. We define the coefficients of self-interaction, αs ≡ αµKµµ = 2αλ, and similarly for βs, both of which are
independent of µ. So in the SLI limit, the equations take the following form:

duµ
dt

=κafi b
f
j (1 + αsuµ)− γuµ(1 + βsvµ) + ηµ(t). (A.7)

Before discussing the mean-field solutions we introduce the precise definitions of polarizations and their relations.

B Definitions of Junctional and Cellular Polarity

Planar cell polarity can be defined at either junctional or cellular level. For individual junctions, polarity is defined as the difference
between the concentrations of uij = [Ai : Bj ] and the opposite dimer, uji, thus pij = uij − uji = uij − vij. This is indeed what
we use in the 1D case in main text. This quantity, along with the sum sij = uij + uji = uij + vij of the concentrations of the
dimers, contain the same exact information as uij’s. In other words, given the concentrations of dimers, one can calculate the junctional
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polarization and sums, and vice versa. Below we see that cellular polarity is obtained by integrating the concentration of Ai:Bj , i.e. uij .
Thus, the cell polarity can be equivalently computed using the junctional dipoles and sums.

Cellular polarization is referred to as the asymmetric (anisotropic) distribution of PCP proteins in the cells. The precise mathematical
definition of cellular polarization can be ambiguous, due to the lack of knowledge about the exact subcellular mechanisms through
which a cell gathers information from proteins on its periphery, and determines the direction of e.g. hairs or bristles. However, for
phenomenological purposes, all definitions capture the features of interest. In spite of this freedom in defining the cell polarity, we
realize that after all, polarization is a cellular property. Cell polarity, depending on the symmetry of binding complexes, might be either
a vector quantity, called vectorial polarity, or a nematic, which is then called axial polarity. Vectorial and axial polarities are used when
PCP proteins form heterodimers and homodimers, respectively. The former is a vector identified by a magnitude and angle ∈ [0, 2π),
whereas the latter is a traceless nematic tensor with a magnitude and an angle ∈ [0, π). In our case of study, the polarization involves
two distinct complexes, A and B, hence vectorial PCP. However, we shall introduce both vectorial and axial cell polarities.

(i) Vectorial Polarization. This definition is used to calculate the “dipole moments” of the distribution of bound A (or B), around each
cell. The polarization vector associated with cell i is defined as:

Pi =
∫
9i
dr′ r′ −Ri

|r′ −Ri|
ui(r′) = pxi x̂+ pyi ŷ. (B.1)

Here Ri is a reference point within cell i, with respect to which the polarization is defined. Since the total amount of bound proteins
is nonzero, the dipole moment depends on the reference point; we take this to be the geometrical center of mass of each cell. One can
alternatively define polarizations in terms of distribution of B proteins, i.e. v dimers. The polarization vector is defined by a magnitude
and and angle θi ∈ [0, 2π) from x-axis:

|Pi| =
√

(pxi )2 + (pyi )2, and φpi = tan−1(pyi /p
x
i ). (B.2)

The polarization of the tissue with Nc cells, and its global order are characterized by the following quantities: (1) average polarization,

P = 1
Nc

Nc∑
i=1

Pi = 1
Nc

Nc∑
i=1

(pxi x̂+ pyi ŷ), P = |P|, Φp = tan−1
(∑

i
pyi∑
i
pxi

)
. (B.3)

(2) average magnitude of polarization, and (3) the ratio of (1) and (2),

Q = 1
Nc

Nc∑
i=1

|Pi|, O = P/Q. (B.4)

The ratio O approaches one when the system is perfectly aligned.

(ii) Axial Polarization. The second definition is a measure for cellular polarity that is used especially when dealing with axial nematic
PCP (like Celsr (or FmI) homodimers) which merely determines the axis of polarization by measuring the traceless nematic tensor of
the polarity:

Pi =
(
Pi,1 Pi,2
Pi,2 −Pi,1

)
where, Pi,1 =

∫ 2π

0
dφ ui(r) cos(2φ), Pi,2 =

∫ 2π

0
dφ ui(r) sin(2φ). (B.5)

In the above equation, φ is the polar angle of point r (with respect to the centroid), on the periphery of cell i and is measured from a
reference axis. The concentration of bound A at point r is denoted by ui(r). In using these formulae for inferring the polarization from
experimental data, ui(r) is replaced by the intensity of light reflected from a GFP at point r. The magnitude of polarization equals Pi =
(P2

i,1 +P2
i,2)1/2 = | det Pi|1/2. Its orientation is determined by angle φpi satisfying cos(2φpi ) = Pi,1/Pi and sin(2φpi ) = Pi,2/Pi. In

Appendix Sec. (E.1), we use the same general formalism for the cell shape nematic tensor.

C Measure of Quenched Disorder and Topological Defects in 2D Systems

In the case of 1D systems, disorder is only in the lengths of junctions, and there is no room for the change in the topology of the network.
The edge lengths are `i = `0 + εi, where εi ∈ [−ε0,+ε0] with uniform distribution, and 〈εiεj〉 = ε2

0δij/6. In 2D the quenched disorder
refers to (a) unequal edge lengths, and (b) topological defects defined as the local non-hexagonal polygons tiling the plane. The level of
quenched disorder is controlled by randomizing the sites of a triangular lattice, based on which the polygonal lattice is generated using
Voronoi tessellation. The edge lengths of the Voronoi lattice εi, and density of defects nd are then obtained by ensemble averaging over
the ideally all the realizations of the disordered triangular lattice. Perturbing the sites of a triangular lattice, for the sites of the Delaunay
lattice we have: ri = r0

i + ∆i, with {r0
i }. The spatial disorder term ∆i is uniformly distributed in range [−∆0,+∆0], with local

correlations: 〈∆i ·∆j〉 = ∆2
0δij/3, where δij is the Kronecker delta function. An ordered triangular lattice would return an ordered

hexagonal lattice by Voronoi tessellation. By displacing randomly the sites of triangular lattice, we can distort the resultant Voronoi
lattice. In order to obtain the disorder statistics of the Voronoi lattice, i.e. variations in the edge lengths εi, as well as the density of
defects nd, we average over ensemble of disordered triangular lattices. Topological defects with finite (i.e. nonzero) density of defects
in the thermodynamic limit, appear above a certain threshold of disorder ∆d ' 0.25, in underlying Delaunay lattice (see Fig. (C.1)).
The edge-length disorder in the Voronoi lattice increases linearly with ∆0 for ∆0 . 0.5.
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Figure C.1: (a) Black curve represents the ensemble averaged lengths of edges versus the disorder in the position of cell centroids,
This curve, as expected, is approximately one sixth of average perimeter of hexagons, depicted in (c), except for very large magnitudes
where the effect of defects are become more important. Blue curve, shows ε0, the standard deviation (measure of disorder) of the edge
length in the actual lattice. For small values of disorder ∆0 . 0.5, the edge length disorder grows linearly, with the slope equal to
one, and decreases for larger values of disorder. Red curve corresponds to the ensemble average total density of disorder as the disorder
is enhanced. The disorders start at around ∆ ' 0.25. (b), (c) Ensemble averaged densities and perimeters of polygons with different
number of sides versus the disorder in the position of cell centroids. The ensemble average is carried out over 10000 realizations of
50× 50 lattices.

D Mean-field and Numerical Solutions

We define the mean-field approximation in this system as constant afbf in space. As mentioned in the main text, the validity of this
assumption follows from the diffusion-like dynamics of p, s. Bound proteins redistribute across the tissue until a relatively smooth state
is reached, therefore the free proteins afi b

f
j too, distribute uniformly. We also test out numerically, the validity of this assumption in 2D;

see Fig. (D.2a). Here we first elaborate on the MF solutions in 1D, then discuss the 2D case where the MF solutions are divided into
two different classes: trivial and nontrivial.

D.1 Mean-field solutions in one dimension

We start with one dimension for reasons that were discussed in main text. In one dimension the cells are juxtaposed in an array and
are separated by junctions. The proteins localize on both sides of these junctions and form dimers. The lengths of the junctions are
identical in ordered and random in disordered systems. A general scheme of one-dimensional arrays can be seen in Fig. (D.1). We use
label i for cells, and the edge between the cells i and i+ 1. Thus, `i = `0 + εi, with `0 = 1 the unit of length, and εi the disorder. The
reaction-diffusion (RD) equations governing u and v complexes on a junction µ shared by cells i and j read:

duµ
dt

=κafi b
f
j (1 + αsuµ)− γuµ(1 + βsvµ) + η(u)

µ (t).

dvµ
dt

=κafj b
f
i (1 + αsvµ)− γvµ(1 + βsuµ) + η(v)

µ (t). (D.1)

The above equations were originally proposed by Mani, et.al. in Ref. [38], namely our general RD equations, in ordered one-dimensional
systems and in the limit of strictly local interactions, reduce to that in Ref. [38]. Here we briefly reproduce their results and move on
to two dimensions. Starting with ordered systems, we first introduce the mean field (MF) solutions, in which the concentration of free
A and B are uniform. Thus for MF solutions we drop the indices: afi = afj = af and similarly for b. Furthermore, in steady state,
the concentrations of dimers are going to be uniform as well: uµ = u and vµ = v. Using the uniformity of, say vµ = vµ±1, and that
afi = a0− (uµ + vµ−1)/2, one can write af and bf in terms of s = u+ v, namely: af = a0− s/2, and bf = b0− s/2. Finally, using
the definitions of p, s, we derive their dynamic equations:

dp

dt
= κafbfαp− γp, ds

dt
= κafbf (2 + αs)− γs− γβ

2 (s2 − p2). (D.2)

In the phase-space of the system, p − s plane, there exists a trivial class of solutions where p = 0. Plugging this in Eq. (D.2b) we
get:

s2 + 2
γβ

(
γ − κafbfα

)
s− 2κafbf = 0. (D.3)

There also exist other branches of nullclines where p 6= 0, thus κafbfα = γ from Eq. (D.2a):

p2 = s2 − 4
αβ

, s = (a0 + b0)−
√

(a0 − b0)2 + 4γ
κα

. (D.4)

For s ≥ s∗ = 2/
√
αβ, the polarization is nonzero, and therefore, from Eq. (D.2a), we conclude that kαafbf = γ, from which we

derive Eq. (D.4b). The branches of solutions coincide at the bifurcation point, where the coefficient of the linear term in the last equation
vanishes, i.e. γ = κafbfα, corresponding to onset of polarization. Using the above relation we can determine the critical value in terms
of b0.

b∗0 = γ/κα

1−
√

1/αβ
+
√

1
αβ

. (D.5)
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Figure D.1: A cartoon of a one-dimensional array of cells. The free PCP proteins with concentrations af , bf , are available to bind at
the junctions. The PCP proteins bind at the interfaces. The sum of concentrations of [A-B] and [B-A] dimers at each junction is the
total concentration si = ui,i+1 + ui+1,i, and the difference is defined as the polarization pi = ui,i+1 − ui+1,i.

Note that in the above equations, for αβ = 0, the bifurcation point diverges.

D.2 Trivial mean-field solutions in two dimensions

Defining the mean-field approximation as the translational invariance of polarization along each of the three axes separately, the RD
equations take the same form as in 1D, except the total amount of proteins A and B are shared by six edges instead of two. Therefore,
as mentioned in the main text, the solutions too, resemble those in the 1D case. Each edge carries the same p, s, and the net polarity of
each cell equals pc = pe(1−2 cos θ), with pe is the magnitude of polarization of one edge, calculated above, and θ is the angle between
the two adjacent edges in ordered hexagons, which equals pc = 2

√
s2 − 4/αβ, for θ = 2π/3. Here we consider a different situation

in which edges no longer have identical α, βs. At this point, different values of α, and β can have various origins that are beyond the
scope of our discussion. However in the Appendix Sec. (D.2), we argue that unequal parameters can be a consequence of, for instance,
nonlocal interactions in elongated cells.

We assume the three pairs of parallel edges acquire coefficients α1,2,3 and β1,2,3. Without loss of generality we consider two
scenarios: (i) α1 > α2 = α3, and (ii) α1 = α2 > α3. From the results we found in the case of sixfold symmetric lattices, the onset of
bifurcation is inversely proportion to s∗ ∼ 1/

√
α. Therefor in case (i), axis 1 is the first axis that shows instability upon increasing b0

above b∗0. Therefore, we have afbf = γ/(kα1), where,

af = a0 −
s1`1 + s2`2 + s3`3

2(`1 + `2 + `3) , (D.6)

and similarly for bf . Again, as derived above, the axes where the polarization is zero, i.e. 2, 3, we have:

s2
2,3 + 2

γβ2,3

(
γ − κafbfα2,3

)
s2,3 − 2κafbf = 0. (D.7)

Using the fact that kafbf = γ/α1, we get:

s2,3 = 1
β2,3

(
1− α2,3

α1

)
+

√
1
β2

2,3

(
1− α2,3

α1

)2
+ 2γ
α1
. (D.8)

Defining aeff
0 and beff

0 ,

aeff
0 = a0 −

s2`2 + s3`3

2(`1 + `2 + `3) , thus: af = aeff
0 −

s1`1

2(`1 + `2 + `3) , (D.9)

and similar expressions for beff
0 and bf , we get for p1, s1:

p2
1 = s2

1 −
4

α1β1
, s1 =

(
aeff

0 + beff
0
)
−
√(

aeff
0 − beff

0
)2 + 4γ

κα1
. (D.10)

From the above analysis, we learn that when coefficients α and β of one pair of the edges are larger than those of the other two pairs, the
system essentially reduces to a one dimensional problem, with effective pools of proteins A and B. There remains one more interesting
case in which α1 = α2 > α3. In this case, the third axis remains unpolarized as the other two are effectively more absorbent, and
share the total bound proteins, thus are equally polarized with four different degeneracies. As mentioned above, one situation of interest
in which the coefficients α, β acquire unequal values for the edges is the elongated tissues. In such systems, the above two cases
correspond to Figs. (E.1a) and (E.1b,c), respectively.

D.3 Nontrivial mean-field solutions in two dimensions

The nontrivial solutions in 2D do not possess the translational invariance of dipoles, and satisfy a weaker constraint. For reasons that
become clear shortly, it is more insightful to use the junctional polarization in analyzing this case. As we will see, the full analytic
solution to this problem is cumbersome. We only briefly touch upon this subject to provide some intuition into how large the basin
of attraction is, for a system in SLI limit. The only assumption in nontrivial MF solutions is that afbf is uniform across the tissue,
which implies that the amounts of bound A and B are also equal across the tissue. This assumption is intuitively justified by the fact
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Figure D.2: The left panel (a) shows the steady-state product of the concentrations afbf for each cell, for a system with random initial
state. The product remains almost uniform across the system, lending more support to the MF approximation. (b1) and (b2) illustrate
the trivial MF solutions with nonzero and zero net polarizations respectively. (c) corresponds to a nontrivial MF solution. Each cell
carries three incoming and three outgoing dipoles satisfying the MF assumption.

that linearized equations governing u and v obey diffusion-like equations in the continuum limit [38]. Therefore, the free proteins,
too, spread diffusively into a rather uniform state. Furthermore, we numerically solved for afbf in the steady state of systems with
random initial condition. A generic distribution is illustrated in Fig. (D.2a). The quantity afbf is almost uniformly distributed across
the system. In SLI limit and/or for ordered lattices, by virtue of sixfold symmetry, all junctions are equally absorbing the proteins.
Therefore above the bifurcation point, the net polarization p and the total amount of proteins s, of all junctions are identical. The only
constraint is thus, three junctions have net positive polarizations and the other three have negative polarization; three outgoing and three
incoming dipoles. In order to make it easier to picture such a configuration of dipoles, imagine we start from a trivial solution of type I,
where three adjacent edges carry positive dipoles and the other three the negative ones. Now flipping one of the positive dipoles breaks
the MF assumption of afbf = constant. Therefore one of the negative dipoles must be flipped too. Since each dipole is shared between
two cells, in order to satisfy the constraint in any finite-size system, this flipping process must continue until it forms a loop ending at
the initial edge.

It is easy to see that the paths can be broken down into self-avoiding loops. Furthermore, all such loops preserve the net polarization
of the tissue, set by the value of the control parameter b0/a0. However, they disrupts the uniform polarization of the trivial solutions,
namely create excitations above the uniform configuration. Incidentally this is what we observe in simulations; the net polarization at
the steady state is to a high accuracy independent of initial configuration. The small deviations is however understandable since the
constraint of constant afbf is not guaranteed to be accurately satisfied in real systems with arbitrary initial conditions. Moreover, in an
ensemble of the systems starting from all possible initial conditions, all nontrivial configurations preserving the constraint as well as the
net polarization, are equally accessible to the system.

The above arguments clarifiy why the system in SLI limit is not guaranteed to reach a state with large-scale polarization. Interestingly
this simple analysis provides insight into why NLI mechanism stabilizes the states with nearly uniform polarization. Adding nonlocal
interactions kills the nontrivial solutions of SLI case, by promoting the adjacent cells to have similar polarizations (segregation).
Therefore, all the cells not only satisfy constant afbf , but also favor equal magnitudes of polarizations |Pi|. In order for the cells to
meet the two criteria simultaneously, the directions of the cell polarizations must also be parallel. In SLI case, however, different cells
can have different |Pi|, hence different orientations.

D.4 Unequal interaction ranges

We assumed throughout the main text that the range of nonlocal cytoplasmic interactions are identical for both intra- and interspecies
kernels, i.e. λuu = λuv . Here we consider cases in which one of the length scales is much smaller than the other: (a) λuv � λuu =
0.5`0, and (b) λuu � λuv = 0.5`0, namely one of the interactions falls in the SLI regime, while the other remains of NLI type.

We observe that when inhibitory interaction are short-ranged, i.e. (a), domains of correlated dipoles form of sizes roughly equal to
5-10 cell diameters, beyond which the correlation falls rapidly; Fig. (D.3a). Therefore, although the dipoles and clusters of aligned
dipoles form, the coarsening stage of dynamics is not accomplished. In the opposite limit, the polarity becomes correlated on larger
length scales, comparable to the case of λuu = λuv , with minor modulations; Fig. (D.3b).

What we see in (a) is not unexpected. When the inhibitory interactions are local, the segregation is not successfully accomplished
consistently over large distances, hence the small correlation length. On the contrary, (b) that roughly speaking, corresponds to a “local-
activation, global-inhibition” (LAGI) mechanism, is expected to work properly. Indeed one would naı̈vely expect LAGI to work even
better than equal interaction ranges. Nonetheless, we see that the latter indeed works better. The reason is as follows: The final state
of a long-range polarized tissue, consists of cells that are effectively divided into two compartments carrying A and B separately. Now,
suppose that most of A proteins are initially localized on the right side of a cell. Regardless of local or nonlocal interactions of like
complexes, A and B push each other to the opposite sides of the cell using the nonlocal mutual inhibition. If this repulsive interaction is
accompanied by a simultaneous attraction of A towards the initial locus of A (and the same for B), the segregation is facilitated and is
more stable. Thus, nonlocal attraction (within a certain range) can amplify the segregation process.

Another important point to note is that, in both cases of λuu/`0 � 1 and λuu/`0 ' 0.5, if the range of inhibitory interactions
exceeds a certain length scale, roughly the size of a cell λuv & `0, the opposite sides of the cell inhibit each other, e.g. A on the right
side, inhibits B on the left side. Thus, the B proteins sitting on the left side of the same cell are destabilized by A from across the cell.
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(a) (b)

Figure D.3: The steady-state solutions of polarization field in tissues where the ranges of nonlocal cytoplasmic interaction are unequal.
(a) Inhibition between the unlike complexes are short-ranged (λuv/`0 = 0.01), while activation of the like complexes remains in NLI
regime (λuu/`0 = 0.5), and (b) illustrates the exact opposite of (a). The big arrows represent local averages of polarization over regions
of around 5 - 10 cell diameters.

However, as far as polarity is concerned, the B protein on the opposite side of the cell is indeed contributing positively to the same
direction of polarity as A. Therefore, as mentioned in the main text, for λ/`0 & 1, the polarization, even if initially correlated over long
distances, becomes highly unstable against any stochastic noise.

D.5 External cues

The external cues can appear as either bulk or boundary signals, each of which may be persistent or transient. Here we discuss and
compare the responses of systems in SLI and NLI regimes, with different types of cues. In a nutshell, nonlocal cytoplasmic interactions
(NLI) assist with the detection of global signals, even in highly disordered cases, whereas in SLI regime, only tissues with small
disorder respond to global cues. Given that long-range polarizations have been observed in stages of development in which tissue is
still highly disordered, NLI seems to be the necessary mechanism to detect the global cues.

Bulk signals. Bulk signals are incorporated in our model in the form of a constant gradient. In the absence of geometrical disorder
of the tissue, the bulk cues are capable of rotating dipoles in both SLI and NLI regimes. However the NLI systems (a) require a
much smaller strength of the signal, and (b) respond on a much shorter timescale than SLI systems. Upon increasing the geometrical
irregularities, while the behavior of NLI systems remains the same with minor changes in the timescales, i.e. slower dynamics, the SLI
fails to align with the gradient. Therefore, we conclude that, nonlocal cytoplasmic interactions play the key role in detecting the bulk
cues, and aligning the collective polarization accordingly.

Boundary signals. In the SLI regime with small geometrical disorder, and in the absence of stochastic noise, we observe that a boundary
signal creates a polarization wavefront that travels into the bulk. Consider a polarization wave as it travels to the right. As the wave-
front approaches a column of cells, proteins of one type (say A) are absorbed to the left junctions shared with the cells in the previous
column, and leave a net positive concentration of the other protein (B) on opposite side of the cell, which in turn attract A proteins to
the left edges of next column and so on. Any finite value of stochastic noise, however, destroys the polarization beyond a length scale
determined by the distance from the critical point.

The above results are true for persistent signals. When the signal is transient, the timescale of the signal becomes important. Suppose
that the magnitude of the signal falls as an exponential e−t/τs . In general, and as one would intuitively imagine, if τs, is not much
smaller than the dynamic timescale of NLI, found to be ∼ 50/γ, the signal manages to rotate the dipoles. Otherwise, the rotation is not
fully accomplished. It goes without saying that SLI systems do not respond to transient signal.

E Elongated Cell Geometry

In the case of anisotropic cells, as expected from the earlier discussions on the junctional coarse-graining, the renormalized value of
different junctions are going to be dependent on their lengths. As in the case of one dimension, searching for mean-field (MF) solutions,
we assume that in steady state, the concentrations of bound proteins are translationally invariant along the three main axes of the lattice.
For cells with different lengths and thus different α, β’s, the polarization p in first equation of Eqs. (D.2), cannot vanish for all three
different α’s. Therefore, the polarization along two of the axes remains zero, while the third (the longest) axis is polarized. Below, we
investigate different possible scenarios for the two types of elongated cells, depicted in Fig. (E.1): the sixfold symmetry breaks down
into twofold if elongation axis passes through a vertex (Fig. (E.1a)), or fourfold symmetries if elongation is perpendicular to two parallel
edges (Figs. (E.1b, E.1c)). In both cases, the system behaves qualitatively like a 1D problem, and the polarization is perpendicular to
elongation axis, pointing perpendicular to an edge (twofold) or towards a vertex (fourfold).

Previously we discussed the consequences of unequal α, β’s. The formalism and solutions are not directly applicable to the case
of elongated systems with NLI, the reason being that the junction-junction interactions were not included in what we calculated in
Appendix Sec. (D.2). Here, without deriving explicit expressions for the effective parameters in elongated system, we only argue that
should we solve the full NLI equations in the elongated case, the longer junctions will acquire larger coefficients α, β. Note that in
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Figure E.1: The angle between the axis of net polarization with y-axis, i.e. the axis of elongation, as a function of elongation index E ,
for a system with the same initial condition and primary lattice (see the explanation below, on the precise definition of Φp). At E ' 0.1,
the axes of polarization and elongation are almost orthogonal, with |Φp − Φe| ' 87 (degrees).

this self-consistent approach, the effective α, β are dependent on the concentrations of dimers on other edges. Therefore, assuming the
system has reached its steady state, we can write the cooperative interactions as functions of the concentrations of dimers on all the
edges, weighted by the geometrical factors originating from nonlocal interactions. For small ranges of NLI, λ/`0 � 1, the effect of
other edges are negligible and only the self-interaction of each edge is to be taken into account. Intuitively and also from the expression
given in Sec. (1), of the main text for nonlocal interactions, it can understood that the self-interaction is a monotonically increasing
function of the edge length. Therefore longer edges with NLI, have larger values of α, β. Upon increasing λ, the mutual contributions
between all pairs of edges increase. However the qualitative behavior of effective α, β’s for different edges does not change. With this
in mind, one can see that the two situations discussed in Appendix Sec. (D.2), i.e. α1 > α2, α3 and α1 = α2 > α3 correspond to the
cartoons in Figs. (E.1a), and (E.1b, E.1c), respectively. In (a) the polarization points toward the middle of the junction parallel to the
elongation axis, whereas (b) polarization vector passes through a vertex. This analysis might explain, to some extent, the experimental
observation of PCP vector pointing at a vertex. At any rate, cases (a) and (b) both acquire polarizations perpendicular to the elongation
axis. There also exists an unstable configuration (c) which is unpolarized. The instability is again due to nonlocal interactions which
forbids adjacent cells carrying opposite dimers; like the twofold degenerate trivial MF solutions of equilateral cells.

E.1 Measure of elongation: cell nematic tensor

We discussed in the main text, how the emergence of perpendicular polarization can be explained in terms of nonlocal interactions of
bound proteins. The cellular polarization as defined in Eq. (B.1), involves integration around the cell which is naturally dominated
by the longer junctions, for uniform distribution of bound proteins. This is what we call a trivial shape effect. What is observed in
experiments though, suggests perpendicular polarization beyond this trivial effect. The perpendicular polarization is not only a result
of shape anisotropy, but indeed a consequence of larger absorbing power of long junctions. This can in principle be examined by
comparing the density of dimers on long and short junctions. In practice, the best way to account for the shape anisotropy and discern
its effect from that induced by NLI, is to calculate a nematic shape tensor (moment of inertia) of the cell, parametrizing the shape
anisotropy of the cell.

J̃i =
(
J xxi J xyi
J yxi J yyi

)
, J µνi =

∫
9i
d`i r

µ
i r
ν
i , (E.1)

where r is measured with respect to geometrical center of mass, and its components rµ and rν can each be x or y. The integration is
carried out on the periphery of cell i, and d` is the differential element of length, such that for constant radius we have

∫
9 d` = 2πr. In

order to have the elongation index dimensionless, we normalize this tensor to the trace of Ji, which is invariant under rotation. Thus,
we have: J̃ ≡ J̃ /tr(J̃ ). One can find the elongation index and the angle with respect to x-axis, using the following relations:

J±i = 1
2
(
Jxxi + Jyyi

)
± 1

2

√
(Jxxi − J

yy
i )2 + 4 Jxyi , φei = tan−1

(
Jxyi

J+
i − Jxxi

)
(E.2)

Elongation index is then defined as
√
J+/J−.

In order to compare our results to the experiments, we use the commonly used alternative representation of the elongation index,
which is obtained by first making the J̃i matrix, traceless:

Ẽi =
(
εi,1 εi,2
εi,2 −εi,1

)
= J̃ − 1

21 , εi,1 =
∫
9i
dr (E.3)

This is very much like what we introduced in Eq. (B.5). From the above equation, the magnitude of elongation and its angle to x-axis
read,

Ei =
√
ε2
i,1 + ε2

i,2 , φei = 1
2 cos−1(εi,1/Ei) (E.4)
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The elongation index is the spatial average of E = N−1
c

∑Nc
i=1 Ei. With, ε1 = N−1

c

∑Nc
i=1 ε1,i, the angle of nematic is defined as:

Φe = 1
2 cos−1(ε1/E). (E.5)

In terms of the elongation index E , we plot in Fig. (E.1), the angle between y-axis and the steady-state polarization vector |Φp−Φe|
(in degrees), versus different values of E , for a system with the same initial condition and same “primary” lattice (i.e. before stretching),
but elongated along y-axis. Here, Φp is defined as the angle of the axis between polarization and the x-axis, and over the domain of
Φp ∈ [0, π). Since Φe = π/2 per definition, we have |Φp − Φe| ∈ [0, π/2]. Of course for E = 0, the axis of elongation is not
defined, yet we measure it with respect to y-axis. Furthermore, this figure is only an example in which the polarization for E = 0,
happens to make a small angle with y-axis, hence the pronounced effect of elongation. It is clear that depending on the topology of the
lattice and initial condition, the polarization can be almost perpendicular to y-axis, even without elongation. Therefore among different
simulations, we chose one with a relatively large effect of elongation.

It is noteworthy that for elongated cells with SLI too, the perpendicular polarization could be achieved due to the trivial shape effect;
long edges cover wider angles, hence dominating the perpendicular component of the cellular polarization. However, in SLI case the
proteins are by no means guaranteed to sit consistently on the long junctions; only on average they happen to be more localized on the
long junctions.

F Mutant Types and Their Corresponding Phenotypes

In order to further evaluate the validity of our proposed mechanism of signaling, we discuss, in this section, three other mutants, i.e.
types III, IV, and V, and interpret their phenotypes in terms of their biological analogues. We demonstrate that our model reproduces
the generic phenotypes of the corresponding mutants.

F.1 Type-III mutants: lack of cytoplasmic proteins

Type III suffers from lack of cytoplasmic proteins which is reflected as the suppression of the coefficients α, β, as both are ∝ c0. As
can be seen below in Fig. (F.1a), type-III phenotype shows mild non-autonomy. This mutant can be considered similar to Dsh−. It is
very important to distinguish between types II and III, both of which involve cytoplasmic proteins. In type II, the nonlocal cytoplasmic
interactions are suppressed, yet the membrane-bound complexes are able to interaction locally through SLI mechanism. Thus we
interpret type II as a loss of function mutant. Type III, on the other hand, is depleted of cytoplasmic proteins and even local interactions
are highly suppressed. Their phenotypes can be told apart by noting that the unlike type II, individual cells in type III are unpolarized,
indeed similar to type I mutants. However both type I and II show very small non-autonomy, which is consistent with experiments. For
images of phenotypes, see e.g. Ref. [35].

F.2 Type-IV mutants: clones with severed geometry

In type IV, a group of cells suffer from geometrical irregularities in the form of, (a) disordered lengths of junctions, i.e. (ε0), and
(b) size of the cells (apical area). In experiments [24], the irregularities decrease gradually as the distance from the center of the
clone increases. Thus the clones do not define a clear boundary with the WT cells. In our simulations the level of irregularities drops
according to a Gaussian function with the lengthscale of about 10 cells, around a nidus that marks the most geometrically disordered
point. Experiments by Ma, et.al. [24], show that, in the absence of external cue (ft−, in Drosophila wing), the geometrical disorder
disrupts polarization field by inducing a swirly pattern around the most severed region; see Fig. (1) in Ref. [24]. In Fig. (F.1b), we see
that our simulations exhibit roughly similar patterns of polarity in the vicinity of the geometrically irregular cells.

F.3 Type-V mutants: double-mutants of membrane proteins

According to some experiments, e.g. [16,42], the phenotypes of double-mutants in which both membrane proteins A and B are lacking,
exhibit less non-autonomy that the single-mutants. This finding and its implications have provided important information regarding the
mechanisms of intercellular signaling. The commonly accepted picture of the core PCP pathway has been the following: Vang acts as
the ligand of Fz, and the direct signaling is monodirectional from Fz to Vang, namely in order for Vang to be localized at a junction,
it must “sense” the density and “availability” of Fz in the adjacent cell, whereas Fz is oblivious of Vang concentration on the other
side of the junction. The single mutants show non-autonomous phenotypes, which is also predicted by our model in type-I mutants.
This picture has recently changed by comparing the phenotypes of single mutants fz− and Vang−, with those of the double mutants
Vang−fz−. The non-autonomy in the latter is greatly suppressed compared to single mutants. In a recent study [18], Fisher, et.al. have
tested difference scenarios of Fz-Vang interactions, and concluded that no model based on monodirectional interactions can account for
the suppression of non-autonomy in double mutants, and that in contradiction to the old picture, bidirectional interactions are necessary
for the corresponding phenotypes to appear.

In light of the above-mentioned study and for reducing the complexities, originating from unequal signaling in the two direction,
we constructed our simplified model originally based on the symmetric interactions between A and B. To check the validity of these
assumptions, we examine our model’s prediction of double-mutants, by suppressing the concentration of the membrane proteins A
and B in a clone. In agreement with experiments, we observe that the non-autonomous disruption of polarity is largely suppressed
compared to single mutants, i.e. type I. This can be clearly seen in Fig. (F.1c), where the crescent of vanishing polarization in type I, is
disappeared, and the polarization of WT cells is only slightly reoriented, wrapping around the clone.
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(a) (b) (c)

Figure F.1: Illustrations of type III, IV, and V mutants in (a), (b), and (c), respectively. In all panels, the red regions represent the
mutant cells. (a) Type III shows a clone with smaller values of αmut. = 0.01α and βmut. = 0.01β, which is interpreted as lack of
cytoplasmic proteins, or their impaired modification by A and B. (b) shows the geometrically mutants that are centered around a highly
disordered region. The resulting phenotype is a swirly pattern of polarization. (c) Double-mutants of both membrane proteins A and B.
The non-autonomy is almost removed compared to to single-mutants type I.

F.4 Topological defects and domain walls in polarization field

Swirls (whorls) and saddles (crosses) are among repeatedly observed patterns in mutants [10, 24, 45–47]. In certain situations the
polarization pattern contains topological defects like vortices, saddles, as well as domain walls separating two regions with different
polarities. These patterns can arise either as transient or as long-lived states. The life-time of the defects in principle decreases with the
magnitude of stochastic noise. As such the term “long-lived” here is referred to as t & 1000/γ.

Starting from random initial conditions, systems with NLI are prone to formation of transient point defects that are observed at
the interface of the coarsening domains of different polarizations; they subsequently disappear as the domains interact and align their
polarities. In early-time dynamics, the dipoles interact mostly with dipoles in their respective longitudinal direction, because they point
towards the edges carrying more dimers, and naturally interact more strongly with their neighbors positioned longitudinally. On the other
hand, since dipoles are initially randomly oriented, the dynamics begin by forming small domains of parallel dipoles in all directions.
Such point defects are thus a consequence of initial random orientation and stronger longitudinal correlations in early dynamics; see
Fig. (F.2a). The appearance of transient defects in the polarization field was also predicted by Burak and Shraiman in [36].

The long-lived patterns might be the signature of a globally lacking ingredient, either insufficient B protein, b0 . b∗0, or small
diffusion length of the interaction-mediating proteins, λ/`0 . 0.1. In these cases, the defects form swirly patterns; Fig. (F.2b). These
can be thought of as globally mutant systems. Line defects can appear as either line segments or closed loops. The line segments are
bounded by two topological defects of charge 1/2. The two sides of the line carry opposite dipoles which are connected through U-turns
at both ends. For instance, interesting patterns of polarization appear when the control parameter is tuned around the SLI critical point
(b0 ' b∗0 ' 0.23). While in nearly ordered lattices, both cellular and global polarities remain close to zero, disordered lattices exhibit
swirly robust patterns of polarizations, that are determined by the microscopic, i.e. cellular, geometry; see Fig. (F.2b). This is evident
in patterns of polarization for a specific realization of quenched disorder, while b0 is changed in the vicinity of b∗0, i.e. 0.2 . b0 . 0.25
(graphs not shown). The magnitudes of dipoles, however, grow as b0 increases. The swirls in this case are stabilized by the quenched
disorders in the system. For larger b0, the long-range polarization arises smoothly as the nucleated domains grow, interact and align
with one another.

Another type of long-lived defects that occur mostly in elongated systems with small disorder are domain walls separating two
polarized regions, each with a net polarization perpendicular to the elongation axis. The reason why domain walls appear more easily
in elongated systems is that elongation drives the system towards one-dimensional layers of cells that are less strongly coupled to cells
in other layers than in isotropic systems; i.e. suppressing the effective coordination number of each cell. Therefore the domains with
opposite polarizations can coexist. The occurrence and life time of the domain walls depend on the initial condition, as well as the level
of the quenched and stochastic disorders. While in the presence of large quenched disorder, the dipoles of the dominant polarization
conspire to swallow the opposite region, the latter may remain intact in ordered systems for long times until the stochastic noise removes
it. Geometrical (quenched) disorder in each sample of finite size, serves as an infinitesimal bias (in addition to elongation), to break the
+/− symmetry and remove the region of opposing polarities; Figs. (F.2c) , (F.2d).

G Methods

Simulations. Dynamical simulations are carried out using the forward Runge-Kutta method of 4th order. For each cell, starting from
(typically) a random initial distribution of A and B proteins, we evolve the system according to the RD equations. All points on the
edges of a given cell interact with each other through the kernels introduced in Sec. (2) of the main text. However since we assume
the proteins are distributed uniformly along the junctions, it suffices to compute, for each realization of the lattice, the geometrical
coefficients (Kµν ) of junction-junction interactions by integrating the kernels along the two junctions, and for all pairs of junctions
within a cell. Therefore, the integrations reduce to matrix products. Boundary conditions, in the systems without external cues of both
kinds, are chosen to be periodic along both axes. The challenge arising from misalignment of boundary cells with disordered geometry
(also pointed out in Ref. [24]), is circumvented using Voronoi tessellation, which generates cell layouts based on the seeded centroids.
In systems with global (bulk) cues, we used free boundary conditions. In the case of boundary signal, the corresponding boundary is
fixed while the others are free.
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Figure F.2: Illustrations of point and line defects in four different cases of systems with NLI of range λ/`0 = 0.5. Green arrows show
polarization flow fields. (a) An isotropic system during the early evolution (γt = 10), quenched disorder ε0 ' 0.5 and nd ' 0.5.
The solid-line circles represent vortices of topological charge 1, and the dashed circle has the charge −1. The red line segments with
bullets at their ends are the line defects. (b) The steady state of a tissue with NLI, quenched disorder ε0 ' 0.5 and nd ' 0.5, with
low b0 = 0.35. This is another example of what was shown in main text Fig. (4b2), but at a larger value of b0, and above the SLI
critical point. The net polarization is nonzero and pointing in this case to the left, yet defects like swirls are detectable. (c) and (d) show
elongated systems 〈E〉 = 0.4. (c) Transient state (γt = 20) of a highly disordered system ε0 ' 0.5, and nd = 0.5. Given the periodic
boundary conditions in along both axes, one can see that the red solid curves form loops, i.e. domain walls, dividing the surface of a
torus into two regions with opposite polarities. (d) The steady state of an elongated tissue with small quenched disorder of ε0 ' 0.18,
and nd = 0. The green arrows again represent the flow field.

Polarization and Correlation Functions. The cellular dipole moment is defined as the asymmetric angular distribution of A proteins
inside a cell. The average of magnitudes Q and the magnitude of averages P , are then calculated by spatial averaging over the lattice.
Correlation functions and the corresponding correlation lengths are calculated using the definitions in the main text, Sec. (2). Due to the
periodic boundary conditions, the correlation length is only defined up to the half the size of the lattice. We briefly mentioned in the text
that during the early evolution of the polarization field, the longitudinal and transverse fluctuations have different correlation lengths.
However, we have not separated the two, and have lumped them into one effective correlation length. As such, the spatial averaging
over dipole-dipole correlations are only dependent on their radial distance.
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