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Key points 

Question: Considering the modulation of mesocorticolimbic dopaminergic pathways by insulin 

through the action on its receptors (IR), we investigated if a novel, region specific polygenic 

score on the IR-related gene network (ePRS-IR) is associated with dopamine-related behaviors 

(impulsivity and addiction). 

Findings: The ePRS-IR showed improved prediction of childhood impulsivity and risk for early 

addiction onset in comparison to conventional polygenic risk scores for ADHD or addiction. 

Meaning: This novel genomic approach reveals insulin action as a biological process involved in 

the risk for dopamine-related psychopathology.  

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 27, 2018. ; https://doi.org/10.1101/289983doi: bioRxiv preprint 

https://doi.org/10.1101/289983
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 4 

Abstract 

Importance: Activation of brain insulin receptors occurs on mesocorticolimbic regions, 

modulating reward sensitivity and inhibitory control. Variations in the functioning of this 

mechanism likely associate with individual differences in the risk for related psychopathologies 

(attention-deficit hyperactivity disorder, addiction), an idea that agrees with the high co-

morbidity between insulin resistant states and psychiatric conditions. While genetic studies 

comprise an interesting tool to explore neurobiological mechanisms in community samples, the 

conventional genome-wide association studies and polygenic risk score methodologies 

completely ignore the fact that genes operate in networks, and code for precise biological 

functions in specific tissues.  

Objective: We propose a novel, biologically informed genetic score reflecting the 

mesocorticolimbic insulin receptor-related gene network, and investigate if it predicts dopamine-

related psychopathology (impulsivity and addiction) in community samples. 

Design: Birth cohort (Maternal Adversity, Vulnerability and Neurodevelopment, MAVAN) and 

adult cohort (Study of Addiction, Genes and Environment, SAGE). 

Setting: General community.  

Participants: 212 4-year-old children (MAVAN), and 1626 adults (SAGE). 

Exposure: The biologically informed, mesocorticolimbic specific, insulin receptor polygenic 

score was created based on levels of co-expression with the insulin receptor in striatum and 

prefrontal cortex, and calculated in the two samples using the genotype data 

(Psychip/Psycharray).  

Main outcome: childhood impulsivity in the Information Sampling task, and risk for early 

addiction onset.  
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Results: The insulin receptor polygenic score showed improved prediction of childhood 

impulsivity in boys and risk for early addiction onset in males in comparison to conventional 

polygenic risk scores for attention-deficit hyperactivity disorder or addiction. 

Conclusions and relevance: This novel genomic approach reveals insulin action as a relevant 

biological process involved in the risk for dopamine-related psychopathology.  
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Introduction 

The co-morbidity between metabolic and psychiatric disorders is well-established, but the 

mechanisms are poorly understood. It is particularly interesting the high co-occurrence of several 

psychiatric conditions with insulin resistance1-3. Insulin receptors are expressed throughout the 

brain4, in areas such as the ventral tegmental area (VTA), prefrontal cortex (PFC)5,6 and 

hippocampus7,8. Insulin is actively transported across the blood-brain barrier9. Insulin action on 

its mesocorticolimbic receptors modulates synaptic plasticity in dopaminergic neurons, affecting 

DA-related behaviors such as response to reward10, impulsivity11, mood12,13, cognition14 and 

decision-making15.  

Genetic studies can be an interesting tool to investigate the neurobiological mechanisms 

that explain the co-morbidity between metabolic and psychiatric conditions. Genome-wide 

association studies (GWAS) provide the basis for novel, cumulative scores that reflect genetic 

predispositions16. The effect sizes from these studies can be used to estimate the genetic risk of 

the individual through polygenic risk scores (PRS), by multiplying the measured number of risk 

alleles at a locus by the effect size of the association between a particular genotype and the 

outcome, and summing over all single nucleotide polymorphisms (SNPs) at a certain 

significance threshold 17. One problem of the GWAS and PRS methodology is that it identifies 

statistically significant associations between scattered SNPs and a certain condition or trait, 

completely ignoring the fact that genes operate in networks, and code for precise biological 

functions in specific tissues. 

Our hypothesis was that variations in the functioning of the mesocorticolimbic insulin 

receptor gene network would be associated with differences in dopamine-related behavioral 

outcomes, namely impulsivity and risk for addiction. Although it is described an association 
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between conventional polygenic risk scores (PRS) for ADHD and impulsivity problems in 

population-based samples of children18, theses scores do not provide information about the 

underlying network in which these genes operate, nor the neurobiology of the disease. We 

propose a novel genomics approach that provides a biologically-informed genetic score based on 

genes co-expressed with the insulin receptor in specific mesocorticolimbic regions to foster 

neurobiological analysis of behavioral phenotypes linked to psychopathology. 

 

Methods 

Samples 

Main Cohort: We used data from the prospective Maternal Adversity, Vulnerability and 

Neurodevelopment (MAVAN) birth cohort19 that followed the children at different time points in 

the first years of life in Montreal (Quebec) and Hamilton (Ontario), Canada. Approval for the 

MAVAN project was obtained from the study hospitals and by the ethics committees and 

university affiliates (McGill University and Université de Montréal, the Royal Victoria Hospital, 

Jewish General Hospital, Centre hospitalier de l’Université de Montréal, Hôpital Maisonneuve-

Rosemount, St Joseph’s Hospital and McMaster University). Informed consent was obtained 

from all subjects. A total of 212 children had complete data (genotype and impulsivity task at 4 

years of age, see below) and were included in this analysis. 

Replication Cohort: We used the Study of Addiction: Genetics and Environment (SAGE) 

repository20-26, acquired from dbGaP (https://www.ncbi.nlm.nih.gov/gap, Accession number: 

phs000092.v1.p). The SAGE dataset was compiled from three studies: Collaborative Study on 

the Genetics of Alcoholism (COGA), Family Study of Cocaine Dependence (FSCD), and 

Collaborative Genetic Study of Nicotine Dependence (COGEND). The SAGE dataset contains 
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genotyping and clinical phenotypes related to substance dependence for adult subjects. To 

maximize consistency with the MAVAN cohort we only used a subset of subjects of caucasian 

ethnicity (n = 1627). We received access to the SAGE dataset based on the approval of our Data 

Access Request (DAR) by the NIH Data Access Committee. We agree with the stipulations of 

the Data Use Certification. 

Genotyping: In MAVAN, we genotyped 242,211 autosomal SNPs using genome-wide 

platforms (PsychArray/PsychChip, Illumina) according to manufacturer’s guidelines with 200ng 

of genomic DNA derived from buccal epithelial cells and our quality control procedures. 

Specifically, we removed SNPs with a low call rate (<95%), low p-values on Hardy-Weinberg 

Equilibrium exact test (p<1e-40), and minor allele frequency (<5%). Afterward, we performed 

imputation using the Sanger Imputation Service27 resulting in 20,790,893SNPs with an info score 

>0.80 and posterior genotype probabilities >0.90. 

ePRS-IR calculation (Figure 1): The polygenic risk score based on genes co-expressed with the 

insulin receptor (ePRS-IR) was created using gene co-expression databases including 1) 

GeneNetwork (http://genenetwork.org), 2) BrainSpan (http://brainspan.org), 3) NCBI Variation 

Viewer (https://www.ncbi.nlm.nih.gov/variation/view/). These resources allowed us to identify 

genes co-expressed with the IR in the striatum and prefrontal cortex (PFC) regions in mice 

(GeneNetwork) and humans (BrainSpan), and to identify SNPs for these genes in humans (NCBI 

Variation Viewer). The PRS was constructed as follows: 1) we used GeneNetwork to generate 

co-expression matrix with IR in the i) ventral striatum, ii) PFC in mice (absolute value of the co-

expression correlation r≥0.5)28, 2) we then used BrainSpan to identify consensus transcripts from 

this list with a child and fetal enrichment within the human brain. We selected autosomal 

transcripts differentially expressed in these brain regions at ≥1.5 fold during child and fetal 
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development as compared to adult samples29. The final list included 184 genes. Based on their 

functional annotation in the National Center for Biotechnology Information, U.S. National 

Library of Medicine (https://www.ncbi.nlm.nih.gov/variation/view/) using GRCh37.p13 we 

gathered all the existing SNPs from these genes (total = 17,258) and subjected this list of SNPs 

to linkage disequilibrium clumping, which uses the lowest association p-values in the ADHD 

GWAS  to inform removal of highly correlated SNPs (r2>0.2) across 500kb regions30, resulting 

in 371 independent functional SNPs based on the children’s genotype data from MAVAN. Out 

of the 371 SNPs, 318 (86%) were genotyped in the SAGE dataset and used to compute the 

ePRS-IR in the replication cohort. The median of the ePRS-IR computed in MAVAN and SAGE 

datasets were comparable (ePRS-IR; MAVAN median = 0.065, SAGE median = 0.061). We 

used a count function of the number of alleles at a given SNP weighted by the effect size of the 

association between the individual SNP and ADHD31. All SNPs were subjected to linkage 

disequilibrium clumping (r2>0.2 across 500kb) so only independent SNPs that are most 

associated to ADHD, based on the association p-values in the ADHD GWAS, comprised the 

PRS (Figure 1).  

Other genetic scores: We generated other PRSs using our accelerated pipeline 

(https://github.com/MeaneyLab/PRSoS)32, for each subject: (a) A random list of 184 genes that 

were differentially expressed in the PFC/Striatum in the prenatal and childhood developmental 

stages, selected using BrainSpan29. Adopting the same methodology that was implemented to 

generate the ePRS-IR, we computed a “random genes” ePRS based on the ADHD GWAS31; (b) 

conventional PRS for ADHD31 (termed PRSADHD2010); (c) another PRS for ADHD based in a 

more recent GWAS33 (termed PRSADHD2017) and (d) PRS for onset of tobacco smoking34 (termed 

PRSTobacco) of MAVAN children. All PRSs were created based on their SNPs and meta-analysis 
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available at the Psychiatric Genomics Consortium17,31. The PRS are cumulative summary scores 

computed as the sum of the allele count weighted by the effect size across SNPs at selected p-

value thresholds (PT) based on the relevant GWAS30. 

Reflexive impulsivity measure in children: The Information Sampling Task (IST) from the 

CANTAB was designed to measure reflection impulsivity and decision making35. Rather than 

relying on speed-accuracy indices, IST measures reflection impulsivity by calculating the 

probability of the subject selecting the correct answer after making a decision based on the 

information sampled prior to making that decision. On each trial, children are presented with a 

5×5 matrix of grey boxes on the computer screen, and two larger colored panels at the foot of the 

screen. They are told that it is a game for points, won by correctly choosing the color under the 

majority of the grey boxes. Touching a grey box immediately opens that box to reveal one of the 

two colors displayed at the bottom of the screen. Subjects could open boxes at their own will 

with no time limit before deciding between one of the two colors, indicating their decision by 

touching one of the two panels at the bottom of the screen. When they do, the remaining boxes 

are uncovered and a message is displayed to inform them whether or not they were correct. We 

particularly focused on the “fixed win” condition during IST, in which subjects are awarded 100 

points for a correct decision regardless of the number of boxes opened (no penalties according to 

the number of boxes). The primary performance outcome measure was the mean probability of 

being correct at the point of decision (P Correct). P Correct is the probability that the color 

chosen by the subject at the point of decision would be correct, based only on the evidence 

available to the subject at the time (i.e., dependent on the amount of information they had 

sampled). There was a recent update in the mean P Correct formula, which was endorsed by the 

original authors of the measure36,37, therefore in this study we calculated and used the new mean 
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P Correct. We also excluded the trials where discrimination errors occurred since the presence of 

this type of error runs contrary to the task instructions and influences the mean P Correct values, 

being common in children38.  

Addiction onset: The age of onset of substance dependence was computed as the earliest age of 

onset of alcohol, nicotine, marijuana, cocaine, opiate or other substance use. The clinical 

assessment of substance dependency was based on a Semi-Structured Assessment for the 

Genetics of Alcoholism (SSAGA II)39 and adapted versions of the SSAGAII, which assesses the 

physical, psychological and social manifestations of substance dependence. 

Gene Network Analysis: We extracted a list of the 184 genes from the SNPs with the lowest p-

values based on the post clumped results of the ADHD GWAS31. RNA-sequencing data was 

downloaded from BrainSpan, including samples from 8 postconceptional weeks to 11 years old 

within prefrontal cortex (dorsolateral, ventrolateral, anterior cingulate cortex and orbitofrontal 

cortex) and striatum29, for three gene lists: (a) ePRS-IR (see supplementary Table 1); (b) 

Random gene list (as detailed above) and (c) The top 184 genes associated with the most 

significant SNPs in the ADHD GWAS31. A median expression value was computed across the 

mentioned brain regions. The protein-protein interaction data were retrieved from STRING40 

(https://string-db.org/) and GeneMANIA41 (https://genemania.org) databases and the protein-

protein interaction networks were constructed and visualized in the Cytoscape software42. One-

way ANOVA was used to compare the values of the number of connections across the three gene 

lists. 

Statistical Analysis: 

Main Cohort: Statistical analysis of the baseline characteristics was performed using 

Spearman’s correlation. All PRSs were coded into quartile variables. The population structure of 
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the MAVAN cohort was evaluated using principal component analysis of all autosomal SNPs 

that passed the quality control, without low allele frequency (MAF>5%) and are not in high 

linkage disequilibrium (r2>0.2) within a window of 50 SNPs at each step size of 543. Based on 

the inspection of the screeplot, the first three principal components were the most informative of 

population structure in this cohort and were included in all analysis. Linear regression analysis 

was performed to explore if the gender by ePRS-IR interaction was associated with the IST 

outcome, adjusting for population structure. In order to assess if there was a linear trend between 

ePRS-IR and the outcome, i.e mean P Correct derived from the IST, the ePRS-IR was 

categorized into quartiles. The main outcome measure was the mean P Correct derived from the 

IST during the fixed win condition (see above).  

Replication Cohort: Statistical analysis of the potential confounders was performed using 

Spearman correlation. Similar to the analysis on MAVAN cohort, the ePRS-IR was categorized 

into quartile to assess if there was a linear trend between ePRS-IR and the outcome, i.e age of 

onset of substance dependence. The age of onset of dependency was categorized into “early”, 

“mid” and “late” based on the distribution tertiles. The population structure of the SAGE cohort 

was evaluated using principal component analysis of all autosomal SNPs that passed the quality 

control, and these scores were provided in the SAGE data repository. Based on the inspection of 

the screeplot, the first three principal components were the most informative of population 

structure in this cohort and included in all subsequent analysis. Ethnic outliers (>6 standard 

deviations) were excluded from the analysis. Linear regression analysis was performed to 

explore if the gender by ePRS-IR interaction was associated with the age of onset of dependence, 

adjusting for the population structure and study source. Simple slopes were analyzed to test the 

significance of the association in males and females. The ratio of the probability of early onset to 
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late onset dependence was computed. A value >1 describes a population with increased 

prevalence of early onset dependence compared to late onset dependence. Data were analyzed 

using the Statistical Package for the Social Sciences (SPSS) version 20.0 software (SPSS Inc., 

Chicago, IL, USA) and R. Significance levels for all measures were set at α <= 0.05.  

 

Results 

Baseline comparisons 

In both the MAVAN and SAGE datasets, major potential confounders did not vary 

according to ePRS-IR, or were used as co-variates in the main analysis (Table 1). The number of 

boxes opened on the IST was significantly correlated with incorrect judgments in the fixed win 

condition (r(198) = −0.839, p<0.0001), demonstrating that response accuracy is a function of the 

extent of information analysis, a feature of reflection impulsivity. 

 

Relationship between ePRS-IR and childhood impulsivity – MAVAN cohort 

There was a significant interaction effect between ePRS-IR and gender on IST (��= 0.036, 

p = 0.02); while a simple slopes analysis showed no relationship between the ePRS-IR score and 

mean P Correct values in girls (��= 0.01, p = 0.31), a high ePRS-IR was significantly related to 

lower mean P Correct (less certainty when coming up to a decision or higher reflexive 

impulsivity) in boys (��= −0.02, p = 0.02) (Figure 2A). We next examined whether a 

conventional PRSs for ADHD of comparable size in terms of SNP number would also predict 

impulsivity in these children. As shown in Table 2, using two different GWAS’s for ADHD31,33, 

we found no association between the conventional PRS and reflection impulsivity on the 

CANTAB in this sample. Considering the clinical overlap between impulsive phenotypes and 
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risk for addiction44, we also created a conventional PRS for tobacco smoking, but this was also 

not associated with reflection impulsivity on the IST task. Finally, to demonstrate that the results 

of the ePRS-IR analysis are not merely due to the presence of random genes that are 

differentially expressed in the PFC/striatum of prenatal and childhood developmental stages, but 

are instead dependent on selecting a biologically relevant network, we computed a PRS based on 

a random selection of genes differentially expressed in the PFC/striatum of neonates and 

children. This random PRS did not interact with gender to predict mean P Correct values in the 

MAVAN cohort (Table 2). 

 

Relationship between ePRS-IR and age of addiction onset – SAGE cohort  

We then hypothesized that a high ePRS-IR, associated with childhood impulsivity in 

boys as shown above, would predict early age of addiction onset. We used data from the SAGE 

repository to validate the above interaction between sex and ePRS-IR in an independent cohort. 

The analysis revealed a significant interaction between the ePRS-IR score and gender 

(interaction effect; ��= −0.08, p = 0.01). Further simple slopes analysis showed that a higher 

ePRS-IR was significantly associated with earlier onset of dependence only in males (males, 

simple slope ��= −0.05, p = 0.03; females, simple slope ��= 0.03, p = 0.16).  In males, a higher 

ePRS-IR was significantly associated with earlier onset of dependence (Figure 2B and C). 

 

ePRS-IR gene network analysis  

We compared the list of 184 genes included in the ePRS-IR with (1) a random selection 

of 184 genes differently expressed in the PFC in fetal/childhood phases and (2) the top 184 genes 

associated with the most significant SNPs from the ADHD GWAS31 in a gene network analysis 
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(Figure 3A). The number of interactions between the genes that comprise the ePRS-IR is 

significantly higher than the control random list or the genes form the ADHD GWAS (p<0.05, 

Figure 3B). Enrichment analysis of the SNPs comprising ePRS-IR using Metacore® (Thomson 

Reuters) showed statistically significant enrichment for pathways involved in cell cycle 

regulation (FDR q = 3.91e-3). Two process networks were highly significant: translation 

initiation (FDR q = 2.37e-23) and elongation termination (FDR q = 1.81e-17). 

 

Discussion 

We showed that a biologically-informed polygenic risk score based on genes co-

expressed with the IR in mesocorticolimbic regions is more strongly associated with impulsivity 

in boys and the risk for early onset of substance dependence in men from an independent cohort 

than is the conventional PRS for either ADHD or addiction.  The sex-specificity of our findings 

was expected, given the increased prevalence of ADHD and behavioral alterations associated 

with this condition (such as impulsivity) in boys compared to girls45,46.  

Our network analysis shows that the ePRS-IR represents a cohesive gene network with 

significantly more connections than the list of genes extracted from the GWAS for ADHD, or a 

random list of developmentally relevant genes. This robust approach therefore goes beyond 

describing associations between single gene variants and the outcomes, but captures information 

about the whole gene network, and its function, in specific brain regions. 

Conduct disorder and impulsivity are the foremost risk traits for alcohol use disorder 

among the 80 personality disorder criteria of DSM-IV 47. There is a relationship between 

childhood ADHD and the risk for developing drug addiction later in life 48, especially 

considering the impulsivity component, rather than inattention 49, in agreement to the findings 
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described here. Insulin function is associated with the risk for drug addiction 50. Diminished 

insulin sensitivity is related to less endogenous dopamine at D2/3 receptors in the ventral 

striatum51, reinforcing the idea that metabolic processes are involved in dysfunctions of the 

mesocorticolimbic system, such as drug dependence. The cell cycle regulation process enriched 

in our ePRS-IR is consistent with findings showing that insulin is involved in proliferation of 

many cell types, and activates several cell-cycle regulators.  

Our genomic approach integrates information from molecular neurobiology with GWAS 

technology to develop a biologically-informed polygenic score based on gene co-expression data 

from specific brain regions. This approach creates a novel genomic measure to identify genetic 

vulnerability for childhood behavioral phenotypes that predict later psychiatric conditions in 

community-based samples, highlighting possible targets for drug development. 
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Figure legends 

Figure 1.  Flowchart depicting the steps involved in creating the expression-based and 

mesocorticolimbic-specific polygenic risk score based on genes co-expressed with the insulin 

receptor (ePRS-IR) using gene co-expression databases. 1) GeneNetwork was used to generate a 

co-expression matrix with insulin receptor (IR) in the ventral striatum and in the prefrontal 

cortex in mice (absolute value of the co-expression correlation r≥0.5).  2) BrainSpan was then 

used to identify consensus autosomal transcripts from this list with developmental enrichment 

within the same brain areas, selecting transcripts differentially expressed at ≥1.5 fold during 

child and fetal development as compared to adult samples.  The final list included 184 genes. 3) 

Based on their functional annotation in the National Center for Biotechnology Information, U.S. 

National Library of Medicine using GRCh37.p13, we gathered all the existing SNPs from these 

genes (total = 17,258) and subjected this list of SNPs to linkage disequilibrium clumping, to 

inform removal of highly correlated SNPs (r2>0.2) across 500kb regions, resulting in 371 

independent functional SNPs based on the children’s genotype data from MAVAN (Study 

Sample ids). 4) We used a count function of the number of alleles at a given SNP (rs1, rs2…) 

weighted by the effect size (ES) of the association between the individual SNP and ADHD. The 

sum of these values from the total number of SNPs provides the ePRS-IR score. Numbers in 

superscript correspond to citations in the References list. 

Figure 2.  A) Performance in the Information Sampling Task (IST, CANTAB) according to 

gender and ePRS-IR categories. There is a significant interaction between the genetic score and 

gender (p = 0.02, ��= 0.03) in which boys with high ePRS-IR show decreased mean P Correct (or 

sample less information before taking the decision, being more impulsive) (Males: p = 0.02 and 

simple slope = −0.02, Females: p = 0.31 and simple slope = 0.01). In males, but not females, 
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there is a linear dose dependent association between the ePRS-IR and P Correct. (Linear trend 

analysis; Males: F = 4.4, p = 0.04, Females: F = 0.76, p = 0.38). Males are depicted in blue and 

females in red;  B) Age onset of substance dependence according to gender and ePRS-IR 

categories. There is a significant interaction between the genetic score and gender (p = 0.01,  ��= 

−0.13) in which males with high ePRS-IR show greater probability of early onset and lower 

probability of late onset dependencies; males, but not females, show linear dose dependent 

association between the ePRS-IR and age of onset of substance dependence; linear trend 

analysis; Males: F = 6.7, p = 0.01, Females: F = 1.1, p = 0.29). The dotted line at y = 1 represents 

a population with equal number of subjects with early and late onset dependency; C) Males 

(blue): p = 0.01 and simple slope = −0.08, Females (red): p = 0.33 and simple slope = 0.03].  

Figure 3.  Gene Network analysis in the ePRS-IR, random and ADHD (top 184 genes associated 

with SNPs from the GWAS) gene lists.  A) Schematic representation of the gene networks and 

B) comparison of the number of connections between the genes in each network. The ePRS-IR 

represents a network with significantly higher connectivity than a random list of genes 

differently expressed in the same brain areas and developmental period. The ePRS-IR gene 

network has also higher connectivity than the top genes from the ADHD GWAS. 
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Tables 

Study participants’ characteristics correlation with ePRS-IR 
Sample descriptives Spearman correlation 

coefficient 

P-value 

MAVAN cohort 

Gender -0.12 0.04 

Birth weight (grams) 0.03 0.53 

Gestational age (weeks) -0.08 0.18 

Family income below Low Income Cut Off52 -0.20 0.25 

SAGE cohort 

Gender 10.01 0.36 

Family income below $20K -0.06 0.07 

Age at interview -0.006 0.69 

Study source 0.052 0.0007 
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Table 2 - Description of the polygenic risk scores used and analysis of the interactions. 
 

PRS P value 

threshold 

Number of 

SNPs 

PRS vs. sex 

interaction p-value 

PRS vs. sex 

Beta estimate 

ePRS-IR N/A 371 0.022 3.6e-2 

Random genes ePRS N/A 794 0.219 2.0e-2 

PRS ADHD2010 0.001 461 0.470 -1.1e-2 

PRS ADHD2017 0.0001 409 0.326 -1.6e-2 

PRS Tobacco 0.001 787 0.551 9.5e-3 
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