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Abstract 

Biomarkers lie at the heart of precision medicine, biodiversity monitoring, 

agricultural pathogen detection, amongst others. Surprisingly, while rapid 

genomic profiling is becoming ubiquitous, the development of biomarkers almost 

always involves the application of bespoke techniques that cannot be directly 

applied to other datasets. There is an urgent need for a systematic methodology 

to create biologically-interpretable molecular models that robustly predict key 

phenotypes. We therefore created SIMMS: an algorithm that fragments pathways 

into functional modules and uses these to predict phenotypes. We applied 

SIMMS to multiple data-types across four diseases, and in each it reproducibly 

identified subtypes, made superior predictions to the best bespoke approaches, 

and identified known and novel signaling nodes. To demonstrate its ability on a 

new dataset, we measured 33 genes/nodes of the PIK3CA pathway in 1,734 

FFPE breast tumours and created a four-subnetwork prediction model. This 

model significantly out-performed existing clinically-used molecular tests in an 

independent 1,742-patient validation cohort. SIMMS is generic and can work with 

any molecular data or biological network, and is freely available at: https://cran.r-

project.org/web/packages/SIMMS. 
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Most human disease is complex, caused by interaction of genetic, epigenetic and 

environmental insults. A single disease phenotype can often arise in many ways, 

allowing a diversity of molecular underpinnings to yield a smaller number of 

phenotypic consequences. This molecular heterogeneity within a single disease 

is believed to underlie poor clinical trial results for some therapies1 and the 

modest performance of many genome-wide association studies2-4. 

Researchers thus face two challenges. First, molecular markers are needed to 

personalize and optimize treatment decisions by predicting patient outcome 

(prognosis/residual risk) and response to therapy. Second, clinical heterogeneity 

in patient phenotypes needs to be molecularly rationalized to allow targeting of 

the mechanistic underpinnings of disease. For example, if a single pathway is 

dysregulated in multiple ways, drugs targeting the pathway could be applied. 

Several approaches have been taken to solve these challenges. The most 

common has been to measure mRNA abundances as a snapshot of cellular 

state, and to construct a predictive model from them5, 6. Unfortunately these 

studies have been limited by noise and disease heterogeneity. Further, RNA is 

rarely directly functional7. Several groups have integrated multiple data-types 

using network and systems biology approaches identifying patient subtypes, with 

limited post-hoc clinical evaluation8-26. These algorithms have not yet clearly 

shown how the interplay between different pathways underpins disease etiology, 

nor generated biomarkers with systematically demonstrated reproducibility on 

independent patient cohorts across multiple indications27. 

There is thus an urgent need to generate accurate and actionable biomarkers 

that integrate diverse molecular, functional and clinical information. We 

developed a subnetwork-based approach, called SIMMS, which uses arbitrary 

molecular data types to identify dysregulated pathways and create functional 

biomarkers. We validate SIMMS across 5 tumour types and 11,392 patients, 

using it to create biomarkers from a diverse range of molecular assays and 

uncovering unanticipated pan-cancer similarities.  
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Results 

SIMMS prioritization of candidate prognostic subnetworks 

SIMMS acts upon a collection of subnetwork modules, where each node is a 

molecule (e.g. a gene or metabolite) and each edge is an interaction (physical 

or functional) between those molecules. Molecular data is projected onto these 

subnetworks using topology measurements that represent the impact of and 

synergy between different molecular features. To allow modeling of biological 

processes with different network architectures, we devised three network 

topology measurements: (nodes/molecules only), E (edges/interactions only) 

and N+E (nodes and edges). While the N model assumes independent and 

additive effects of parts of a subnetwork, the E and N+E models incorporate the 

impact of dysregulated interactions (Online Methods). SIMMS fits one of these 

models and computes a ‘module-dysregulation score’ (MDS) for each 

subnetwork that measures their strength of association with a specific disease, 

phenotype or outcome (Supplementary Figure 1). 

Characteristics and benchmarking of SIMMS identified prognostic 
subnetworks 

A key challenge faced by translational research is to extend the single gene 

biomarkers paradigm to clinically actionable metagenes/pathways. Thus, we 

tested the prognostic value of pathway-derived subnetworks using Cox 

modeling to quantify how effectively a subnetwork stratifies patients into groups 

with differential risk (Online Methods). SIMMS can use any network, and we 

chose to evaluate it using 449 gene-centric pathways from the high-quality, 

manually-curated NCI-Nature Pathway Interaction database28. These pathways 

comprise 500 non-overlapping subnetworks (Supplementary Table 1; 

Supplementary Figure 2). We then trained and tested SIMMS on a series of 

large and well-curated mRNA abundance datasets of primary breast (1,010 

training patients; 1,098 validation patients), colon (205 training; 439 validation), 
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lung (380 training; 369 validation) and ovarian (438 training; 566 validation) 

cancers (Supplementary Tables 2-5; Supplementary Figure 3). 

Our analysis of prognostic subnetworks revealed several properties of tumour 

network biology. First, there was a global propensity for highly prognostic 

subnetworks to contain significantly higher number of genes and interactions for 

Model N and N+E (P<0.05, Wilcox rank sum test; Supplementary Figure 4). 

This association between subnetwork size (number of genes) and prognostic 

power was consistent in breast, NSCLC and ovarian cancers, even though 

different pathways were altered in each but not in colon cancers. Second, the 

prognostic ability of Model N was significantly superior to that of Model N+E and 

E; a trend which was maintained across all four cancer types (one-way ANOVA, 

Tukey HSD multiple comparison test; Supplementary Figure 5). This suggests 

that mRNA abundance of functionally-related genesets alone is a strong 

predictor of patient outcome. We therefore focused solely on Model N moving 

forward, while recognizing that in other diseases different regulatory 

architectures may be disrupted.  

Next we compared how SIMMS subnetwork scores perform against five well-

known machine learning algorithms treating genes as individual features in 

multivariate setting (Supplementary Results section 2). SIMMS identified an 

equal or significantly greater number of prognostic subnetworks compared to 

models based on genes in each of these subnetworks for these methods 

(P<0.01, proportion test; Figures 1a-d). 

Multi-cancer analysis reveals recurrently dysregulated subnetworks 

We next quantitatively determined the similarity between different tumour types at 

the pathway level. Cross disease assessment of significantly prognostic 

subnetworks (P<0.05) revealed well-known oncogenic pathways such as Aurora 

Kinase A and B signaling, apoptosis, DNA repair, RAS signaling, telomerase 

regulation and P53 activity in all four tumour types (Supplementary Tables 6-9). 

By limiting to highly prognostic subnetworks (|log2HR|>1.5 and P<0.05) in each 

tumour type, 17 recurrently prognostic subnetworks (at least three tumour types) 
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were identified (Figure 1e, Supplementary Figure 6). Significant overlap 

between prognostic subnetworks was observed for breast, colon and NSCLC (14 

subnetworks: Poverlap=0.009, 105 permutations; Figure 1f). These results can 

inform prospective clinical trials on repurposing strategies of anti-cancer drugs 

targeting the pathways underlying these subnetworks. 

In breast cancer, subnetworks modules encompassing proliferation pathways 

(Mitosis, PLK1, AURKA and AURKB) were highly prognostic (Supplementary 
Table 6b). To ensure these are not driven by common proliferation genes, we 

tested gene overlap in these subnetworks and found them highly divergent 

(Supplementary Figure 7a). We further tested whether estimated risk-scores 

recapitulate proliferation accurately. We used the MKI67 (mRNA abundance) as 

a surrogate for proliferation and showed strong concordance with SIMMS risk-

scores (Spearman’s ρ=0.79-0.86, P<10-3; Figure 2a). To determine if 

subnetworks more accurately model patient-relevant biology, we constructed a 

multivariate proliferation signature using the four modules. This signature was a 

robust prognostic marker (Figure 2b) and presents an opportunity to understand 

the functionally-related proliferation correlates of patient outcome beyond single 

gene markers. 

We next investigated prognostic subnetworks focusing on clinically actionable 

pathways. In breast cancer, Immune microenvironment subnetwork of T cell 

receptor signaling was significant predictor of patient outcome (HRQ1-Q4=2.86, 

95% CI=2.03-4.02, P=1.78 x 10-9; Figure 2c, Supplementary Table 6d), in 

particular distant metastasis free survival where data was available (Sotiriou: 

HR=3.52, 95% CI=1.38-9.02, P=0.0086; Wang: HR=1.58, 95% CI=1.07-2.33, 

P=0.02). We further validated this subnetwork for breast cancer disease-specific 

survival in an independent cohort of 1,970 patients29 (HRQ1-Q4=2.01, 95% CI=1.5-

2.68, P=7.13 x 10-6; Figure 2d). Hypothesizing that this subnetwork may serve 

as a marker of tumour immune infiltration, we confirmed association between 

SIMMS predicted risk groups and immune cell content30 (Affymetrix: Spearman’s 

ρ=-0.38, P < 2.2 x 10-16; Illumina: Spearman’s ρ=-0.48, P < 2.2 x 10-16) as well as 
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stromal signal (Affymetrix: Spearman’s ρ=-0.43, P < 2.2 x 10-16; Illumina: 

Spearman’s ρ=-0.59, P < 2.2 x 10-16) (Figures 2e-f), both of which were 

associated with good outcome. Consistent with a recent breast cancer study31, 

naïve immune and stromal content estimates were only weakly associated with 

patient outcome (Supplementary Figures 7b-e), whilst SIMMS’s MDS of T-cell 

receptor signaling not only provides accurate identification of patients who may 

benefit from immunotherapy but also indicates associated molecular targets. 

Subnetwork-based biomarkers predict patient outcome 

As SIMMS accurately identified individual prognostic subnetworks, we 

hypothesized that modeling of multiple aspects of tumour biology through these 

subnetwork into a single molecular biomarker could better rationalise patient 

heterogeneity emerging from alternative pathways of disease progression. First, 

to initialise the number of subnetworks, 10 million random sets of subnetworks 

of different sizes (1 to 250) were generated. These were tested for prognostic 

potential in a multivariate Cox model, thereby generating an empirical null 

distribution which allowed us to select the optimal number of pathways that 

influence survival in each disease (Supplementary Figure 8). Using the optimal 

size of subnetworks maximizing performance in the training set (nBreast = 50, 

nColon = 75, nNSCLC = 25 and nOvarian = 50), SIMMS risk-scores was estimated for 

top n subnetworks in each disease. These subnetworks revealed a number of 

highly correlated clusters of subnetworks (Supplementary Figures 9-12). Next, 

multivariate prognostic classifiers (Cox model with L1 regularization; 10-fold 

cross validation) were created for each tumour type thereby further refining the 

list of highly correlated subnetworks. For each tumour type, subnetwork-based 

classifiers encompassing multiple pathways successfully predicted patient 

survival in the fully-independent validation cohorts (Figure 3, Supplementary 
Tables 10-13). We verified that these results are not driven by a single cohort or 

patient subset, but rather reproducible across studies (Supplementary Figures 
13-16). Similarly SIMMS generated robust biomarkers for each tumour-type 

using multiple feature-selection approaches: multivariate analysis using both 
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backward and forward refinements yielded similar results (Supplementary 
Figure 17). We further challenged SIMMS’s paradigm of selection of the top n 

pathway-based features for multivariate modelling against biomarker 

constructed from all genes in multivariate setting using a Cox model with L1 

regularization. While breast and ovarian cancers yielded results similar to 

SIMMS; colon and NSCLC models were significantly inferior to SIMMS’s models 

(Supplementary Figure 18). To ensure SIMMS-derived prognostic markers 

performed comparably to existing transcriptomic prognostic tools, we compared 

our four SIMMS signatures to 21 independent approaches in the same test 

datasets. For each disease, the SIMMS signature performed as-well or better 

than the best published signature, each of which used a unique methodology 

(Supplementary Results section 3, Supplementary Table 14). Therefore 

SIMMS provided a consistent and unified approach to generating highly 

accurate biomarkers. 

Focusing on breast cancer as a disease with well-defined molecular subtypes, 

we tested SIMMS on Metabric breast cancer cohort (n=1,970)29. Our prognostic 

classifier revealed two primary patient clusters with distinct pathway activities. 

These clusters were highly correlated with the PAM5032 intrinsic subtypes of 

breast cancer (f-measure=0.81; Figure 4a). Since breast cancer is a 

heterogeneous disease with distinct molecular and clinical characteristics32, we 

asked whether SIMMS could identify subtype-specific prognostic markers. To 

evaluate this, we classified patients into PAM50, ER+ and ER- subtypes and 

created SIMMS classifiers for each subtype. SIMMS classifiers were able to 

identify subgroups of patients at a significantly higher risk of relapse (P<0.05) in 

each of the Luminal-A, Normal-like and ER+ subtypes (Figure 4b). Importantly, 

these subgroups of patients present differential pathway activity (as quantified 

by SIMMS), and hence may benefit from aggressive/alternative treatments 

targetting these pathways. We further validated the efficacy of SIMMS when 

trained and tested for reproducibulity across different genomic platforms 

(Affymetrix and Illumina; P<10-5; Figure 4b AFFY/ILMN, ILMN/ILMN, 
ILMN/AFFY; Supplementary Figure 19). Taken together these results 
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demonstrate that pathway-driven subnetwork modelling can flexibly integrate 

diverse assays emerging from multiple platforms. 

A PIK3CA signaling residual risk predictor in early breast cancer 

While the public data used to evaluate SIMMS is valuable, it does not closely 

represent that used in clinical settings. To better represent this scenario, we 

focused on the PI3K-signaling pathway, which is frequently mutated in breast 

cancer and is the subject of several targeted therapies. We evaluated 1,734 

samples from the Phase III TEAM clinical trial and measured mRNA abundance 

of 33 PI3K signaling genes in clinically-relevant FFPE samples. All samples were 

ER positive “luminal” breast cancers from the TEAM pathology study33 

(Supplementary Table 15, Supplementary Results section 4). We 

hypothesized that inclusion of key signaling nodes from driver molecular 

pathways in residual risk signatures would both improve risk stratification and 

identify candidate theranostic targets for the next generation of clinical trials. 

Univariate prognostic assessment of 33 genes revealed significant association 

between seven genes and distant metastasis (Wald Padjusted<0.05; 

Supplementary Table 16). Survival analysis of clinical covariates indicated 

tumour grade, N-stage, T-stage and HER2 IHC as predictors of distant 

metastasis (Supplementary Table 17). Next, we aggregated 33 PI3K signaling 

genes into 8 functional modules representing different nodes of the pathway 

(Supplementary Figure 20, Supplementary Table 18), and applied SIMMS to 

train a residual risk model. The SIMMS-derived model comprised of four modules 

and two clinical covariates (Supplementary Table 19). 

To validate this model, we profiled using the same technologies and gene set a 

fully-independent set of 1,742 patients from the same clinical trial 

(Supplementary Table 20). This scenario closely replicates actual clinical 

application of the signature. The SIMMS signature was a robust predictor of 

distant metastasis in the validation cohort (Figure 5a; Q4 vs. Q1 HR=9.68, 

95%CI: 5.91-15.84; P=2.22x10-40). It was also effective when simply median-

dichotomizing predicted risk scores into low- and high-risk groups 
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(Supplementary Figure 21a). Risk scores from this signature were directly 

correlated with the likelihood of distant recurrence at five years, with a higher risk 

score associated with a higher likelihood of metastasis (Figure 5b). The 

signature was independent of PIK3CA point mutations, with no change in survival 

curves between low and high-risk groups with vs. without PIK3CA mutations 

(plow+/-=0.22, phigh+/-=0.81; Supplementary Figure 21b). The signature remained 

an independent prognostic indicator following adjustment for chemotherapy (Q4 

vs. Q1 HR=9.88, 95%CI: 6.01-16.27; P=2.22x10-40). To further verify this, 

predicted risk groups (Q1-Q4) in the validation cohort were divided into 

chemotherapy negative and positive arms with further stratification by nodal 

status. Risk predictions was similar for node-negative/chemotherapy-negative 

patients (Q4 vs. Q1 HR=7.69, 95%CI: 3.19-18.58; P=7.71x10-6; Supplementary 
Figure 21c) as for node-positive/chemotherapy-negative patients (Q4 vs. Q1 

HR=8.76 95%CI: 3.78-20.29; P=4.24x10-19; Supplementary Figure 21d). 

PIK3CA signaling modules outperform existing markers 

To benchmark SIMMS’s PI3K modules signature against current clinically-

validated approaches, we compared its performance to a clinically-used protein-

based residual risk predictor, IHC434. IHC4 was assessed using quantitative IHC 

measurements of ER, PgR, Ki67 and HER235 with adjustment for age, nodal 

status, grade and size in both the training and validation (P=1.32x10-11; Figure 
5c) cohorts. To compare the two predictors, we used the area under the receiver 

operating characteristic curve as a performance indicator. The PI3K modules 

model (AUC=0.75) was significantly superior to the IHC-protein model 

(AUC=0.67; P=5.78x10-6; Figure 5d). The PIK3CA predictor correctly identified 

78.7% (NPV=0.93, PPV=0.27) of patients with disease relapse compared to 

63.0% (NPV=0.88, PPV=0.22) by IHC4 in the validation cohort. Overall, it 

improved patient classification relative to IHC4 for 18% of patients (Net 

reclassification index = 0.18, 95% CI = 0.11-0.25, P < 2.2x10-16). 
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General multimodal biomarkers 

Since oncogenic insults manifest across all molecular species (e.g. DNA, mRNA, 

etc.), there is a need to simultaneously integrate these into a unified predictive 

models. We used four TCGA datasets (breast (BRCA)36, colorectal 

(COADREAD)8, kidney (KIRC)33, ovarian (OV)37) along with the Metabric29 breast 

cancer cohort, each of which included matched mRNA, CNA and clinical data, 

along with MEMo pathway modules published in TCGA studies (Supplementary 
Table 21). SIMMS risk-scores were estimated for each of the mRNA and CNA 

profiles with subnetwork weights of constituent genes calculated independently. 

The sum of mRNA and CNA MDS yielded a multi-modal pathway activation 

estimate per patient (Supplementary Results section 5). Multi-modal markers 

of kidney (5/7) and breast (19/23) cancers were reproducibly superior (Fisher's 

combined probability test) to both mRNA- and CNA-alone (Supplementary 
Figure 22a: dark brown dots against red and blue covariates, Supplementary 
Figures 22b-c). For ovarian cancer, multi-modal markers improved upon CNA 

models in 2/3 subnetworks (Supplementary Figure 22a: M2 and M3 against 

purple covariate, Supplementary Figures 22b-c) even though no individual data 

type was prognostic in all subnetworks. These results demonstrate the potential 

of network models to create integrated multi-modal biomarkers. 
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Discussion 

Patients with complex human diseases present highly heterogeneous molecular 

profiles, ranging from a few aberrant genes to a set of dysregulated pathways. 

Because many different molecular aberrations can give rise to a single clinical 

phenotype, the importance of generating multi-modal datasets is increasingly 

appreciated8, 29, 37, 38. Indeed, a single whole-genome sequencing experiment 

generates information about single nucleotide variations, copy number 

aberrations and genomic rearrangements. SIMMS puts this molecular variability 

into the context of existing knowledge of biological pathways using subnetwork 

information. Several other groups have considered the value of network models 

in predicting breast cancer outcome11, 12, 39 and in subtyping glioblastoma40. 

However no such tools have yet been developed to be generalizable to a broad 

range of diseases or to arbitrary topological measures that might be used to 

estimate interaction weights in network-models of biology41, 42 or to work with 

physical, functional, transcriptional or metabolic networks43, 44. SIMMS provides 

this generalizability and flexibility by treating molecular profiles as generic 

featuers and not just genes. 

Most previous biomarker studies have focused on establishing biomarkers using 

mRNA abundance profiles, with pathway-level analysis used post hoc to 

characterize the most interesting genes45-47. Our approach inverts this strategy, 

taking known pathways a priori and thus creating immediately interpretable and 

clinically actionable biomarkers13. For example, our PIK3CA risk predictor 

(Figure 5a) serves as a candidate assay for patient stratification in theranostic 

clinical trials. Both the IHC4 and type I receptor tyrosine kinase modules have 

extensive clinical and pre-clinical data validating their utility in early breast 

cancer48, 49. The documented effects of PIK3CA pathway inhibitors in advanced 

breast cancer, if appropriately targeted, may be translated into significant 

improvements in survival in early breast cancer. 

Precision molecular medicine is predicated on the concept of giving each patient 

the right drug in the right dose at the right time. This type of personalized 
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treatment requires the development of robust biomarkers that precisely predict 

clinical phenotypes. Current clinical biomarkers are typically derived from a 

small number of genes, and do not yet recapitulate the full complexity of 

disease. SIMMS takes a step towards integrating diverse cellular processes into 

a singular model, and is well-positioned to take into account the influx of clinical 

sequencing data now being generated. However, as -omic techniques evolve to 

rapidly analyze and quantify cellular metabolites, network models may need to 

change from being gene-centric to including metabolites as core nodes. Further, 

single-cell analysis methods may allow accurate interrogation of the interactions 

between different cell-types, perhaps requiring simultaneous fitting of multiple 

distinct, but interacting network models. The continued development of robust, 

general biomarker discovery algorithms is thus required to generate the 

accurate and reproducible biomarkers needed for transforming medical care.  
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Online Methods 

Pathways data-preprocessing 

The pathway dataset was downloaded from the NCI-Nature Pathway Interaction 

database28 in PID-XML format (Supplementary Table 1). The XML dataset was 

parsed to extract protein-protein interactions from all the pathways using custom 

Perl (v5.8.8) scripts (Supplementary File 1). The protein identifiers extracted 

from the XML dataset were further mapped to Entrez gene identifiers using 

Ensembl BioMart (version 62). Whereever annotations referred to a class of 

proteins, all members of the class were included in the pathway, in some case 

using additional annotations from Reactome and Uniprot databases. The 

protein-protein interactions, once mapped to the Entrez gene identifiers, were 

grouped under respective pathways for subsequent processing. The initial 

dataset contained 1,159 variable size subnetworks (Supplementary Figure 2a-
b). In order to identify redundant subnetworks, we tested the overlap between 

all pairs of subnetworks. When a pair of subnetworks had a two-way overlap 

above 80% (if two modules shared over 80% their network components; nodes 

and edges), we eliminated the smaller module. Additionally, all subnetworks 

modules containing less than 3 edges were excluded. In total, these criteria 

removed 659 subnetworks, resulting in 500 subnetworks. 

mRNA abundance data pre-processing 

All pre-processing was performed in R statistical environment (v2.13.0). Raw 

datasets from breast, colon, NSCLC and ovarian cancer studies 

(Supplementary Tables 2-5) were normalized using RMA algorithm50 (R 

package: affy v1.28.0) except for two colon cancer datasets (TCGA and Loboda 

dataset) which were used in their original pre-normalized and log-transformed 

format. ProbeSet annotation to Entrez IDs was done using custom CDFs51 (R 

packages: hgu133ahsentrezgcdf v12.1.0, hgu133bhsentrezgcdf v12.1.0, 

hgu133plus2hsentrezgcdf v12.1.0, hthgu133ahsentrezgcdf v12.1.0, 

hgu95av2hsentrezgcdf v12.1.0 for breast cancer datasets. hgu133ahsentrezgcdf 
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v14.0.0, hgu133bhsentrezgcdf v14.0.0, hgu133plus2hsentrezgcdf v14.0.0, 

hthgu133ahsentrezgcdf v14.0.0, hgu95av2hsentrezgcdf v14.0.0 and 

hu6800hsentrezgcdf v14.0.0 for the respective colon, NSCLC and ovarian cancer 

datasets). The Metabric breast cancer dataset was preprocessed, summarized 

and quantile-normalized from the raw expression files generated by Illumina 

BeadStudio. (R packages: beadarray v2.4.2 and illuminaHuman v3.db_1.12.2). 

Raw Metabric files were downloaded from European genome-phenome archive 

(EGA) (Study ID: EGAS00000000083). Data files of one Metabric sample were 

not available at the time of our analysis, and were therefore excluded. All 

datasets were normalized independently. TCGA breast (BRCA), colon 

(COADREAD), kidney (KIRC) and ovarian (OV) cancer datasets were 

downloaded from http://gdac.broadinstitute.org/ (Illumina HiSeq rnaseqv2 level 3 

RSEM; release 2014-01-15). The choice of training and validation sets was 

driven by maintaining homogeneity in size and platforms, and was further 

addressed through 10-fold cross validation as well as permutation analyses. Raw 

mRNA abundance NanoString counts data were pre-processed using the R 

package NanoStringNorm52 (v1.1.16; Supplementary Results section 4). A 

range of pre-processing schemes was assessed to optimize normalization 

parameters (Supplementary Results section 4). 

TEAM study population 

The TEAM trial is a multinational, randomized, open-label, phase III trial in which 

postmenopausal women with hormone receptor-positive luminal53 early breast 

cancer were randomly assigned to receive exemestane (25 mg once daily), or 

tamoxifen (20 mg once daily) for the first 2.5-3 years followed by exemestane 

(total of 5 years treatment). This study complied with the Declaration of Helsinki, 

individual ethics committee guidelines, and the International Conference on 

Harmonization and Good Clinical Practice guidelines; all patients provided 

informed consent. Distant metastasis free survival (DRFS) was defined as time 

from randomization to distant relapse or death from breast cancer53. 
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The TEAM trial included a well-powered pathology research study of over 4,500 

patients from five countries (Supplementary Table 15). Power analysis was 

performed to confirm the study size had 98.57% and 98.82% power to detect a 

HR of at least 2 in the training and validation cohorts respectively 

(Supplementary Results section 4) analyses and statistical methods followed 

REMARK guidelines54. After mRNA extraction and NanoString analysis, 3,476 

samples were available. Patients were randomly assigned to either a training 

cohort (n=1,734) or the validation cohort (n=1,742) by randomly splitting the 297 

NanoString nCounter cartridges into two groups. The training and validation 

cohorts are statistically indistinguishable from one another and from the overall 

trial cohort (Supplementary Table 20)33. 

RNA extraction 

Five 4 µm formalin-fixed paraffin-embedded (FFPE) sections per case were 

deparaffinised, tumor areas were macro-dissected and RNA extracted according 

to Ambion® Recoverall™ Total Nucleic Acid Isolation Kit-RNA extraction protocol 

(Life TechnologiesTM, Ontario, Canada) except that samples were incubated in 

protease for 3 hours instead of 15 minutes. RNA samples were eluted and 

quantified using a Nanodrop-8000 spectrophotometer (Delaware, USA). 

Samples, where necessary, underwent sodium-acetate/ethanol re-precipitation. 

We selected 33 genes of interest from key functional nodes in the PIK3CA 

signaling pathway55 and 6 reference genes (Supplementary Table 16, 
Supplementary Results section 4). Probes for each gene were designed and 

synthesized at NanoString® Technologies (Washington, USA). RNA samples 

(400 ng; 5 µL of 80 ng/µL) were hybridized, processed and analyzed using the 

NanoString® nCounter® Analysis System, according to NanoString® 

Technologies protocols. 

Univariate data analyses 

In order to avoid dataset-specific bias, all included studies were analyzed 

independently (Supplementary Table 2). First, each dataset was pre-
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processed independently, as described in the ‘mRNA abundance data pre-

processing’ section above. Next, genes across all the datasets were evaluated 

for their prognostic power using a univariate Cox proportional hazards model 

followed by the Wald-test (R package: survival v2.36-9). For breast, NSCLC and 

ovarian cancers with different survival end-points, overall survival (OS) was 

used as the survival time variable; for the studies that did not report OS, we 

used the closest alternative endpoint available in that study (e.g. disease-

specific survival or distant metastasis-free survival). For colon cancer, all studies 

reported relapse/disease free survival and hence was used as survival end-

point. All the genes were subsequently ranked by the Wald-test p-value within 

each study. The top genes across all studies were compared on multiple 

criterion (Supplementary Results section 1): 

1 - Rank Product 

The Rank Product56 of each gene was computed as: 

RPg = log(rgi )
1
k

i=1

k

∑  (1) 

Here k represents the number of studies which had the mRNA abundance 

measure available for gene g. ri is the rank of gene g in study i. The overall 

ranking table was used as a benchmark to identify datasets in which a given 

gene was ranked farthest when its rank product was compared to studywise 

ranks. The farthest dataset count was computed for the overall top ranked (100, 

200, 300,…, 1000, 2000) genes (Supplementary Figure 3a-e). 

2 - Percentile ranks 

The p-value (Wald-test) based ranking was transformed into percentile ranks 

within each study. These ranks were used as a measure of gene’s position with 

reference to the benchmark rank derived in the step 1 to evaluate deviation of 

genes’ ranks for each study (Supplementary Figure 3f-l). 

3 - Intra- and inter-study correlation 
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The mRNA abundance profiles of common genes across all studies were 

extracted and patient wise Spearman rank correlation coefficient was estimated 

(R package: stats v2.13.0). The correlation coefficient was used to further 

analyze intra- and inter-study correlation in order to identify any outlier studies 

(Supplementary Figure 3j-l). 

Eliminating redundant mRNA profiles (breast cancer data) 

The Spearman rank correlation coefficient was also used to establish a non-

redundant set of patients. This is important not only to identify any patients that 

might have participated in more than one study or duplicate data used in 

multiple papers, but also to train a robust model thereby preventing model over-

fitting. The survival data of patients with high correlation coefficient (r ≥ 0.98) 

was matched, and we found 22 samples57, 58 having identical survival time and 

status. These patients were removed from further analyses (Supplementary 
Figure 3m). 

Meta-analysis 

Following univariate analyses and elimination of redundant patients, the 

remaining studies were divided into two sets, training and validation 

(Supplementary Tables 2-5). The RMA normalized mRNA abundance 

measures were median scaled within the scope of each dataset (R package: 

stats v2.13.0). 

1- Gene hazard ratio 

The hazard ratio for all the genes by combining samples from all the training 

datasets was estimated using the univariate Cox proportional hazards model. 

The Cox model was fit to the median dichotomized grouping of mRNA 

abundance profiles of the samples as opposed to continuous measure of mRNA 

abundance. 

2- Interaction hazard ratio 
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The hazard ratio for all the protein-protein interactions gathered from the NCI-

Nature pathway interaction database were estimated using a multivariate Cox 

proportional hazards model. A Cox model, shown below, was fit to median 

dichotomized patient grouping of each of the interacting gene pairs: 

 (2) 

where XG1 and XG2 represent patient’s group for gene 1 and gene 2. XG1.G2 

represents patient’s binary interaction measure between the gene 1 and gene 2, 

as shown below: 

XG1.G2 = (G1⊕G2)  (3) 

where Å represents exclusive disjunction between the grouping of each gene. 

The expression encodes XNOR boolean function emulating true (1) whenever 

both the interacting genes belong to the same group. 

Subnetwork module-dysregulation score (MDS) 

The pathway-based subnetworks were scored using three different models. 

These models compute a module-dysregulation score (MDS) by incorporating 

the hazard ratio of nodes and edges that form the subnetwork: 

1- Nodes + Edges 

MDS = log2 HRi + log2 HRj
j=1

e

∑
i=1

n

∑  (4) 

2- Nodes only 

MDS = log2 HRi
i=1

n

∑  (5) 

3- Edges only 

MDS = log2 HRj
j=1

e

∑  (6) 

 

€ 

h(t) = h0(t)exp β1XG1 + β2XG2 + β3XG1.G2( )
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where n and e represent total number of nodes (genes) and edges (interactions) 

in a subnetwork respectively. HR represents the hazard ratios of genes and the 

protein-protein interactions in a subnetwork (P < 0.05) (section: Meta-analysis). 

The subnetworks were ranked according to their MDS, thereby identifying 

candidate prognostic features. 

Patient risk score 

The subnetwork MDS was used to draw a list of the top n subnetwork features 

for each of the three models (section: Subnetwork module-dysregulation score). 

These features were subsequently used to estimate patient risk scores using 

Model N+E, N and E. The patient risk score for each of the subnetworks (riskSN) 

was expressed using the following models: 

1 - Nodes + Edges 

riskSN = (log2 HRi )ωi + (log2 HRj )ω jx
ω jy

j=1

e

∑
i=1

n

∑  (7) 

2 - Nodes only 

riskSN = (log2 HRi )ωi
i=1

n

∑  (8) 

3 - Edges only 

riskSN = (log2 HRj )ω jx
ω jy

j=1

e

∑  (9) 

where n and e represent the total number of nodes (genes) and edges 

(interactions) in a subnetwork (SN), respectively. HR is the hazard ratio of 

genes and the protein-protein interactions (P < 0.5; only to filter out genes 

where Cox model fails to fit estimating large/unstable coefficients) (section: 

Meta-analysis) in a subnetwork. x and y are the two nodes connected by an 

edge ej and ω is the scaled intensity of an arbitrary molecular profile (e.g. 

mRNA abundance, copy number aberrations, DNA methylation beta values etc). 
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A univariate Cox proportional hazards model was fitted to the training set, and 

applied to the validation set for each of the subnetworks. The prognostic power 

of all three models was compared using non-parametric two sample Wilcoxon 

rank-sum test (R package: stats v2.13.0). 

Subnetwork feature selection 

In order to narrow down the size of subnetwork features in each of the three 

models yet maintaining the prognostic power, we fitted a Cox model based 

Generalised Linear Model (L1-penalty) in 10-fold cross validation setting on the 

training cohort (R package: glmnet v1.9-8). SIMMS package supports additional 

machine learning algorithms including elastic-nets (ridge to lasso), backward 

elimination and forward selection (R package: MASS v7.3-12). The fitted 

coefficients (b) were subsequently used to estimate an overall measure of per 

patient risk score for the validation set using the following formula: 

riski = β j (Yij )
j=1

m

∑  (10) 

where Yij is the ith patient’s risk score for subnetwork j. The training set HRs of 

the nodes and edges were used to compute Yij (section: Patient risk score). 

Next, we median dichotomized the validation cohort into low- and high-risk 

patients (or quartiles) using the median risk score (or quartiles) estimated on the 

training set. The risk group classification was assessed for potential association 

with patient survival data using Cox proportional hazards model and Kaplan-

Meier survival analysis. 

Randomization of candidate subnetwork markers 

Jackknifing was performed over the subnetwork marker space for four tumour 

types; breast, colon, NSCLC and ovarian. Ten million prognostic classifiers 

(200,000 for each size n=5,10,15,....,250; where n represents the number of 

subnetworks) were randomly sampled using all 500 subnetworks. The predictive 

performance of each random classifier was measured as the absolute value of 
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the log2-transformed hazard ratio obtained by fitting a multivariate Cox 

proportional hazards model using Model N. 

Visualizations 

All plots were created in the R statistical environment (v2.13.0). Forest plots were 

generated using rmeta package (v2.16), all others were created using the BPG 

(P’ng et al., in review), lattice (v0.19-28), latticeExtra (v0.6-16) and VennDiagram 

(v1.0.0) packages. 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 27, 2018. ; https://doi.org/10.1101/289934doi: bioRxiv preprint 

https://doi.org/10.1101/289934
http://creativecommons.org/licenses/by-nc-nd/4.0/


Haider	et	al.	

Page	23	of	35	

List of abbreviations 

AFFY: Affymetrix, CI: Confidence interval, DRFS: Distant metastasis free 

survival, ER: Estrogen receptor 1, FFPE: Formalin-fixed, paraffin-embedded, 

Her2: human epidermal growth factor receptor 2, HR: Hazard ratio, IHC: 

Immunohistochemistry, ILMN: Illumina, MDS: module-dysregulation score, 

NSCLC: Non-small cell lung cancer, OS: Overall survival, PgR: Progesterone 

receptor, RP: Rank Product, SIMMS: Subnetwork integration for multi-modal 

signatures, SN: Subnetwork, Tukey HSD: Tukey honestly significant difference, 

TCGA: The cancer genome atlas. 
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Figure Legends 

Figure 1 

 

 

Pan-cancer prognostic subnetworks. (a) Comparison of prognostic 

assessment of subnetworks in validation sets of breast cancer using SIMMS and 

five machine learning algorithms. For each algorithm, p values were ranked with 

rank 1 assigned to the smallest P value. Number of validated subnetworks 

identified by each algorithm (P < 0.05, above horizontal dashed line) are shown 

as barplots. (b-d) Same as (a) but for colon, NSCLC and ovarian cancers. (e) Dot 

plot of univariate hazard ratios and P values (Wald-test) for each of the top n 

subnetworks significantly associated with patient outcome (|log2 HR| >1.5, P < 

0.05) in at least 3/4 cancer types. A Cox proportional hazards model was fitted to 

dichotomized risk scores across the entire validation cohort. Crosses represent 

absence of a module from a particular cancer type. (f) Overlap of candidate 

subnetwork markers across breast, colon, NSCLC and ovarian cancers. 
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Figure 2 

 

 

Proliferation and immuno subnetworks. (a) Heatmap of correlation 

(Spearman) and cluster analysis of patient’s risk-scores for proliferation modules 

in breast cancer, alongside mRNA abundance of a proliferation marker MKI67. 

Data shown is from validation cohorts. (b) Kaplan-Meier analysis of predicted 

proliferation scores (validation cohorts) using SIMMS-derived proliferation 

biomarker. Groups (Q1-Q4) were established using quartiles derived from the 

training set, and groups Q2-Q4 were compared to Q1 using Cox proportional 

hazards model. P value was estimated using Log-rank test. (c) Kaplan-Meier 
analysis of tumour immune microenvironment driver subnetwork (BioCarta 

pathway: T cell receptor signaling) in Affymetrix based validation cohorts. 

Quartile based risk groups (thresholds derived using training set cohorts), 

demonstrating linear increase in the likelihood of recurrence/event. Test statistics 

estimation same as in (b). (d) Kaplan-Meier analysis of tumour immune 

microenvironment driver subnetwork (BioCarta pathway: T cell receptor 
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signaling) in Metabric breast cancer cohort (Illumina). (e) Assessment of 

computationally inferred immune system infiltration and stromal estimates against 

SIMMS predicted risk groups (Q1-Q4 i.e. low to high) in Affymetrix validation 

cohorts (test statistics shows P value of ANOVA). Colour of dots represent 

respective validation cohort (Supplementary Table 2). (f) Same as (e) in 

Metabric cohort (Illumina). 

 

Figure 3 

 

 

SIMMS biomarkers for multiple tumour types. (a-d) Kaplan-Meier survival 

plots using Model N over the entire validation cohort with subnetwork selection 

conducted through Cox model based Generalised Linear Models (L1-penalty) on 
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the training cohort. Final model resulted in 23/50, 5/75, 23/25 and 23/50 

subnetworks for breast, colon, NSCLC and ovarian cancers respectively 

(Supplementary Tables 10-13). P values were estimated using Wald-test. 

 

Figure 4 

 

 

Clinical analysis of breast cancer biomarkers. (a) Heatmap of correlation and 

cluster analysis of patients’ risk-scores of top nBreast=50 subnetworks in the 

Metabric validation cohort. The covariates show concordance (estimated using f-

measure) between PAM50-based molecular subtypes and SIMMS predicted risk 

group. (b) Forest plot showing HR and 95% CI (multivariate Cox proportional 

hazards model) of the breast cancer subtype-specific markers as well as cross-

platform validation. Datasets originating from Illumina (ILMN) and Affymetrix 

(AFFY) were used in turn for cross platform training and validation purposes. Due 

to limited availability of clinical annotations on Affymetrix based cohorts, only the 
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Illumina dataset (Metabric) was used for subtype-specific models. For these, the 

Metabric-published training and validation cohorts were maintained for training 

and validation purposes. Numbers in parenthesis indicate the size of the 

validation cohort. Asterisks represent statistical significance of differential 

outcome between the predicted low- and high-risk groups (* P<0.05, ** P<0.01, 

*** P<0.001, Wald-test). 
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Figure 5 

 

 

PI3KCA signaling predictor of breast cancer recurrence. (a) Independent 

validation of prognostic model trained on SIMMS’s risk-scores and clinical 

covariates (N and tumor size). Risk score estimates were grouped into quartiles 
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derived from the TEAM training cohort; each group was compared against Q1. 

Hazard ratios were estimated using Cox proportional hazards model and 

significance of survival difference was estimated using the log-rank test. (b) 
Distribution of patient risk scores in the TEAM Validation cohort (top panel). 

Bottom panel shows the predicted 5 year recurrence probabilities (solid line) and 

95% CI (dashed lines) as a function of patient risk score. Vertical dashed black 

line indicates training set median risk score. (c) Risk prediction by the IHC4 

protein model in the validation cohort. Quartiles were defined in the training 

cohort and applied to the validation cohort. Quartiles Q2-Q4 were compared 

against Q1, with adjustment for age, Nodal status, tumor size and grade using 

Cox proportional hazards modelling and the log-rank test. (d) Comparison of 

SIMMS’s modules model and IHC4-protein model using area under the receiver 

operating characteristic (AUC) curve as performance indicator. 
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