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Abstract 

Viruses affect approximately 20% of all human cancers and express immunogenic proteins that 

make these tumor types potent targets for immune checkpoint inhibitors. In this study, we apply 

computational tools to The Cancer Genome Atlas and other datasets to define how virus infection 

shapes the tumor microenvironment and genetic architecture of 6 virus-associated tumor types. 

Across cancers, the cellular composition of the tumor microenvironment varied based on viral 

status, with infected tumors often exhibiting increased infiltration of cytolytic cell types. Analyses 

of the infiltrating T cell receptor repertoire revealed that Epstein-Barr virus was associated with 

decreased diversity in multiple cancers, suggesting an antigen-driven immune response. Tissue-

specific gene expression signatures capturing these virus-induced transcriptomic changes 

successfully predicted virus status in independent datasets and were associated with both 

immune- and proliferation-related features that were predictive of prognosis. The analyses 

presented suggest viruses have distinct effects in different tumors with implications for 

immunotherapy.  

 

Introduction 

Immune checkpoint inhibitors have yielded promising results in treating cancer. By targeting the 

proteins that attenuate T cell receptor (TCR) signaling following antigen recognition, these drugs 

can initiate a robust anti-tumor immune response that induces remission and prolongs survival in 

subgroups of patients with multiple malignancies.1-7 Despite the early successes of these 

treatments, response rates to these therapies remain low, creating a need for biomarkers that are 

capable of identifying sensitive patients. Tumor mutation burden has been identified as one such 

biomarker, with tumors exhibiting high mutation loads more likely to express immunogenic 

neoantigens that are recognized as non-self by the adaptive immune system.	8 This association 

has been supported across tumor types, with high-mutation tumors yielding higher response rates 

than lower ones9,10 and also within tumor types, with responsive patients exhibiting significantly 
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higher mutation burdens.	11-16 Given these associations, it is possible that other sources of antigen 

in the tumor microenvironment function similarly with regards to immunotherapy response.   

  

Virus infections are a source of tumor antigen that affect approximately 20% of all human cancers. 

There are seven virus families that have been implicated as oncogenic, including hepatitis virus 

B and C (HBV and HCV), human papillomavirus (HPV), human herpesvirus 4, also known as 

Epstein–Barr virus (HHV4), human T-cell lymphotropic virus (HTLV), Merkel cell polyomavirus 

(MCV), and human herpesvirus 8, also known as Kaposi's sarcoma virus (HHV8).17 HPV, HTLV, 

HHV4, MCV, and HHV8 are known to directly contribute to oncogenesis by expressing oncogenic 

proteins encoded in their genome. Conversely, HBV and HCV are involved in indirect 

carcinogenesis, causing chronic inflammation of the infected organs.18 Like neoantigens, the 

proteins expressed by these viruses are recognized as foreign by the immune system, with 

infection associated with increased immune activity in different tumor types.19,20 Immune 

checkpoint inhibitors thus provide intriguing treatment options for patients with these virus-

induced cancers. However, the role viral proteins play in eliciting these responses, and how these 

roles differ across cancer types, remains unclear. Two clinical trials in head and neck cancer and 

Merkel cell carcinoma found higher response rates among virus-positive patients compared to 

their virus-negative counterparts.21,22 Moreover, in Merkel cell carcinoma, MCV-positive patients 

exhibited significantly lower mutation burdens than virus-negative ones, indicating that viral 

antigen may be a sufficient immunogen to induce response to anti-PD1.	22 Similar results were 

shown in gastric cancer, where a study identified an HHV4-positive patient responsive to anti-PD-

L1 despite having a low tumor mutation burden.23 However, a study in cervical cancer revealed 

that the antitumor T cell response in HPV-positive tumors receiving adoptive T cell therapy was 

directed against a patient’s cancer germline antigens or neoantigens rather than viral antigens.24  
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Several studies have now characterized the occurrence of virus infections in thousands of tumor 

samples from The Cancer Genome Atlas (TCGA).25,26 Additionally, recent advances in genome-

based immune profiling technologies have made it possible to systematically characterize the 

tumor microenvironment of large cohorts of patients. Several methods exist that use gene 

expression information to infer the infiltration level of different immune cell types in the tumor 

microenvironment.20,27,28 Other methods have been designed that use sequencing data contained 

in raw RNAseq reads to profile the TCR and B cell receptor repertoires from bulk tumor datasets.	

29,30 These methods together enable large-scale analyses that are more highly-powered to detect 

associations than traditional studies using flow cytometry and targeted receptor sequencing-

based approaches. This is especially beneficial when studying virus infection in different tumor 

types, as these infections are exceedingly rare in some contexts. 

 

In this study, we apply these tools to TCGA and other datasets to define how virus infection 

shapes the tumor microenvironment of the six tumor types: bladder urothelial carcinoma (BLCA), 

cervical squamous cell carcinoma (CESC), colorectal adenocarcinoma (COADREAD), head and 

neck squamous cell carcinoma (HNSC), liver hepatocellular carcinoma (LIHC) and stomach 

adenocarcinoma and esophageal carcinoma (STES). We begin by examining how the infiltration 

levels of CD8+ T cells, B cells, natural killer (NK) cells, and macrophages vary based on the 

presence of a virus infection in each tumor. We then perform TCR profiling on bulk tumor data to 

assess how TCR diversity changes in relation to infection with different viruses and determine the 

extent to which virus infections are associated with clonal T cell responses. To expand our study 

beyond datasets that include virus infection information, we develop a gene signature to predict 

virus infection status in each of the tumor types in our study. We then functionally characterize 

this signature and apply it in a survival-meta analysis to provide a multi-dataset consensus on 

how virus infection affects cancer-specific patient prognosis. Together, these analyses provide 
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novel insights into the altered tumor-immune dynamics associated with virus infection that can be 

used to refine our understanding of virus-associated tumor immunogenicity. 

 

Results 

Virus infection is associated with an altered tumor microenvironment 

To obtain a global overview of how the tumor microenvironment differs in relation to virus infection, 

we applied our previously developed computational framework27 to infer immune infiltration levels 

of four distinct immune cell types, CD8+ T cells, B cells, NK cells, and macrophages, from TCGA 

RNAseq gene expression profiles of six virus-associated tumor types (Supplementary Table S1). 

We then stratified patients from each tumor type based on whether they were positive for reads 

from at least one virus, as determined by a prior study (Figure 1A).26 In 4/6 tumor types, infection 

was associated with elevated levels of CD8+ T cell infiltration, with CESC and HNSC exhibiting 

significant differences (P = 0.01 and 4e-5, respectively). We observed similar trends for B cells, 

with significant differences in BLCA, CESC, and HNSC (P = 0.01, 4e-3, and 2e-8, respectively), 

as well as for NK cells, with significant elevations in the virus-positive samples of CESC, HNSC, 

and STES (P = 5e-3, 0.02, and 3e-4, respectively). Conversely, we observed significant depletion 

in macrophages when comparing HNSC samples (P = 2e-5).  

 

We next examined how the type of virus affected theses associations. For this analysis, we further 

stratified patients based on the specific virus they were infected with and then compared each 

subgroup’s level of immune infiltrate to the virus-negative subgroup (Figure 1B). In several cases, 

there were only a small number of patients with a specific virus infection in a given tumor type, 

making it difficult to detect associations. However, in most tumor types, there were sufficient 

numbers of infections from at least one virus to detect significant differences in immune infiltrate. 

We found that in CESC, numerous viruses were associated with elevated infiltration levels of 

distinct cell types, with the most common virus, HPV16, associated with significantly higher levels 
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of CD8+ T cells, B cells, and NK cells.  In HNSC which also exhibits frequent HPV16 infection, 

we observed similar associations, including increased CD8+ T cell, B cell and NK cell infiltration 

as well as decreased macrophage infiltration. In STES, where samples were most frequently 

infected by HHV4, we observed significantly elevated CD8+ T cell and NK cell levels and 

decreased levels of B cell infiltration in HHV4-positive samples. Interestingly, these associations 

were reversed in HBV-infected LIHC, with HBV-positive samples exhibiting significantly lower 

levels of CD8+ T cell and NK cell infiltration. These samples also exhibited decreased expression 

of HLA-class I in HBV-positive samples, suggesting the loss of antigen presentation machinery in 

these cancers (P = 0.07, 0.02, and 0.01 for HLA-A, HLA-B, and HLA-C, respectively; 

Supplementary Figure S1). These divergent results indicate that viruses of different families alter 

the tumor microenvironment of the samples they infect in distinct ways. 

 

Virus-associated immune infiltration associations are confounded by microsatellite 

instability 

Microsatellite instability (MSI) is a condition associated with a high mutation burden that is a result 

of defects in the DNA mismatch repair pathway. This condition is especially prevalent in 

colorectal, gastric, and endometrial tumor types31 and has been shown to be associated with high 

levels of CD8+ T cell infiltration.27 We hypothesized that the observed differences in CD8+ T cell 

infiltration between virus infected and non-infected COADREAD and STES samples may have 

been confounded by the microsatellite instability of a patient’s tumor, masking potential increases 

in infiltration between virus-positive and virus-negative samples. To assess the extent to which 

this was true, we stratified patients from the COADREAD and STES cohorts into four groups 

depending on their MSI and virus infection status. We found that in both tumor types the majority 

of virus-positive samples were in the microsatellite stable (MSS) subgroup, with this subgroup 

containing 31/33 virus-positive samples in COADREAD and 50/55 samples in STES. 

Interestingly, in COADREAD the virus-positive/MSS samples exhibited significantly higher levels 
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of CD8+ T cell infiltration compared to their virus-negative/MSS counterparts (P = 0.05, one-tailed 

Wilcoxon sum-rank test; Figure 2), while MSI samples exhibited significantly higher CD8+ T cell 

levels than either MSS group, regardless of virus status (P = 2e-14 and 9e-4, for virus-negative 

and virus-positive, respectively). However, in STES these associations were weaker, with virus-

positive/MSS samples showing insignificant increases compared to virus-negative samples (P = 

0.06, one-tailed Wilcoxon sum-rank test) and MSI samples exhibiting significantly higher levels of 

CD8+ T cell infiltration compared to the MSS/virus-negative samples, but not the MSS/virus-

positive samples (P = 3e-3 and 0.34, respectively; Figure 2). Together, these results provided 

preliminary evidence that MSI status may confound associations between CD8+ T cell infiltration 

and other potential immunogenic factors in the microenvironment. 

 

Infection of HHV4 is associated with decreased T cell receptor repertoire diversity 

We next examined how infection of specific viruses associates with different aspects of the 

infiltrating TCR repertoire. We hypothesized that the presence of viral proteins in the tumor 

microenvironment may be associated with a high proportion of viral antigen-specific T cell clones, 

and thus a less diverse TCR repertoire. To test this hypothesis, we employed the TCR Repertoire 

Utilities in Solid Tissue (TRUST) method29 to call TCR-specific reads from bulk RNAseq reads 

from each of the six TCGA tumor types in our study. In all tumor types, TCR read abundance was 

well-correlated with our expression-based measures of CD8+ T cell infiltration (average 

Spearman ρ = 0.73, range = 0.58-0.82). Additionally, differences in TCR read abundance between 

infected and non-infected samples was largely consistent with our previous findings, indicating 

concordance between the computational methods chosen for our infiltration analyses 

(Supplementary Figure S2). We defined the diversity of each patient’s TCR repertoire as the 

number of unique clonotypes per thousand mapped TCR reads and compared how this metric 

differed between infected and non-infected samples across each tumor (Figure 3A). In most 

cases, there were no significant differences in diversity between subgroups. However, in STES, 
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samples infected with HHV4 exhibited significantly lower levels of TCR diversity, indicating an 

antigen-driven T cell response (P = 1e-3). Furthermore, in the four other tumor types with at least 

one HHV4 infection, HHV4-infected samples exhibited the lowest median levels of TCR diversity 

compared to the other patient subgroups. To provide more power to these analyses, we pooled 

the associations for each virus across cancer types and calculated and determined significance 

using a meta-z score approach (Figure 3B). HHV4 remained the only virus associated with 

differing levels of TCR diversity, with a meta-z-score of -3.81 that corresponded to a significant 

decrease (two-tailed meta-p-value = 1e-4). These results indicated that the presence of HHV4 

viral proteins can elicit a clonal T cell response in different tumor types. 

 

Tissue-specific virus infection gene signatures reproducibly predict infection status  

While some gene expression datasets contain immunohistochemistry and sequencing 

information that can inform a patient’s virus infection status, several do not, making it difficult to 

further study how virus infection associates with different clinical variables. To address this issue, 

we devised a method to create a gene expression signature that could predict a patient’s virus 

infection status. To design this signature, we applied a previously developed approach that 

weighted each gene in the transcriptome based on how well the gene’s expression level 

distinguished virus-infected patients from non-infected patients in a generalized linear model.32 

Genes that more significantly differed between a virus-infected and non-infected sample were 

given exponentially more weight in the signature than genes that did not significantly distinguish 

between the two groups of samples. To minimize the effect of confounding on the creation of this 

signature, each gene’s model was adjusted for age, stage, grade, lymph node metastasis status, 

and microsatellite instability status depending on the availability of that information.  

 

We first applied this approach to the TCGA HNSC dataset, comparing samples positive for any 

virus to those negative for all viruses. We then applied the signature back to the TCGA HNSC 
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dataset to calculate a virus infection score for each patient and used these scores to classify 

whether a sample was virus-positive or virus-negative. The resulting classifications yielded an 

area under the receiver operating characteristic curve (AUC) of 0.92, indicating high classification 

accuracy (Figure 4A). To confirm that this high performance was not a result of overfitting in the 

TCGA dataset, we applied the TCGA-derived signature to a series of additional microarray 

datasets that also contained clinical measures of virus infection status (Supplementary Table S2). 

In these datasets, the signature demonstrated excellent accuracy, yielding AUCs ranging from 

0.81 to 0.95 (Figure 4B, Supplementary Figure S3). To examine whether this procedure could be 

used to classify additional tumor types, we derived and tested signatures in in two more cancers, 

CESC and LIHC, for which there were suitable test datasets for validation. Each tumor type’s 

respective signature exhibited high accuracy in the dataset from which it was derived (AUC = 0.80 

and 0.85 for CESC and LIHC, respectively Figure 4A). In CESC, this performance also translated 

to an independent dataset (AUC = 0.91). However, in LIHC, the signature performed 

demonstrably worse in the test dataset (AUC = 0.63), though virus-positive samples still had 

significantly higher signature scores than virus-negative samples (P = 0.01). These analyses 

together served as a proof-of-principle that virus status could be inferred from expression 

information in multiple tumor types.  

 

Given the associations between virus infection and increased immune infiltration across different 

tumor types, we hypothesized that it might be possible to predict the virus infection using 

signatures derived from a tumor type different from the cancer to which they were applied. 

Successful prediction of infection status in a tissue-agnostic manner would suggest a shared 

biology between tumor types following virus infection. To determine the extent to which this was 

true, we derived a virus infection signature from each of the six virus-associated TCGA tumor 

types and then assessed each signature’s performance in cross-tissue classifications using the 

AUC (Figure 4B). We found unsurprisingly that each signature performed best in the tissue type 
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it was derived from, with AUCs ranging from 0.65 (COADREAD) to 0.94 (BLCA), and a mean of 

0.82. However, we also identified five cross-tissue predictions that yielded AUCs greater than the 

lowest same-tissue AUC, with the BLCA signature performing well in CESC (AUC = 0.78), the 

CESC signature performing well in BLCA and HNSC (AUC = 0.83 and 0.82, respectively), and 

the STES signature performing well in HNSC and CESC (AUC = 0.72 and 0.70, respectively).  

 

It has broadly been shown that viruses alter the transcriptional activity of the cells they infect by 

disrupting cell cycle control and inducing proliferation-associated expression programs.18 

Furthermore, our previous analyses indicated that the transcriptomes of virus-infected samples 

are affected by the increased inflammation present in their tumor microenvironments. To better 

characterize the signals detected by each virus infection signature, we examined how heavily they 

weighed the single-gene proliferation marker, marker of cell proliferation KI67 (MKI67), and the 

multi-gene ESTIMATE immune signature33, which is a well-characterized genomic marker of 

immune infiltration (Figure 4C). We found that MKI67 was weighted most highly in BLCA, HNSC, 

and LIHC, with weights corresponding to significantly higher proliferation rates in virus-infected 

cancers (P = 2e-4, 3e-3, and 0.01, respectively). Additionally, at least 40% of the ESTIMATE 

genes in the CESC, COADREAD, HNSC, and STES signatures were weighted at levels that 

corresponded to significantly higher immune infiltration levels in virus-infected samples (P < 0.05). 

In BLCA and LIHC, this number was 10% and 4%, respectively. Considering that the virus 

infection score is exponentially more influenced by significant genes than insignificant ones, these 

results indicate that the CESC, COADREAD, HNSC, and STES signatures are primarily 

dominated by immune genes, while the BLCA signature detects a combination of immune and 

proliferative signals and the LIHC signature is primarily proliferative. 

 

Expression-inferred virus status is differentially associated with survival across cancers 
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We questioned how the altered expression programs associated with virus infection affect patient 

survival. Increased cell proliferation is a well-known negative prognostic factor.34 However, 

immune infiltration has been associated with prolonged survival in a large variety of cancers.35 To 

answer this question, we applied each virus infection gene expression signature to the microarray 

datasets of the same cancer type in the Prediction of Clinical Outcomes from Genomics 

(PRECOG) meta-dataset.36 We then modeled the relationship between virus score and patient 

survival in each dataset using a univariate Cox proportional hazards model and pooled the 

resulting z-scores to get a summary statistic capturing the association between virus infection and 

patient survival in each tumor type (Supplementary Figure S4). We identified two tumor types, 

HNSC and BLCA, that exhibited significant meta-associations between virus score and patient 

survival (meta-p-value < 0.05). Interestingly, virus score was associated with prolonged patient 

prognosis in head and neck cancer while it was associated with poor patient prognosis in bladder 

cancer. For both cancer types, these prognostic associations were present in at least two datasets 

(Supplementary Table S3). To determine whether this was due to the immune- or proliferation-

associated programs captured by each tissue’s respective virus signature, we chose one dataset 

from each tumor type, dichotomized the samples by the median virus score into signature-high 

and signature-low groups, and then examined how MKI67 expression and the ESTIMATE 

immune score differed between the two groups (Figure 5). Notably, these datasets did not include 

gold standard virus infection information, demonstrating the utility of our signature in expanding 

genomic studies of virus infection. In HNSC, MKI67 expression did not differ between signature-

high and signature-low patients, while ESTIMATE immune scores were significantly higher in 

signature-high patients than in signature-low patients (Figure 5B; P = 4e-3). We replicated these 

associations in an additional HNSC dataset that lacked survival information but had gold-standard 

virus infection information (Supplementary Figure S5). This suggested that in HNSC, virus 

infection can induce a prolonged patient survival phenotype by activating a tumor immune 

response. In BLCA, signature-high patients exhibited significantly higher levels of MKI67 
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expression (P = 3e-4) and ESTIMATE immune signature scores (Figure 5D; P = 1e-5). This 

finding was interesting, as it indicated that virus infections in BLCA could induce both increased 

immune infiltration and increased cell proliferation. However, the association between virus 

infection and shorter survival suggested that the increased proliferation of the tumor cells 

overwhelms the ability of the immune system to keep tumor development in check.  

 

Discussion 

Virus-induced cancers are distinct from other tumor types in that they are the result of the actions 

of an infectious agent rather than a mutagenic process. Upon infection, viruses can induce the 

expression and release of pathogenic proteins into the tumor microenvironment, making the 

cancers they infect an interesting model in which to investigate the tumor immune response. In 

this study, we have profiled the tumor microenvironment and genetic programs associated with 

virus infection in six cancer types. Our analyses provide new insights into how viruses reshape 

the tumor microenvironment, identifying differences in immune infiltration and T cell receptor 

diversity in infected compared to non-infected samples. Additionally, our work furthers 

understanding of how viruses affect tumor proliferation and patient survival by expanding genomic 

studies of virus infections into additional datasets. Collectively, these results may aid in efforts to 

identify virus-associated cancer patient subgroups that are sensitive to immunotherapy. 

 

We identified three cancer types, CESC, HNSC, and STES, where the microenvironment of viral 

protein-expressing samples was consistently more infiltrated than that of their non-infected 

counterparts. Additionally, when adjusting for microsatellite instability status, we found 

COADREAD samples showed similar trends. These tumor types are primarily infected by human 

papilloma viruses and human herpesviruses, which are both known to be involved in direct 

carcinogenesis. Several studies have characterized the immunogenic nature of these viral 

proteins, and our results indicate that the presence of these antigens in the tumor 
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microenvironment can elicit a strong immune response.37-41 In contrast to these findings, these 

associations were not present in hepatitis-infected LIHC, despite the fact that the power of our 

analysis was comparable to that of other cancer types. Hepatitis viruses cause chronic infections 

of the liver, leading to persistent inflammation that can contribute to the deregulation of the 

immune response and T cell exhaustion.42,43 Our results supported these findings, with hepatitis 

B virus-infected patients exhibiting decreases in the infiltration of cytolytic cells and the down-

regulation of antigen presentation machinery, both hallmarks of an immunosuppressed 

microenvironment. Together, our results illustrate how differences in viral prevalence across 

different tissue types may shape our understanding of the tumor microenvironment of the tumor 

at the population level. Virus infection should thus be carefully considered when studying the 

tumor-immune interactions of these cancers. 

 

To better understand how viral proteins can alter the adaptive immune response in these cancers, 

we examined how the clonal dynamics of the infiltrating TCR repertoire varied across cancers 

infected with different viruses. Interestingly, HHV4-infected samples exhibited the lowest TCR 

diversity levels in STES and other tumor types, suggesting evidence of a clonal T cell response. 

Intriguingly, a recent study has identified a gastric cancer patient positive for HHV4 that exhibited 

clinical benefit in response to the anti-PD-L1 drug avelumab.23 Furthermore, this study found, in 

agreement with our findings, that HHV4-positive patients exhibit increased immune infiltration. 

Given that high immune infiltration and low TCR clonality have both been associated with 

response to immune checkpoint blockade14,44, our analyses suggest that HHV4-positive cancers 

may represent good targets for future immunotherapeutic approaches. Beyond HHV4, we 

observed no significant differences in TCR diversity between samples infected with a given virus 

and non-infected samples. While surprising, this result is in agreement with a study in CESC, 

which found that the primary antitumor T cell responses in patients receiving adoptive T cell 

therapy are directed against tumor-intrinsic neoantigens or cancer germline antigens, rather than 
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viral antigens.24 Going forward, analyses performing targeted TCR sequencing on patient 

samples may further our understanding of how virus infection alters the clonal dynamics of the T 

cell response. This will be important, as our early results suggest that improving our 

understanding of this process can further refine our ability to identify immunotherapy-sensitive 

patients.  

 

To complement our studies of the virus-associated tumor microenvironment, we developed a 

series of tissue-specific virus infection signatures capable of predicting a patient’s virus infection 

status from their gene expression profile. These signatures were highly accurate in a variety of 

contexts, with virus-infected patients exhibiting significantly higher scores than non-infected ones. 

Functional characterization of these signatures revealed that the CESC, COADREAD, HNSC, 

and STES were associated with immune-based signals, while LIHC and BLCA were more 

indicative of higher cell proliferation rates. These results suggested that viruses of different 

families can induce distinct genetic reprogramming in the tumors they infect. Survival analyses 

using these signatures supported this finding, with virus-high HNSC patients exhibiting a 

prolonged prognosis and high levels of immune infiltration and virus-high BLCA patients exhibiting 

shorter survival and higher cell proliferation rates, despite also having a higher immune infiltration 

level. The similarities and differences in the signatures across cancer types are likely due to the 

viruses that are most prevalent in them, and our results thus indicate the importance of 

understanding how infections by different viruses can affect tumor development. 

 

In summary, we present a multi-tissue analysis of the microenvironment and genetic changes 

associated with virus infection. Our results highlight the divergent changes associated with virus 

infection in different tumor types and suggest that viruses of different families should be treated 

as unique features with regards to the design of immunotherapeutic approaches. Going forward, 

it will be important to collect genomic data and virus infection information from additional patients, 
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as in several cancer types infection is exceedingly rare and power to detect significant 

associations is limited. By integrating this information with findings from previous studies, we can 

begin to fully appreciate the role of viruses in driving tumor progression and harness this 

knowledge for therapeutic benefit. 

 

Methods 

Datasets 

Virus abundance information, quantified as the number of virus supporting reads per hundred 

million reads processed (RPHM) for 2,343 virus-associated TCGA tumor was downloaded from 

a supplementary file from a previous study.26 Of the samples included in this dataset, 2,341 had 

matching RNAseq gene expression information, which was obtained from GDAC FireHose 

(RNAseqV2, RSEM). TCGA RNAseqV2 data was log10-transformed for infiltration score 

calculation. For patients with multiple samples, the average RSEM value for each gene was used. 

Raw RNAseq paired-end reads (.fastq) for TCGA samples were downloaded from the Genomic 

Data Commons legacy archive (https://portal.gdc.cancer.gov/legacy-archive). RNAseq reads 

were aligned to human reference genome hg19 using Bowtie245 run with default parameters. 

MANTIS microsatellite instability scores for TCGA samples was downloaded from a previous 

publication.46 All TCGA sample size information is available as a supplement (Supplementary 

Table S1). Additional gene expression data and the associated virus infection and survival 

information were obtained from the gene expression omnibus (GEO) under accession numbers 

GSE40774, GSE6791, GSE55550, GSE39366, GSE65858, GSE49288, GSE62232, GSE44001, 

as well as from PRECOG (https://precog.stanford.edu/precog_data.php; Supplementary Table 

S2).36   

 

Based on findings from the original study, all TCGA samples exhibiting ≥ 100 RPHM for a given 

virus were classified as infected by that virus. In the event that a sample was positive for multiple 
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viruses, we classified the sample as positive for the virus that exhibited the highest level of RPHM. 

For microsatellite instability, binary thresholds were determined from the distribution of MANTIS 

scores in each cancer type, with the default of 0.4 used for STES and 0.5 used for COADREAD. 

 

Calculation of immune infiltration scores and T cell receptor profiling 

Immune infiltration scores for CD8+ T cells, B cells, NK cells, and macrophages were calculated 

as described previously using the same four previously validated signatures derived from the 

Immunological Genome Project.27 T cell receptor profiling was run on Bowtie2-aligned TCGA 

RNAseq reads (.bam) using TRUST version 3.0 (https://bitbucket.org/liulab/trust/).29 During the 

alignment step, TRUST requires for unmapped reads to be included, local alignment to be 

disabled, and for the number of mismatches tolerated from mapped reads to be no greater than 

2, all default parameters of Bowtie2. TCR clonotype diversity was estimated using the clonotypes 

per thousand mapped TCR reads for each sample. This number was calculated from TRUST’s 

output by dividing each sample’s number of unique CDR3 reads (denoted as “cdr3dna” in 

TRUST’s tabular output) by its total number of TCR reads (denoted as “est_lib_size”) divided by 

1,000. ESTIMATE immune scores were calculated using the ESTIMATE R package 

(http://bioinformatics.mdanderson.org/estimate/index.html).  

 

Derivation and application of the virus infection gene expression signature 

The virus infection gene expression signature was designed to capture the transcriptome-wide 

differential gene expression activity between virus-positive and virus-negative patients within a 

given TCGA tumor type. To define this signature, a logistic regression model was constructed for 

each gene in the transcriptome with a patient’s virus infection status as the response variable and 

the expression level of that gene as the predictor variable. To ensure the signature most 

accurately captured the difference between virus-positive and virus-negative samples, potential 

confounding factors, including stage, age, grade, lymph node metastasis status, and 
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microsatellite instability status were also included in the model as covariates. A covariate was 

only included in a specific cancer type’s model when less than half of the samples of that cancer 

type had NA values for that covariate, and in the case of categorical variables, when fewer than 

80% of samples were the same category for that variable (Supplementary Table S4). The model 

used for each gene can be formulized below, where Y is a patient’s virus infection status (1 

indicating positive, 0 indicating negative), X1 is the expression of the gene under consideration 

and X2 through Xn are the n-1 covariates: 

𝑌 =
1

1 + 𝑒&(𝛽0+𝛽1𝑋1+	𝛽2𝑋2+⋯+𝛽𝑛𝑋𝑛)			
 

From these logistic regression models, we derived each gene’s coefficient (β-value), which 

indicated whether the gene was up- or down-regulated in virus-positive samples compared to 

virus-negative samples, as well as the p-value of the association between each gene’s expression 

level and virus infection status. We then used these statistics to define the final virus infection 

gene expression signature as a set of gene-specific weight profiles that indicated the magnitude 

and directionality (up-regulated or down-regulated) of the association between a gene’s 

expression level and a patient’s virus infection status. In the up-regulated weight profile, the p-

values of all genes with a β-coefficient > 0 were -log10-transformed and the remainder were set 

to 0, while in the down-regulated weight profile, the p-values of all genes with a β-coefficient < 0 

were -log10-transformed while the remaining p-values were set to 0. The resulting numbers > 10 

were trimmed to 10 to avoid outliers and then all numbers were rescaled to between 0 and 1 to 

obtain the final weight signatures. 

 

To calculate the virus infection scores in a series of patients, these signatures along with a patient 

gene expression dataset were input into the Binding Association with Sorted Expression (BASE) 

algorithm.47 Briefly, BASE functions by examining how the weights of each input signature are 

distributed through a patient’s ranked gene expression profile. Patients that exhibit high 
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expression of genes with high up-regulated weights and low expression of genes with high down-

regulated weights are assigned a higher score for that signature, while patients deviating from 

this pattern are assigned a lower score. Full details on how BASE uses these signatures to 

calculate the score are available in a previous study.32 The virus signatures formatted for BASE 

input are available as a supplement (Supplementary Table S4). 

 

To evaluate the accuracy of the signature, we ranked each patient by their virus infection scores 

and then performed an iterative procedure where each patient’s score in the ranked list was used 

as a threshold by which to classify patients as virus-positive or virus-negative. For each iteration, 

we calculated the sensitivity and specificity of the resulting classification and then used these 

numbers to calculate the AUC. 

 

Statistical analyses 

All comparisons of the distributions between two groups were made using the two-tailed 

Wilcoxon-sum rank test unless stated otherwise. Logistic regression modeling to derive the virus 

signature was performed using the “glm()” function in R with family “binomial.” For two-class 

survival comparisons, samples were stratified into high and low groups based on whether they 

were above or below the median virus score. Statistical significance of the difference between 

these survival distributions was calculated using the log-rank test through the “survdiff()” function 

from the R survival package. Cox proportional hazards regression was used to model the 

association between virus score as a continuous variable and patient survival, and was performed 

using the “coxph()” function from the R survival package. For meta-analyses, p-values derived 

from Wilcoxon sum-rank tests or Cox proportional hazards models were converted to z-scores. 

The z-scores were then collapsed into meta-z-scores by applying an unweighted version of 

Stouffer’s method.48  
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Figures and Figure Legends 

 

Figure 1: Differences in immune infiltration levels between virus infected and non-virus 

infected samples. A, Boxplots depicting the distribution of immune cell infiltration scores across 

samples from six cancer types stratified by virus infection status. Dark colors indicate virus-

infected samples and light colors indicate non-infected samples. Each box spans quartiles with 

the lines representing the median infiltration score for each group. Whiskers represent absolute 

range excluding outliers. All outliers were included in the plot. Significant associations are marked 

(* p < 0.05). B, Heatmap marking significant differences in immune infiltration scores between 

samples infected with noted viruses and non-infected samples. All viruses infecting more than 

one patient in the denoted tumor type are shown. Red color indicates significant increases in 

infected samples (p < 0.05), green indicates significant decreases (p < 0.05) and grey indicates 

no significant difference (p > 0.05). 
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Figure 2: CD8+ T cell infiltration after adjusting for microsatellite instability and virus 

infection status. Boxplots depicting the distribution of CD8+ T cell infiltration scores across 

COADREAD and STES samples stratified by MSI status and virus infection status. Dark colors 

indicate virus-infected samples and light colors indicate non-infected samples. Each box spans 

quartiles with the lines representing the median CD8+ T cell infiltration score for each group. 

Whiskers represent absolute range excluding outliers. All outliers were included in the plot. 

Significant associations are marked (* one-sided p < 0.05, *** two-sided p < 0.01). 
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Figure 3: T cell receptor repertoire diversity between samples infected with different virus 

families. A, Boxplots depicting the distribution of unique CDR3 calls (clonotypes) per 1,000 TCR 

reads in samples from six tumor types infected with different viruses. Each box spans quartiles 

with the lines representing the median clonal diversity for each group. Whiskers represent 

absolute range excluding outliers. All outliers were included in the plot. B, Meta-z-score absolute 

values indicating associations between infection of a given virus and TCR clonal diversity across 

6 tumor types. Viruses were ranked by unweighted meta-z-score. Green bars indicate an 

unweighted meta-z-score < -1.96 (significantly lower TCR clonal diversity, two-tailed p-value = 

0.05) while grey bars indicate an unweighted meta-z-score whose absolute value is < 1.96 (two-

tailed p-value > 0.05). 
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Figure 4: Performance and characterization of the virus infection gene expression 

signature. A, ROC curves illustrating the accuracy of using the virus gene expression signature 

to classify infected samples from non-infected samples. Plots on the left depict the signature’s 

performance in training data while plots on the right depict the signature’s performance in test 

datasets. From top to bottom, test datasets were obtained from GEO under accession numbers 

GSE40774, GSE49288, and GSE62232. B, Heatmap of AUCs for signatures trained in one tissue 

type (columns) and applied to another (rows). To show contrast, all AUCs < 0.5 were trimmed to 

0.5. C, Boxplots depicting the weight of the gene MKI67 (black diamond) and the weight 

distribution of genes comprising the ESTIMATE immune gene expression signature (boxes). On 

the y-axis, up-regulated weights are positive values and down-regulated weights are negative. 

Dotted lines at 0.13 indicate threshold at which weights correspond to P < 0.05. Each box spans 
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quartiles with the lines representing the median signature weight in each group. Whiskers 

represent absolute range excluding outliers. All outliers were included in the plot. 
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Figure 5: Association between the virus infection gene expression signature and survival 

of head and neck cancer and bladder patients. A, Kaplan-Meier plot depicting the survival 

probability over five years for samples with high (red) and low (blue) virus infection signature 

scores in the Thurlow et al head and neck cancer dataset. B, Boxplots depicting the difference in 

MKI67 expression (left) and ESTIMATE immune score (right) between signature low and 

signature high samples in the Thurlow et al dataset. C, Kaplan-Meier plot depicting the survival 

probability over time for samples with high (red) and low (blue) virus infection signature scores in 

the Kim et al bladder cancer dataset. D, Boxplots depicting the difference in MKI67 expression 

(left) and ESTIMATE immune score (right) between signature low and signature high samples in 

the Kim et al dataset. For all Kaplan-Meier plots, samples were stratified into high and low groups 

using the median virus infection score. P-values were calculated using the log-rank test and 

indicate difference between the survival distributions of the full dataset. Vertical hash marks 

indicate censored data. In all boxplots, boxes span quartiles with the lines representing the 

median expression or score for each group. Whiskers represent absolute range excluding outliers. 

All outliers were included in the plot. P-values were calculated using the Wilcoxon sum-rank test. 
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