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ABSTRACT 9 
Microbial community structure and function rely on complex interactions whose underlying 10 
molecular mechanisms are poorly understood. To investigate these interactions in a simple 11 
microbiome, we introduced E. coli into an experimental community based on a cheese rind and 12 
identified the differences in E. coli’s genetic requirements for growth in interactive and non-13 
interactive contexts using Random Barcode Transposon Sequencing (RB-TnSeq) and RNASeq.  14 
E. coli’s genetic requirements varied among pairwise growth conditions and between pairwise 15 
and community conditions. Our analysis points to mechanisms by which growth conditions 16 
change as a result of increasing community complexity and suggests that growth within a 17 
community relies on a combination of pairwise and higher order interactions. Our work provides 18 
a framework for using the model organism E. coli as a probe to investigate microbial interactions 19 
regardless of the genetic tractability of members of the studied ecosystem. 20 
 21 
 INTRODUCTION  22 

Microorganisms rarely grow as single isolated species but rather as part of diverse 23 
microbial communities. In these communities, bacteria, archaea, protists, viruses and fungi can 24 
coexist and perform complex functions impacting biogeochemical cycles and human health 25 
(Falkowski, Fenchel, and Delong 2008; Flint et al. 2012). Deciphering microbial growth 26 
principles within a community is challenging due to the intricate interactions between 27 
microorganisms, and between microorganisms and their environment. While interest in 28 
microbial communities has dramatically increased, our understanding of microbial interactions 29 
within communities is lagging significantly behind our ability to describe the composition of a 30 
given community. Further, the way in which these interactions are organized within a 31 
community, such as whether they consist of predominantly pairwise or higher-order interactions, 32 
is even less clear. A more precise understanding of microbial interactions, their underlying 33 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290353doi: bioRxiv preprint 

https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/290353
http://creativecommons.org/licenses/by/4.0/


 2 

mechanisms, and how interactions are structured within a community, are all necessary to 34 
elucidate the principles by which a community is shaped. In this study, we combine genome-35 
scale genetic and transcriptomic approaches within an experimentally tractable model microbial 36 
community to begin to address these questions.  37 

Genome-scale approaches, such as transposon-mutagenesis coupled to next-38 
generation sequencing (TnSeq approaches) have been successfully used to quantify the 39 
contribution and thus the importance of individual genes to a given phenotype (van Opijnen and 40 
Camilli 2013). Recently, generation and introduction of unique random barcodes into transposon 41 
mutant libraries made this approach more high-throughput and less laborious, enabling screens 42 
of important genes within hundreds of conditions and for numerous genetically tractable 43 
microorganisms (Wetmore et al. 2015; Price et al. 2016). In order to investigate the genetic 44 
bases of microbial interactions, we have adapted this approach to allow us to identify and 45 
compare genetic requirements in non-interactive and interactive conditions. To do so, we 46 
introduced a large and diverse transposon library generated previously in the genetically-47 
tractable model bacterium E. coli to characterize the genetic requirements of interactions within 48 
a model community based on the rind of cheese (such as Camembert) (Wetmore et al. 2015). 49 
We (i) identify the set of important genes for E. coli when growing alone in the cheese 50 
environment (ii) identify the set of important genes for E. coli growth in pairwise conditions with 51 
each individual community member and (iii) identify the set of important genes for E. coli growth 52 
with the complete community. Characterization of the functions or pathways associated with 53 
growth in interactive versus non-interactive conditions can then be used to infer the biological 54 
process involved in interactions. Additionally, we compared the set of important genes in 55 
pairwise conditions with the ones important for growth in a community to investigate how 56 
microbial interactions change depending on the complexity of the interactive context. 57 

We further performed two complementary approaches to defining interactions within this 58 
system. First, we measured changes in the transcriptional profile of E. coli during growth alone, 59 
growth in pairwise conditions, and within the community, using RNAseq. This analysis revealed 60 
a deep reorganization of gene expression whenever E. coli is in the presence of other species.  61 
Next, as E. coli is a non-endogenous species in our model ecosystem, we generated a 62 
transposon library in the endogenous species Pseudomonas psychrophila JB418, and 63 
performed similar RB-TnSeq analysis during non-interactive and interactive conditions. 64 

This work revealed numerous interactions between species, such as metabolic 65 
competition for iron and nitrogen, as well as cross-feeding from fungal partners for certain amino 66 
acids. It also highlighted the need for resistance to toxic compounds and osmotic stress as a 67 
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requirement for growth. Our analysis showed that most of the metabolic interactions 68 
(competition and cross-feeding) observed in pairwise conditions are maintained and amplified 69 
by addition of partners and similar pairwise interactions. However, around half of the genetic 70 
requirements observed in pairwise conditions were no longer apparent in the community, 71 
suggesting that higher order interactions emerge in a community.  72 

 73 
RESULTS 74 
 75 
Identification of the basic genetic requirements for growth of the E. coli sensor species 76 
in isolation 77 

We used the E. coli Keio_ML9 RB-TnSeq library from Wetmore et al., 2015, containing 78 
152,018 different insertion mutants (covering 3728 of 4146 protein-coding genes), each 79 
associated with a unique 20 nucleotide barcode. This library was originally generated in and 80 
maintained on lysogeny broth medium (LB), and was used previously to identify genes required 81 
for growth across a variety of conditions (Wetmore et al. 2015; Price et al. 2016). To determine 82 
genes important for growth on our cheese-based medium, we grew the library by itself on sterile 83 
cheese curd agar plates (CCA: 10% freeze-dried fresh cheese, 3% NaCl, 0.5% xanthan gum, 84 
1.7% agar) (Figure 1A), the same medium used in all further experiments, and used previously 85 
to demonstrate that cheese communities could be successfully reconstructed in vitro (Wolfe et 86 
al. 2014). As genetic requirements are likely to change over the course of growth, we grew the 87 
library on CCA for 1, 2 and 3 days. For each time point, we harvested the library from the 88 
surface of the cheese plate, extracted genomic DNA, used PCR to amplify the barcoded regions 89 
of the transposons, and then sequenced these products to measure the abundance (i.e the 90 
number of sequencing reads associated with each barcode) of each transposon mutant over 91 
time (see Materials and Methods). For each gene, there are on average 15 individual insertion 92 
mutants present in the library. The fitness of each insertion mutant was calculated as the log2 93 
ratio of its abundance at a given timepoint compared to T0. Then, we calculated the weighted 94 
average of the fitness of all insertions in a given gene to determine the overall fitness associated 95 
with each gene and calculate a corresponding t-score that accounts for the fitness consistency 96 
within individual insertions of that gene and thus for the confidence we can attribute to that gene 97 
fitness. All gene fitness values were normalized so that a gene with no effect on the growth 98 
phenotype has a fitness value of 0 (see (Wetmore et al. 2015) for details).  99 

At each timepoint, the fitness was calculated for 3298 protein-coding genes. First, we 100 
removed genes in which the fitness value did not pass our confidence threshold (absolute t-101 
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score >= 3). We then removed genes with positive fitness (day 1 n= 10, day 2 n=14 and day 3 102 
n=16). Thus, we only retained the genes whose deletion leads to a consistent growth defect for 103 
E. coli on CCA (hereafter referred as to essential genes). This filtering process left 160 genes 104 
that were important for E. coli growth alone on CCA with a false discovery rate of 0.2% (n=86 105 
for day 1, n=87 for day 2, n= 91 for day 3) (Figure 1B and Supplementary file 1).  106 
 To identify the functions that are associated with these 160 genes, we mapped them to 107 
the KEGG Brite database (Figure 1C). 84 genes were assigned to KEGG modules and 64 of 108 
them were associated with E. coli metabolism. Within these metabolic genes, we found 28 109 
genes associated with amino acid metabolism, specifically the biosynthesis of all amino acids 110 
except for proline, lysine and histidine. Quantification of free amino acids in our medium 111 
highlighted very low concentrations of all amino acids (supplementary figure 1) suggesting that 112 
a limited supply of free amino acids leads to a genetic requirement for amino acid biosynthesis. 113 
This is supported by the observation that both spoT and relA, regulators of the stringent 114 
response which can be triggered by amino acid starvation (Cashel and Rudd 1996), are also 115 
essential. 19 essential genes were associated with energy metabolism and more specifically 116 
with sulfur assimilation (n=7 genes) and respiration (n=8 genes). Here, we deduce that 117 
essentiality of sulfur assimilation is directly correlated with the lack of the amino acids cysteine 118 
and methionine which are the major pools of sulfur-containing compounds in the cell. As a non-119 
endogenous species, E. coli might not possess the adequate peptidases or proteases to 120 
degrade and use the highly available protein casein. Identification of two of the three genes of 121 
the Leloir pathway (galE and galT), involved in the uptake and conversion of galactose into 122 
glucose, suggests that galactose might be a crucial nutrient for E. coli growth on CCA. Finally, 8 123 
genes mapped to membrane transport and were associated with two specific pathways: ferric-124 
enterobactin transport and glycine-betaine transport. Ferric-enterobactin transport allows the 125 
cells to scavenge iron in a low-iron environment (Raymond, Dertz, and Kim 2003; Hider and 126 
Kong 2010). Iron is an essential micronutrient and cheese is known to be iron-limited (Albar et al. 127 
2014). Glycine betaine is used by the cells as an osmoprotectant against high osmolarity 128 
environments. During cheese curd processing, high concentrations of NaCl are added (Guinee 129 
2004), and our CCA medium contains 3% NaCl to mimic these conditions. The importance for E. 130 
coli to maintain its cell osmolarity is also suggested by the essentiality of genes responsible for 131 
the transport of the ions sodium, potassium or zinc. 132 

In summary, conditionally essential functions for E. coli to grow alone in our 133 
experimental environment involved (i) response to low iron availability, (ii) response to osmotic 134 
stress and (iii) response to low available nutrients (specifically free amino acids). These required 135 
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functions are consistent with recently published results about the requirements of the mammary 136 
pathogenic E. coli (MPEC) during growth in milk (Olson et al. 2017) except for resistance to 137 
osmotic stress which does not occur in milk. 138 

 139 
 140 

 141 
Figure 1: Identification of genes essential for E. coli  growth alone on cheese curd agar. The E. coli RB-TnSeq 142 
library Keio_ML9 (Wetmore et al., 2015) was grown for 3 days on cheese curd agar (CCA). Samples were harvested 143 
at T=0h (black arrow), 24h, 48h and 72h (red arrows) for gene fitness determination (A). Genes with a significant 144 
negative fitness effect (“essential genes”, abs(t-score) >= 3 and fitness < 0) were identified at day 1 (24h), day 2 (48h) 145 
and day 3 (72h) (B). Pooled together, they represented 160 essential genes for E. coli’s growth on CCA. 84 of the 146 
160 genes had hits when mapped to the KEGG BRITE database (C).  147 

To validate the results obtained with the transposon library, we measured the fitness of 148 
individual knockout mutants from the E. coli Keio collection (Baba et al. 2006). We tested 25 149 
knockout mutants corresponding to genes with a strong growth defect observed after one day of 150 
growth. We carried out competitive assays between each knock-out mutant and the wild-type 151 
strain on CCA. We calculated each knock-out mutant fitness as the log fold change of its 152 
abundance after one day of growth. A z-score was also calculated to assess the confidence of 153 
that fitness. 21 of 25 knock-out mutants displayed a fitness value lower than 0 with at least 95% 154 
confidence (supplementary figure 2). The remaining 6 mutant strains (brnQ, cysK, cysQ, serA, 155 
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trxA and waaP) were associated with high fitness value variability across replicate experiments 156 
and thus they were associated with a lower z-score. Altogether, this supports the reliability and 157 
validity of RB-TnSeq results. 158 
  159 
Identification of genes essential for E. coli growth in pairwise conditions 160 

The growth of our E. coli library alone allowed us to determine the baseline set of genes 161 
required for optimal growth in the model cheese environment. We next wanted to examine the 162 
genes required for growth when another species is present. First, we analyzed the growth of E. 163 
coli and the partner species. We grew E. coli for 3 days on CCA in the presence of either H. 164 
alvei, G. candidum or P. camemberti. In addition to belonging to distinct domains or phyla, these 165 
3 partners are the typical members of a bloomy rind cheese community (such as Brie or 166 
Camembert). The presence of E. coli did not influence the growth of any species 167 
(supplementary figure 3). However, E. coli’s growth was reduced in the presence of each 168 
partner (Figure 2A).   169 

We then determined essential genes for E. coli growth in each pairwise condition using 170 
RB-TnSeq (i.e any genes whose fitness value is negative and associated with an absolute t-171 
score greater than 3 in the pairwise condition). As performed above, barcode frequencies were 172 
compared between T0 and after growth with each partner (at day 1,2 and 3). For each pairwise 173 
condition, we pooled genes with a consistent fitness for at least one timepoint as a single set of 174 
essential genes. We identified 145 conditionally essential genes for E. coli growth with H. alvei, 175 
131 conditionally essential genes for its growth with G. candidum and 142 conditionally 176 
essential genes for its growth with P. camemberti (Figure 2B and supplementary file 2). We saw 177 
significant overlap between these gene sets, which altogether constitute a set of 153 genes that 178 
were conditionally essential for growth in at least one pairwise culture. These genes are further 179 
referred to as genes essential for growth in pairwise conditions.  180 

Comparison of the set of genes identified when E. coli is grown alone with the genes 181 
identified when E. coli is grown in pairwise conditions is expected to highlight differences 182 
brought about by the presence of another species. Consistent presence of multiple genes of the 183 
same pathway within a set of essential genes is likely to point out a pathway specifically 184 
essential in one condition. Thus, we can infer possible interactions based on the different 185 
essential pathways between interactive and non-interactive growth conditions. 186 

 We compared the 153 genes essential in pairwise conditions to the 160 essential genes 187 
for E. coli growth alone (Figure 2C). Three groups of genes arose from that comparison: (i) the 188 
core requirements: genes essential for both growth alone and in pairwise conditions (n=78), (ii) 189 
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the alone-specific requirements: any gene essential for E. coli growth alone that was not 190 
identified as essential in the presence of at least one of the partner (n=82), and (iii) pairwise-191 
specific requirements: any gene essential in the presence of at least one of the partners but not 192 
essential for growth alone (n=75). We further focused on the alone-specific and pairwise-193 
specific requirements as these groups contain genes potentially related to interactions. 194 

Alone-specific requirements can highlight genes that are essential for growth alone but 195 
no longer required due to the presence of a partner, thus suggesting interactions between E. 196 
coli and the partner. In this specific case, these genes can be described as requirements which 197 
are relieved by the presence of a partner. We mapped the 82 alone-specific genes (Figure 2D 198 
and supplementary file 3) to the KEGG BRITE database to identify functions and pathways that 199 
are no longer essential in the presence of a partner. 16 genes were associated with unknown or 200 
predicted proteins and did not map to any field of the database. Of the remaining genes, 45 201 
mapped to modules of the KEGG orthology hierarchy. 7 genes were associated with genetic 202 
information processing, environmental information processing, cellular processes and human 203 
disease modules. However, most of the alone-specific genes were associated with the KEGG 204 
module metabolism, and are thus part of metabolic pathways. It is especially evident that 205 
pairwise growth leads to major changes in the need for amino acid biosynthesis. For example, 6 206 
out of the 8 genes of valine and isoleucine biosynthetic pathways are no longer required during 207 
pairwise growth (Figure 3D and supplementary file 3). In addition, 2 genes of arginine 208 
biosynthesis, 2 genes of methionine biosynthesis as well as final steps of homoserine, aspartate 209 
and glutamate biosynthesis are no longer required. Moreover, ilvY, the transcriptional activator 210 
of valine and isoleucine biosynthesis was also among the genes no longer required for pairwise 211 
growth. Here, the dominant presence of amino acid biosynthesis genes in the alone-specific 212 
requirements suggests cross-feeding of the pathway end-product or key intermediaries which 213 
are either provided directly by the partner species or made more available in the environment as 214 
a consequence of the partner’s metabolic activity. Thus, our data suggest that pairwise growth 215 
may allow cross feeding of the amino acids valine, isoleucine, arginine, methionine, homoserine, 216 
aspartate and glutamate. Isoleucine or methionine are also intermediaries of cofactor 217 
biosynthesis, and genes associated with their biosynthesis were also mapped to metabolism of 218 
cofactors and vitamins. 219 

To understand if the alone-specific requirements were related to a specific partner, we 220 
investigated how each partner contributed to this gene set (supplementary file 3). Of the 82 total 221 
genes, 36 were identified as non-essential in all pairwise cultures. They included genes 222 
associated with amino acid metabolism specific to homoserine and methionine biosynthesis. Of 223 
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the remaining genes, 8 were specifically not required in the presence of H. alvei, 9 were 224 
specifically not required in the presence of G. candidum and 9 were specifically not required in 225 
the presence of P. camemberti. Alleviation of leucine and valine biosynthesis was observed with 226 
all fungal partners, while biosynthesis of arginine appeared to be no longer required specifically 227 
in the presence of G. candidum. Fungal species are known to secrete proteases that digest 228 
small peptides and proteins (Kastman et al. 2016; Boutrou, Aziza, and Amrane 2006; Boutrou, 229 
Kerriou, and Gassi 2006) and may lead to increased availability of amino acids in the 230 
environment.  231 

We then analyzed the 74 pairwise-specific genes (Figure 2D and supplementary file 3) in 232 
order to identify functions or pathways that are newly essential due to the presence of a partner 233 
compared. 33 genes mapped to KEGG Orthology terms. Among this gene set are pathways 234 
associated with signal transduction, biofilm formation, and drug resistance. They were related to 235 
3 major responses: metabolic switch (creB: carbon source responsive response regulator), 236 
response to stress and toxic compounds (cpxA: sensory histidine kinase, oxyR: oxidative stress 237 
regulator, acrAB: multidrug efflux) and biofilm formation (rcsC and rcsB: regulator of capsular 238 
synthesis, pgaC: poly-N-acetyl-D-glucosamine synthase subunit). Biofilms are microbial 239 
structures known to provide resistance to different stresses, including resistance to antibiotics, 240 
and biofilm-inducing genes can be activated in presence of stress events (Landini 2009). The 241 
transcriptional regulator oxyR and the transduction system CpxA and CpxB are known 242 
coordinators of stress response and biofilm formation (Gambino and Cappitelli 2016; Dorel, 243 
Lejeune, and Rodrigue 2006). While these genes represent only a small subset of the all the 244 
pairwise specific gene set, they could suggest that partner species are producing toxic 245 
compounds or oxidative stress-inducing compounds.  246 

We again investigated if these responses were partner-specific (supplementary file 3). 247 
Of the 74 pairwise-specific genes, 11 were found to be essential in the presence of all partners, 248 
13 were specific to the presence of H. alvei, 24 were specific to the presence of G. candidum 249 
and 11 were specific to the presence of P. camemberti. Despite involving different genes, 250 
necessity of biofilm formation and response to toxic stress were associated with the presence of 251 
all partners.  252 

 253 
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 254 
Figure 2: Analysis of E. coli essential genes during growth in pairwise conditions. We grew E. coli in pairwise 255 
conditions with either with H. alvei, G. candidum or P. camemberti (A). Using the E. coli RB-TnSeq library we 256 
identified the essential genes for growth on CCA in each pairwise condition. Requirements for growth with the 257 
different partners overlapped between the conditions. Altogether, it constitutes 153 essential genes (B). Comparing 258 
these genes to the genes essential for E. coli growth alone, we identified 82 genetic requirements that were no longer 259 
required for growth in pairwise conditions as well as 75 genes that were added by pairwise growth (C). We mapped 260 
the pairwise-specific and alone-specific genes to the KEGG BRITE database. 45 out of 82 genes and 33 out of 77 261 
had hits (D). Most of the alone-specific requirements were mapped to metabolic pathways and especially amino-acid 262 
metabolism (n=20 genes) while pairwise-specific requirements mapped to metabolic functions but also to functions 263 
associated with response to stress (biofilm formation n=5, signal transduction n=5 and drug resistance n=4). 264 

  265 
Identification of E. coli genes essential for growth within the community and comparison 266 
with genes essential for growth in pairwise conditions. 267 

We next aimed to investigate the differences between genes essential for growth in a 268 
community (complex interactive condition) and genes essential for growth in associated 269 
pairwise conditions (simple interactive condition). We grew the E. coli library with the complete 270 
community composed of H. alvei, G. candidum and P. camemberti and identified 126 essential 271 
genes (supplementary file 2). E. coli final biomass was reduced by the presence of the 272 
community even more so than by a single partner. However, the growth of each community 273 
member was unaffected (Supplementary figure 3).  274 

We first compared the genes essential for growth in the community with the genes 275 
essential for growth alone. We identified 89 genes that were essential for both conditions, 37 276 
genes only essential with the community and 71 genes that were no longer essential to grow 277 
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with the community (essential only for growth alone) (Figure 3A). As for the presence of a single 278 
partner, the presence of a complex community potentially introduces new essential genes for 279 
growth while relieving some requirements.  280 

By comparing the genes required for growth in interactive and non-interactive conditions, 281 
we have identified the set of genes which are newly required during growth in a community 282 
versus growth alone and the set of genes newly required for growth in pairwise conditions 283 
versus growth alone. Comparing these two sets of additional genes can reveal if and how 284 
community complexity modifies the genes that are essential in different interactives contexts 285 
compared to growth alone. We identified 29 essential genes that were potentially newly 286 
essential compared to growth alone in both pairwise conditions and community growth (Figure 287 
3B and supplementary file 4). These new requirements are likely to be associated with pairwise 288 
interactions which are maintained in a community context. These include genes associated with 289 
oxidative stress and biofilm formation.  290 

Meanwhile, we identified 46 genes that were essential only for growth in pairwise 291 
conditions, but not with the community. These genes could be related to interactions that are 292 
either alleviated or counteracted in a community, either by the presence of a specific species, or 293 
the community as a whole. For example, some of the identified genes were associated with 294 
antimicrobial resistance, and in a diverse community, other species could degrade the putative 295 
antimicrobial molecule or prevent the producing species from secreting it. Consequently E. coli 296 
would be exposed to a lesser level of antimicrobial, suppressing the necessity of a resistance 297 
gene.  298 

Finally, 8 essential genes appeared to be specifically required in the presence of the 299 
community. These genes may be associated with specific interactions emerging from the 300 
community context. 3 genes encode for uncharacterized proteins, and the others (purK, purE, 301 
damX, ftsX, secB) are not associated with a single function or pathway. We therefore cannot 302 
conclude whether specific interactions emerge from the community context or if these genes 303 
appeared as specific because of the filtering process criteria.   304 

We next investigated if the interactions related to relieved requirements in community 305 
growth versus alone and relieved requirements in pairwise conditions versus growth alone were 306 
similar. Thus, we compared the alone specific requirements versus growth with the community 307 
and the alone specific requirements versus growth in pairwise conditions (Figure 3B and 308 
supplementary file 4). 68 genes were no longer required for both growth in pairwise conditions 309 
and with the community compared to growth alone. These genes can also represent pairwise 310 
interactions maintained in the community context. Amino acid biosynthesis was highly 311 
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represented within these genes and more specifically biosynthesis of valine, isoleucine, 312 
methionine, homoserine, aspartate and glutamate (Figure 3C). This suggests that, despite the 313 
presence of more species, these amino acids are still cross-fed.  314 

We also identified 14 genes that were no longer required in pairwise conditions 315 
compared to growth alone yet remained essential for growth with the community. Finally, 3 316 
genes appeared to be specifically no longer required in the presence of the community. In both 317 
cases, too few genes are involved for us to infer any hypothesis on the existence of specific 318 
pairwise interactions not conserved in the community or the emergence of specific interactions 319 
in the community. 320 

To summarize, the genes that would be newly essential in the community compared to 321 
growth alone were mostly maintained from newly essential genes identified in pairwise 322 
conditions compared to growth alone. Similarly, the genes that were no longer essential for the 323 
growth in the community were highly similar to the genes that were no longer essential in 324 
pairwise condition. However, many newly essential genes for growth in pairwise condition 325 
compared to growth alone were not found as essential for growth within the community. 326 
Altogether, this highlights that part of the pairwise interactions are conserved within a 327 
community while underlining the presence of higher order interactions related to the higher 328 
complexity of the growth condition.  329 
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 330 

 331 
Figure 3: Comparison of genes essential for E. coli growth within the community and in pairwise conditions. Using the E. coli RB-TnSeq library, we 332 
identified genes required to grow with the community (H. alvei + G. candidum + P. camemberti). Then, we compared the essential genes for growth alone and with 333 
the community (A) to identify the newly essential and relieved genes during growth with the community. Next, we compared the newly essential genes in 334 
community growth versus growth alone with the newly essential genes in pairwise growth (PW) versus growth alone. We did the same for relieved requirements 335 
(B). Within the requirements that were relieved both in pairwise and community growth, genes associated with numerous amino acid biosynthetic pathways were 336 
identified (C).  337 
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E. coli differential expression analysis in pairwise conditions versus growth alone 340 

So far, we used a genome-scale genetic approach to investigate potential microbial 341 
interactions. As a complementary strategy, we generated transcriptomic data for E. coli during 342 
growth in each previously discussed condition. Changes in transcriptional profiles can be a 343 
powerful indicator of an organism’s response to an environment and were previously used to 344 
identify E. coli pathways involved in interactions (Croucher and Thomson 2010; McAdam, 345 
Richardson, and Fitzgerald 2014; Galia et al. 2017).  346 

To measure E. coli gene expression, we extracted and sequenced RNA from each 347 
timepoint and condition of the samples used for RB-TNseq above (after 1, 2 and 3 days of 348 
growth when grown alone, in pairwise conditions or with the community). Comparison of 349 
transcriptional profiles suggests a strong reorganization of E. coli gene expression over time 350 
and in response to the presence of a partner. Principal component analysis on the normalized 351 
gene expression values (rlog transformation(Love et al. 2015)) revealed that samples clustered 352 
based on the growth timepoint (separation on the horizontal axis) and whether E. coli is growing 353 
alone or not (separation on the vertical axis) (Figure 4A). The different pairwise conditions and 354 
the community conditions cluster together, underlining that the potential differences between 355 
these conditions are less important than the differences between an alone and co-cultured 356 
condition.              357 
         We next focused on the genes differentially expressed between pairwise and alone 358 
growth and by calculating the fold change of gene expression between pairwise growth and 359 
growth alone. We identified differentially expressed genes by screening for adjusted p-values 360 
lower than 1% and absolute log of fold change (logFC) greater than 1. To remain consistent with 361 
the analysis performed for the genetic requirements, we pooled the data at all time points after 362 
identifying all of the up-regulated or down-regulated genes for each timepoint. We found a total 363 
of 966 upregulated and 977 downregulated across all partners (482 upregulated genes and 478 364 
downregulated genes in presence of H. alvei, 633 upregulated genes and 719 downregulated 365 
genes in presence of G. candidum, 626 upregulated genes and 694 downregulated genes in 366 
presence of P. camemberti, Figure 4B and supplementary file 5). 271 genes were up-regulated 367 
in all pairwise conditions while 340 genes were always down-regulated. Meanwhile, a number of 368 
genes were differentially expressed depending on the partner: 66 genes were specifically up-369 
regulated and 60 genes down-regulated with H. alvei, 213 up-regulated and 182 down-regulated 370 
with G. candidum, 183 up-regulated and 161 down-regulated with P. camemberti. 371 
        372 

 373 
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Due to the larger gene set compared to RB-TNseq, we performed KEGG Pathway 374 
enrichment analyses on the differentially expressed genes in pairwise conditions to determine 375 
up-regulated functions and pathways depending on the partner species (Figure 4C). First, 376 
certain functions are up-regulated regardless of the partner. This includes up-regulation of 377 
almost all the aminoacyl-tRNA-synthetases and up-regulation of energy production. Interestingly 378 
up-regulation of energy production through aerobic respiration and the TCA cycle happened 379 
after 3 days of growth. Oxygen availability  (Gunsalus 1992) and growth phase (Wackwitz et al. 380 
1999) are the two known regulators of aerobic respiration. At day 3, E. coli was observed to be 381 
in log phase when alone, whereas in the presence of a partner and especially with P. 382 
camemberti, E.coli was observed to enter the stationary phase between day 2 and day 3 383 
(Supplementary figure 5). Therefore, up-regulation of aerobic respiration is most likely 384 
associated with the growth stage difference between E. coli alone and with a partner.  385 

More genes were up-regulated in the presence of G. candidum than the other partners. 386 
Several pathways associated with nucleotide biosynthesis (one-carbon pool by folate, purine 387 
metabolism and pyrimidine metabolism) were specifically upregulated. This suggests that either 388 
E. coli and G. candidum compete for nucleotide compounds from the environment or that 389 
presence of G. candidum leads to an increase demand of nucleotide compounds for E. coli’s 390 
metabolism and growth.  391 

We performed a similar KEGG pathway enrichment analysis on the down-regulated 392 
genes in pairwise conditions. No pathway was enriched in the presence of H. alvei. Pathways 393 
involved in the biosynthesis of amino acids, specifically tyrosine, phenylalanine, tryptophan, 394 
methionine, lysine, arginine homoserine, leucine, glutamate, threonine and glycine, appeared to 395 
be the principal down-regulated function in the presence of a fungal partner. Lysine biosynthesis 396 
was specifically down-regulated with G. candium while arginine biosynthesis was specifically 397 
downregulated with P. camemberti. Interestingly, some amino acid biosynthetic pathways were 398 
up-regulated later in the growth (phenylalanine, tyrosine and leucine). Down-regulation of amino 399 
acid biosynthesis suggests that the partner species generates amino acid cross feeding. Our 400 
previous RB-TnSeq results previously suggested this particular interaction in the presence of 401 
fungi. The observation of this interaction in the transcriptome data is consistent with our 402 
interpretation of RB-TnSeq and reinforces the likelihood of such an interaction. However, late 403 
up-regulation of some amino acid biosynthesis suggests that as the partner grows along with E. 404 
coli they eventually end up competing for amino acids leading to biosynthesis up-regulation.  405 
 406 
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To summarize, presence of a single partner triggers a deep and dynamic reorganization 407 
of E. coli gene expression. These modifications mostly rely on restructuring E. coli metabolic 408 
activity whether it is to down-regulate specific pathways and activate new ones as a response to 409 
potential metabolic competition and establishment of an appropriate metabolic strategy or to 410 
down-regulate certain pathways and benefit from cross-feeding and common goods. 411 

 412 

 413 
Figure 4: E. coli gene expression analysis during growth on CCA alone, in pairwise conditions and with the community. We 414 
used RNASeq to investigate E. coli gene expression at three timepoints (1, 2 and 3 days) during growth on CCA 415 
alone, in pairwise conditions (with H. alvei, G. candidum or P. camemberti) and with the community. We carried out a 416 
principal component analysis on the rlog transformed expression data (Love et al., 2015) (A). Using DESeq2 (Love et 417 
al., 2015), we identified up and down-regulated genes in each pairwise condition at each timepoint compared to 418 
growth alone. We kept only genes associated with a p-value lower than 1% and an absolute logFC higher than 1. For 419 
each pairwise condition, we pooled together up-regulated genes at any timepoint and did the same for down-420 
regulated genes. Comparing the up- or down-regulated genes in the different pairwise conditions, we highlighted 421 
overlapping response as well as specific responses depending on the partner (B). Then, we carried out functional 422 
enrichment analysis on the KEGG pathways for up- or down-regulated genes in each pairwise condition. To do so, 423 
we used the R package clusterProfiler (Yu et al., 2012) as well as Benjamini-Hochberg multiple comparison 424 
correction. Only the Kegg pathways enriched with a p-value lower than 5% were considered (C). 425 
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Comparison of differentially expressed genes in pairwise condition versus alone and 429 
community growth versus alone. 430 

To determine whether E. coli gene expression significantly changes when grown with the 431 
full community as compared to growth in pairwise conditions, we first calculated E. coli gene 432 
logFC at each timepoint between growth with the community and growth alone. We further 433 
analyzed genes with adjusted p-values lower than 1% and absolute logFC greater than 1. After 434 
pooling across timepoints, we identified 465 up-regulated and 476 down-regulated genes in the 435 
presence of the community versus growth alone (Supplementary file 5). We then compared 436 
these genes to the 966 up-regulated genes and 977 down-regulated genes in pairwise 437 
conditions versus growth alone (Figure 5A).  438 

First, we identified 549 genes that were specifically up-regulated in pairwise conditions 439 
versus growth alone and not up-regulated in community versus growth alone. KEGG pathway 440 
enrichment analysis highlighted that these genes were mostly associated with quorum sensing, 441 
fatty acid metabolism and oxidative phosphorylation (Figure 5B). This observation suggests that 442 
addition of other species in the community counteracts or prevents pairwise specific interactions 443 
from that partner. 416 genes were found to be up-regulated both in pairwise and community 444 
growth versus growth alone. Enrichment analysis highlighted functions that were previously 445 
described as up-regulated in most of the pairwise conditions: aminoacyl-tRNA-synthetase and 446 
energy metabolism (Figure 5B). This suggests that certain interactions that E. coli experienced 447 
in pairwise conditions are conserved in the community context. To investigate if the addition of 448 
potentially similar interactions from different partners leads to an amplified response, we 449 
explored if the magnitude of expression changes in these pathways is higher in the community. 450 
We performed differential expression analysis on the genes comparably regulated in pairwise 451 
conditions and with the community (Supplementary file 6). 50 of the 416 up-regulated were 452 
significantly more up-regulated in community growth compared to pairwise growth. Among them, 453 
sulfate assimilation genes were over-represented. This suggests that similar pairwise 454 
interactions may be additive in the community leading to a stronger transcriptional response.  455 

Finally, 49 genes were specifically up-regulated with community growth versus growth 456 
alone. Despite a low number of genes, KEGG pathways were significantly enriched (Figure 5B). 457 
These enriched groups include the biosynthesis of valine, leucine and isoleucine, pyrimidine 458 
metabolism as well as arginine and proline metabolism. Up-regulation of certain amino acid 459 
biosynthesis pathways suggests that despite potential cross feeding from individual partners, 460 
addition of many partners eventually leads to competition. Up-regulation of pyrimidine, arginine 461 
and proline metabolism however is part of a larger response; the response to nitrogen starvation 462 
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(Figure 5C). This response facilitates cell survival under nitrogen-limited conditions. Specifically, 463 
up-regulated genes included all the genes involved in the regulatory loop of the transcriptional 464 
regulator NtrC (glnL) and nitrogen utilization as well as NtrC transcriptional targets: the 465 
transcriptional regulator Nac (nac), the operon rutABCDEFG involved in ammonium production 466 
by uracil catabolism, the astABCDE operon constituting the arginine degradation pathway (AST 467 
pathway) and the two regulators of the stringent response, relA and spoT. Thus, addition of 468 
species in the community specifically triggers the activation of the response to nitrogen 469 
starvation, which suggests a potential higher competition for nitrogen in the community context. 470 

We performed a similar analysis on down-regulated genes in pairwise conditions and 471 
with the community versus growth alone to investigate if transcriptional down-regulation in 472 
pairwise and community conditions are similar (Figure 5A). 527 genes appeared specifically 473 
down-regulated in pairwise conditions versus growth alone. Despite the large number of genes, 474 
no KEGG pathway was significantly enriched among these genes. However, the rutABCDEFG 475 
and astABCDE operons associated with the response to nitrogen starvation were down-476 
regulated in each pairwise conditions (Figure 5C). This observation strongly suggests that 477 
presence of the community triggers a highly specific response that would be down-regulated in 478 
the presence of only one species.  479 

We identified 448 genes that were down-regulated during both pairwise and community 480 
growth conditions versus growth alone. Enrichment analysis pointed to the down-regulation of 481 
amino acid biosynthesis, lysine biosynthesis as well as cysteine and methionine metabolism. 482 
Therefore, consistent with our RB-TnSeq data, this suggests that cross-feeding from a single 483 
partner is maintained in a more complex context. Finally, 28 genes were specifically down-484 
regulated when E. coli was grown with the community. Individual analysis of these genes 485 
highlighted 9 genes that code for uncharacterized proteins but did not highlight over-486 
represented functions. 487 

To conclude, most of the changes in E. coli gene expression during growth with the 488 
community were similar to those observed in pairwise conditions. Moreover, some of these 489 
changes were amplified in the community compared to pairwise. This suggests that while a 490 
large part of transcriptional regulation in community results from pairwise interactions, similar 491 
interactions from different partners may be additive in the community and exert a stronger 492 
impact on transcription. Also, the observed changes in nitrogen availability-related transcription 493 
suggest that community growth may induce new metabolic limitations.  494 

 495 
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 496 
Figure 5: Comparison of differentially expressed genes in pairwise conditions versus alone and community 497 
growth versus alone. Using DESeq2 (Love et al., 2015), we identified up and down-regulated genes during growth 498 
with the community compared to growth alone at each timepoint. We kept only genes associated with a p-value lower 499 
than 1% and an absolute logFC higher than 1. We pooled together up-regulated genes at any timepoint and did the 500 
same for down-regulated genes. Then, we compared up-regulated genes in pairwise conditions with genes up-501 
regulated during growth with the community and down-regulated genes in pairwise conditions with down-regulated 502 
genes during growth with the community (A). We further performed functional enrichment analysis on KEGG 503 
pathways using the R package clusterProfiler (Yu et al., 2012) on the genes differentially expressed in different 504 
situations. We used Benjamini-Hochberg multiple comparison correction and only the Kegg pathways enriched with a 505 
p-value lower than 5% were considered (B). Within the genes specifically up-regulated during growth with the 506 
community, we observed the up-regulation of multiple genes associated with the nitrogen starvation response (C). 507 

 508 

RB-TnSeq identification of genes essential for Pseudomonas psychrophila JB418 growth 509 
with the bloomy rind cheese community  510 

Because  E. coli is a well-characterized model organism, it provides a good starting point 511 
for genetic analysis of interactions in this system. However, because E. coli is not typically found 512 
in cheese, we wanted to characterize interactions using an endogenous species. We selected 513 
Pseudomonas psychrophila JB418, which was previously isolated from a bloomy rind cheese 514 
sample (Wolfe et al. 2014), and is genetically tractable,   515 

We first sequenced, de novo assembled, and annotated the genome of this species (see 516 
Materials and Methods). We used KEGG KOALA Blast (Kanehisa, Sato, and Morishima 2016) 517 
to obtain KEGG identifiers for coding sequences. 2983 coding sequences (51.5%) were 518 
assigned a KEGG identifier. We then used the same barcoded, transposon delivery library to 519 
construct a RB-TnSeq library in this strain (see materials and methods for library construction 520 
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and characterization). We used TnSeq analysis to map barcode insertions to the annotated 521 
genome. 272,329 insertions were mapped and 143,491 were centrally inserted (transposons 522 
mapping to the first and last 10% of a gene were discarded) at 77,766 different locations. With 523 
4811 genes with at least one central insertion, the library covers 83% of P. psychrophila 524 
genome (Figure 6A). The genes with no central insertion are likely to be essential genes for 525 
growth on LB. 526 

We then grew the P. psychrophila library for 3 days on CCA either alone (supplementary 527 
figure 4), in pairwise conditions (with H. alvei, G. candidum or P. camemberti) and with the full 528 
community. Fitness values were successfully calculated for 3060 genes and the same statistical 529 
screening (absolute t-value >=3) and fitness screening (fitness value < 0) were used to identify 530 
essential genes. We first analyzed the 179 genes essential for P. psychrophila growth alone 531 
(Figure 6B and supplementary file 7). Most of the essential genes for P. psychrophila growth 532 
alone on CCA appeared to be associated with metabolism. More specifically, they are predicted 533 
to be involved in amino acid biosynthesis (all amino acids except for lysine), biosynthesis of 534 
cofactors and vitamins as well as energy metabolism (sulfate assimilation). Also, pathways 535 
associated with membrane transport were related to iron-siderophore uptake and glycine 536 
betaine transport. Essential functions for P. psychrophila growth alone were consistent with the 537 
previous functions identified for E. coli growth alone.  538 

Next, we identified 152 genes essential for P. psychrophila JB418 growth with H. alvei, 539 
176 genes essential for growth with G. candidum, and 164 genes essential for growth with P. 540 
camemberti (Supplementary file 7). Altogether, they represent 205 genes essential for P. 541 
psychrophila growth in pairwise conditions. Compared to growth alone, 71 genes are no longer 542 
required for P. psychrophila during pairwise growth (Figure 6Ci). We mapped these relieved 543 
genes to the KEGG BRITE database to identify potentially relieved functions. Of the 71 genes, 544 
only 27 were assigned a KEGG annotation. Here, no pathway appeared to be clearly relieved 545 
(Supplementary figure 5).  546 

We identified 74 newly essential genes for P. psychrophila growth in pairwise conditions 547 
compared to growth alone (Figure 6Ci) and 34 of them were mapped to the KEGG Brite 548 
DataBase (Supplementary figure 5). These genes included 11 associated with aromatic amino 549 
acid biosynthesis. Since amino acid biosynthesis is also required for growth alone, these data 550 
suggest that introduction of a partner leads to an amplified depletion of free amino acids, likely 551 
due to competition for these nutrients. Additionally, 4 genes associated with DNA repair were 552 
identified as essential in the presence of another species. This could suggest presence of a 553 
toxic stress produced from the partner.  554 
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Finally, we identified 156 genes essential for P. psychrophila when grown with the 555 
community (Supplementary file 7). Compared to growth alone, we identified 69 genes that were 556 
no longer required (Figure 6Cii). Then, comparing these 69 relieved genes in community versus 557 
growth alone with the relieved requirements in pairwise conditions versus growth alone (Figure 558 
6Ciii), we concluded that only 8 genes were no longer required uniquely in the community. 4 of 559 
these 8 genes were associated with valine and isoleucine biosynthesis, suggesting that addition 560 
of more species might lead to cross-feeding of these amino acids similar to what was observed 561 
with E. coli.  562 

We identified 46 genes that were newly essential for P. psychrophila growth with the 563 
community versus growth alone (Figure6Cii). Comparing these genes to the newly essential 564 
genes identified in pairwise growth versus growth alone, we identified 8 genes uniquely 565 
essential during community growth and not during any pairwise growth condition (Figure 6Civ). 566 
Of these genes, 4 were annotated as either transporters or putative transporters. Here, as for E. 567 
coli, we observed that newly essential and relieved requirements in the community context were 568 
mostly maintained from pairwise conditions, while not all pairwise newly essential or relieved 569 
requirements were maintained in the community. 570 

To summarize, essential functions for P. psychrophila growth alone on CCA were 571 
consistent with the ones identified for E. coli. While demonstrating important environmental 572 
parameters to be considered for growth on CCA such as low available iron, low available free 573 
amino acid and high osmolarity, it also underlines the robustness of the RB-TnSeq approach in 574 
accurately identifying essential genes. Analysis of the functions of newly essential or relieved 575 
genes in interactive contexts allowed us to examine potential P. psychrophila interactions with 576 
the members of our model community. Interestingly, the possible interactions probed with P. 577 
psychrophila, whether they are associated with relieved essential genes or newly essential 578 
genes, appeared to differ from the ones identified with E. coli. 579 

 580 
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 581 
Figure 6: Identification of genes essential for P. psychrophila JB418 growth on CCA and with the model 582 
community. We built a barcoded-transposon library in the cheese isolate P. psychrophila JB418. 272,329 insertions 583 
were mapped to the genome. The library covers 83% of P. psychrophila JB418 genome. On the chromosome, each 584 
bar represents the number of insertions per kB (A). We grew the library alone on CCA and identified 179 genes 585 
essential for P. psychrofila JB418. We annotated P. psychrophila JB418 using KEGG KOALA Blast (Kanehisa, Sato, 586 
and Morishima 2016). 98 of the 179 genes were attributed a KEGG annotation. To compare the relative importance 587 
of essential functions for growth alone observed for P. psychrophila JB418 and for E. coli we represented, per KEGG 588 
module, the ratio between the number of hits for the module and the number of genes with KEGG annotation (B). We 589 
further identified P. psychrophila JB418 essential genes for growth in the different pairwise conditions and with the 590 
community. Then, we determined which genes were newly essential or relieved in pairwise conditions compared to 591 
growth alone as well as newly essential or relieved genes with the community compared to growth alone. Finally, we 592 
compared newly essential genes in pairwise conditions versus alone with newly essential genes in the community 593 
versus alone as well as relieved genes in pairwise condition versus alone with relieved genes in community versus 594 
alone (C). 595 

 596 

DISCUSSION  597 

 598 

In this work, we combined high-throughput, genome scale approaches to begin to define 599 
microbial interactions within a model community. Our integrative approach relies on the use of 600 
the model species E. coli as a genetic probe grown either alone, in pairwise culture with each 601 
community member or with the complete community. We first used RB-TnSeq to determine E. 602 
coli’s genetic requirements in these different contexts associated with increasing levels of 603 
complexity. Our analysis showed that 3.86% of the genes in the E. coli genome were important 604 
to grow in our experimental environment. 53.1% of these genes appeared to be no longer 605 
required when grown with a partner but a distinct set of genes (comprising 1.98% of the E. coli 606 
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genome) appeared to be specifically required during interactive conditions. As identification of 607 
differences for genes essential across conditions is based on a stringent filtering cutoff for 608 
consistent fitness values, some differences might be attributed to false negative results. For 609 
example, during growth alone, 11 genes that were found to be essential only at day 1 become 610 
essential at all timepoints if we relax our t-score cutoff to absolute t-score >= 2 and increase our 611 
false discovery rate to 2%. However, essentiality differences between timepoints can also point 612 
out that genetic requirements do change over time. A method for quantitative comparison of 613 
fitness values across conditions or timepoints will need to be developed to overcome that issue. 614 
However, since we expect the false negative results to be randomly distributed across E. coli’s 615 
genes, we consider that if genes belonging to the same pathway or function are specially 616 
observed in a condition and not another, they are very likely to be involved in a microbial 617 
interaction. To complement the RB-TnSeq approach, we used RNASeq and differential gene 618 
expression analysis to investigate E. coli transcriptional response during growth in pairwise 619 
culture and with the community compared to a growth alone. Here, we highlighted a deep 620 
reorganization of gene expression whenever E. coli is in the presence of other species.  621 

Our work illustrates for the first time the use and complementarity of RB-TnSeq and 622 
RNASeq for microbial interaction analysis. These techniques lead to consistent interpretations 623 
and each method compensated for the limitations of the other. RNASeq provides a 624 
comprehensive view of interactions by looking at the transcriptional response of E. coli to an 625 
interactive context. However, it fails to provide information on the actual requirement of a given 626 
gene or pathway for an interactions. RB-TnSeq identifies the interactions that have a strong 627 
impact on the E. coli growth phenotype including genes for which expression is constitutive in all 628 
conditions and won’t be highlighted with RNASeq analysis. On the other hand, gene 629 
redundancy and the potential presence of “common good” molecules in the library are expected 630 
to prevent identification of certain interactions by RB-TnSeq but not by RNASeq. This was 631 
illustrated by the absence of essentiality of the biosynthesis and secretion of enterobactin but 632 
the essentiality of enterobactin uptake system. It is very likely that the majority of the library 633 
synthesizes and secretes enterobactin and thus the enterobactin synthesis mutants can uptake 634 
this “common good” and survive. Interestingly, RNASeq analysis demonstrated upregulation of 635 
the enterobactin biosynthesis pathway, suggesting enterobactin synthesis is necessary in an 636 
interactive context. Similarly, differential expression analysis of the genes highlighted by RB-637 
TnSeq as essential in any condition allowed us to explore the presence of interactions 638 
associated with these core functions. For example, it highlighted that iron-uptake was amplified 639 
during interactions suggesting competition for that already limiting nutrient. 640 
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Together, interpretation of the functional analysis of RB-TnSeq and RNASeq results 641 
pointed to possible microbial interaction mechanisms in the different growth contexts. Addition 642 
of genetic requirements associated with metabolism and/or up-regulation of similar functions 643 
can be interpreted as presence of metabolic competition toward associated compounds. 644 
Conversely, alleviation of biosynthetic genes and/or downregulation of biosynthetic functions 645 
can point out cross-feeding of associated compounds. Finally, production of a specific stress by 646 
the partner can be deduced from addition of requirements associated with stress response 647 
and/or up-regulation of similar functions.  648 

Combining RB-TnSeq and RNASeq analysis, we identified potential interactions in 649 
pairwise and community conditions. We have observed competition for iron in most interactive 650 
conditions and in pairwise conditions, the partner appeared to produce possible toxic 651 
compounds. Analysis of available genomes of H. alvei (Tan, Yin, and Chan 2014), G. candidum 652 
(Polev et al. 2014) and P. camemberti (Cheeseman et al. 2014) in AntiSmash (Weber et al. 653 
2015) highlighted the ability of each species to produce extracellular metabolites with potential 654 
toxic properties including bacteriocins for H. alvei and diverse polyketides and terpenes for the 655 
fungi. Analysis of extracellular metabolites will be necessary to characterize the molecular 656 
signature of these stresses. Finally, we consistently observed possible amino acid cross feeding 657 
from fungal partners, either in pairwise or community growth. This is very likely due to the fungal 658 
capacities of secreting proteases and digesting the small peptides and proteins present in the 659 
environment  (Kastman et al. 2016; R. Boutrou, Aziza, and Amrane 2006; Rachel Boutrou, 660 
Kerriou, and Gassi 2006). The observation of cross-feeding strengthens the statement that 661 
cross-feeding events are widespread within communities (Goldford et al. 2017).  662 

In our bottom-up approach, RNASeq and RB-TnSeq consistently highlighted that only a 663 
fraction of pairwise interactions were conserved in the community. This highlights the existence 664 
of higher order interactions counteracting simple pairwise interactions (Billick and Case 1994). 665 
Higher order interactions could be compensatory pairwise interactions or upstream effects 666 
ending in pairwise interaction cancellation. Although community structure is argued to be 667 
predictable from pairwise interactions in specific cases, higher order interactions are believed to 668 
be responsible for the general lack of predictability (Billick and Case 1994; Friedman, Higgins, 669 
and Gore 2017; Momeni, Xie, and Shou 2016). Here, our work demonstrated the existence of 670 
these higher order interactions even within a very simple community.  671 

We generated data using both E. coli, a non-endogenous species, and P. psychrophila 672 
JB418, a cheese endogenous species. We identified similar functions in both species as 673 
important requirements to grow in the cheese environment. However, growth in interactive 674 
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contexts highlighted different interactions. We hypothesize that either E. coli and P. 675 
psychrophila do not similarly cope with the presence of a given partner or the partner species 676 
response depends on the probe-species as well as a combination of both scenarios. Altogether, 677 
this suggests important species-specific interaction patterns. However, our analysis was limited, 678 
especially for P. psychrophila, by genes which were poorly annotated or not characterized. 679 
Further investigation and characterization of these genes would improve interaction 680 
characterization and may highlight new microbial interactions pathways. 681 

This study represents a novel approach to investigating microbial interactions in 682 
communities, and revealed the intricacy, redundancy and specificity of the many interactions 683 
governing a simple microbial community. The ability of E. coli to act as a probe for molecular 684 
interactions, the robustness of RB-TnSeq, and its complementarity with RNASeq open new 685 
paths for investigating molecular interactions in more complex communities, independently of 686 
their genetic tractability, and can thus contribute to a better understanding of the complexity and 687 
diversity of interactions within microbiomes. 688 
 689 
 690 
MATERIAL AND METHODS 691 

 692 

Strains and media 693 
The following strains have been used to reconstruct the bloomy rind cheese community: H. alvei 694 
JB232 isolated previously from cheese (Wolfe et al. 2014) and two industrial cheese strains: G. 695 
candidum (Geotrichum candidum GEO13 LYO 2D, Danisco – CHOOZITTM, Copenhagen, 696 
Denmark) and P. camemberti (PC SAM 3 LYO 10D, Danisco - CHOOZITTM). The strain P. 697 
psychrophila JB418 was isolated from a sample of Robiola due latti (Italy) previously (Wolfe et 698 
al) and used for all the experiments involving Pseudomonas. All the E. coli strains used in this 699 
study shared the same genetic background of the initial strain E. coli K12 BW25113. The use of 700 
the different strains is described in Table 1. 701 
 702 
 703 
 704 
 705 

 706 
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Experiment E. coli strain(s) Ref 

RB-TnSeq E. coli Keio_ML9 library (Wetmore et al. 2015) 

Growth assays E. coli “JW0024” strain (undisrupted mutant) (Baba et al. 2006) 

Competition assays WT: Keio ME9062 
Mutants: (supplementary figure 2) 

(Baba et al. 2006) 

  707 
Table 1: E. coli strains used during the study 708 

  709 

Growths assays on 10% cheese curd agar, pH7 710 
All growth assays have been carried out in at least triplicates on 10% cheese curd agar, pH7 711 
(CCA) (10% freeze-dried Bayley Hazen Blue cheese curd (Jasper Hill Farm, VT), 3% NaCl, 712 
0.5% xanthan gum and 1.7% agar). The pH of the CCA was buffered from 5.5 to 7 using 10M 713 
NaOH. 714 

 715 

E. coli and P. psychrophila JB418 growth on CCA: 716 
Growth assays have been carried out for the E. coli “JW0024” strain (Baba et al., 2006) and P. 717 
psychrophila JB418. For each species, 7*107 cells were inoculated on the surface of a Petri dish 718 
containing 20mL of CCA (12.7*104cells/cm2) after an overnight pre-culture in liquid LB-719 
kanamycin (50µg/ml) at 37°C for E. coli or at room temperature (RT) for P. psychrophila JB418. 720 
Growth on CCA was then carried out for 3 days at RT. Plugs of 0.44cm2 were removed from the 721 
Petri dish at T= 0h, 6h, 12h, 24h, 36h, 48h, 72h, 120h and 240h for E. coli and T=0h, 12h, 24h, 722 
48h, 72h and 240h for P. psychrophila JB418. They were homogenized in 1 mL of PBS1X-723 
Tween0.05% and 3 dilutions were plated on LB-kanamycin (50µg/mL) for E. coli or LB for P. 724 
psychrophila. Plates were incubated for 24h at 37°C for E. coli and at RT for P. psychrophila 725 
JB418. After incubation, colony forming units (CFU) counting was used to estimate the number 726 
of bacterial cells on the cheese curd agar plates.  727 

 728 

E. coli growth in pairwise cultures: 729 
Pairwise cultures were carried out on 96 well plates containing 200µL of CCA per well. E. coli 730 
was co-inoculated with either H. alvei, G. candidum or P. camemberti at a ratio of 1:1 cells 731 
(1000 cells of E. coli and 1000 cells of the partner). Single growth of H. alvei, G. candidum and 732 
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P. camemberti were also measured by inoculating 2000 cells of each species on individual wells. 733 
At T=0h, 6h, 12h, 24h, 36h, 48h and 72h, a pellet of each condition was harvested, 734 
homogenized in 1 mL of PBS1X-Tween0.05% and 3 dilutions were plated on LB, LB-kanamycin 735 
(50µg/mL), LB-chloramphenicol (50µg/mL) and/or LB-kanamycin:cyclohexamide (50µg/mL and 736 
10µg/mL) to follow the growth of each species (see Table 2). Plates were then either incubated 737 
overnight at 37°C (LB, LB-kanamycin and LB-kanamycin:cyclohexamide plates) or for 2 days at 738 
RT (LB-chloramphenicol plates) before determination of CFUs. 739 

 740 

E. coli growth in the bloomy rind cheese community: 741 
Cultures were grown on 96 well plates containing 10% cheese curd agar at pH7. The four 742 
species (E. coli, H. alvei JB232, G. candidum and P. camemberti) have been co-inoculated at a 743 
ratio of 10:10:10:1. At T=0h, 6h, 12h, 24h, 36h, 48h and 72h, a pellet was harvested, 744 
homogenized in 1 mL of PBS1X-Tween0.05%, serially diluted and plated on LB-cyclohexamide 745 
(10µg/mL), LB-chloramphenicol (50µg/mL) and LB-kanamycin:cyclohexamide (50µg/mL and 746 
10µg/mL) (see Table 2) to follow the growth of each species. Plates were then either incubated 747 
overnight at 37°C (LB-cyclohexamide and LB-kanamycin:cyclohexamide plates) or for 2 days at 748 
RT (LB-chloramphenicol plates) before CFU counting. P. camemberti and G. candidum colonies 749 
are morphologically distinct and CFUs of each species could be counted from the same plate. 750 
 751 
 752 
 753 
 754 
 755 
 756 
 757 
 758 
 759 
 760 
 761 
 762 
 763 
 764 
 765 
 766 
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 767 

 768 

Growth assay Plates used 

E. coli + H. alvei 

JB232 
LB (E. coli + H. alvei JB232 CFU’s) LB-kanamycin (E. coli CFU’s) 

E. coli + G. 

candidum 
LB-kanamycin:cyclohexamide (E. coli CFU’s) LB-chloramphenicol (G. candidum 

CFU’s) 

E. coli + P. 

camemberti 
LB-kanamycin:cyclohexamide (E. coli CFU’s) LB-chloramphenicol (P. camemberti 

CFU’s) 

H. alvei LB 

G. candidum LB-chloramphenicol 

P. camemberti LB-chloramphenocol 

E. coli + 

Community 
LB-cyclohexamide (E. coli and H. alvei JB232 CFU’s), LB-kanamycin:cyclohexamide 

(E. coli CFU’s), LB-chloramphenicol (G. candidum and P. camemberti CFU’s) 

  769 
Table 2: Organization of CFU’s quantification for growth assays 770 

 771 

P. psychrophila JB418 genome sequencing, assembly and annotation 772 
P. psychrophila JB418 gDNA was sequenced using Pacific Biosciences (PacBio), Oxford 773 
Nanopore Minion (Oxford Nanopore, Oxford, UK), and Illumina sequencing. PacBio library 774 
preparation and sequencing were performed by the IGM Genomics Center at the University of 775 
California, San Diego. Nanopore library preparation and sequencing were done at the University 776 
of California, Santa Barbara as part of the KITP Quantitative Biology summer course. Illumina 777 
library preparation and sequencing were done at the Harvard University Center for Systems 778 
Biology. Canu was used to assemble the PacBio and nanopore reads (Koren et al. 2017).  Pilon 779 
was then used to polish the assembly using Illumina genomic sequencing data (Walker et al. 780 
2014). The assembled genome was annotated using the Integrated Microbial Genomes & 781 
Microbiomes (IMG/M) system (Markowitz et al. 2012). The P. psychrophila JB418 genome is 782 
6,072,477 nucleotides long. It contains a single circular chromosome of 5.85 Mb and 4 plasmids 783 
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of 172.2 Kb, 37.7Kb, 5.8Kb and 2.4Kb. 6060 genes including 5788 open reading frames were 784 
identified. 785 

Transposon mutant library construction in P. psychrophila JB418 786 

P. psychrophila JB418 was mutagenized by conjugation with E. coli strain APA766 (donor 787 
WM3064 which carries the pKMW7 Tn5 vector library) (Wetmore et al. 2015). This donor strain 788 
is auxotrophic for diaminopimelic acid (DAP). The full collection of the APA766 donor strain 789 
(1mL) was grown up at 37°C overnight at 200 rpm. Four 25mL cultures (each started with 790 
250µL of APA766 stock) were grown in LB-kanamycin:DAP (50µg/mL kanamycin and 60µg/mL 791 
DAP).  A 20mL culture was started from an individual P. psychrophila JB418 colony in LB broth 792 
and grown at RT overnight at 200 rpm. E. coli donor cells were washed twice with LB and 793 
resuspended in 25mL LB. Donor and recipient cells were then mixed at a 1:1 cell ratio based on 794 
OD600 measurements, pelleted, and resuspended in 100µL. This was done separately for each 795 
of the four E. coli cultures. 40µL were plated on nitrocellulose filters on LB plates with 60µg/mL 796 
DAP. Two filters were used for each of the four conjugation mixtures (8 total conjugations). The 797 
conjugations took place for 6 hours at RT. After 6 hours, the filters were each resuspended in 798 
2mL of LB broth and then plated on LB:kanamycin (50µg/mL)  for selection of transconjugants. 799 
20 plates were plated of a 1:2 dilution for each conjugation (160 plates total). Transconjugants 800 
were pooled and harvested after three days of growth on selection plates. The pooled mixture 801 
was diluted back to 0.25 in 100mL of LB:kanamycin (50µg/mL). The culture was then grown at 802 
RT to an OD600 of 1.3 before glycerol was added to 10% final volume and 1mL aliquots were 803 
made and stored at -80°C for future use. 804 

 805 

TnSeq sequencing library preparation for P. psychrophila JB418 and TnSeq data analysis 806 
Library preparation was performed as in Wetmore, et al. 2015 with slight modifications 807 
(Wetmore et al. 2015).  808 

 809 

DNA extraction: DNA was extracted from the P. psychrophila JB418 RB-TnSeq library by 810 
phenol:chloroform extraction. Briefly, the cell pellet was vortexed at maximum speed for 3 811 
minutes in the presence of 500µL buffer B (200mM NaCl,20mM EDTA sterilized by filtration), 812 
210µL of 20% SDS, a 1:1 mixture of 425-600µM and 150-212µm acid-washed beads, and 813 
500µL of phenol:chloroform, pH 8. The sample was then centrifuged for 3 minutes at 4°C at 814 
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8000 rpm prior to removing the aqueous phase to a new tube. 1/10 of sample aqueous phase 815 
volume of 3M sodium acetate was then added along with 1 aqueous phase volume of ice cold 816 
isopropanol. The sample was then placed for ten minutes at -80°C before centrifugation for five 817 
minutes at 4°C at 13000 rpm. The supernatant was discarded and 750µL of ice cold 70% 818 
ethanol was added before another centrifugation for five minutes at 4°C at 13000 rpm. The 819 
supernatant was discarded and the DNA pellet was allowed to air dry before resuspension in 820 
50µL of nuclease-free water. DNA was quantified with Qubit double-stranded DNA high-821 
sensitivity assay kit (Invitrogen, Carlsbad, CA).   822 

 823 

DNA fragmentation and size selection: 2µg of DNA was sheared with a Covaris E220 focused-824 
ultrasonicator with the following settings: 10% duty cycle, intensity 5, 200 cycles per burst, 150 825 
seconds. DNA was split into 2 aliquots (1µg each) and samples were size-selected for 826 
fragments of 300 bp using 0.85X Agencourt AMPure XP beads (Invitrogen) with a 1.4x ratio 827 
following the manufacturer’s instructions.  828 

 829 

Library preparation: The entire 20µL volume of these two size-selected samples were then each 830 
used as input into the NEBNext End Prep step 1.1 of the NEBNext Ultra DNA Library Prep Kit 831 
for Illumina (New England Biolabs, Ipswich, MA) protocol. The remainder of the manufacturer’s 832 
protocol was then followed with the exception that for adapter ligation, we used 0.8µL of 15µM 833 
double-stranded Y adapters.  Adapters were prepared by first combining 5µL of 100µM 834 
Mod2_TS_Univ and 5µL of 100µM Mod2_TruSeq. This mixture was then incubated in a 835 
thermocycler for 30 min at 37°C, followed by ramping at 0.5°C per second to 97.5°C before a 836 
hold at 97.5°C for 155 seconds. The temperature was then decreased by 0.1°C per five 837 
seconds for 775 cycles, followed by a hold at 4°C. Annealed adapters were diluted to 15µM in 838 
TE and stored at -80°C before use.  AMPure XP ratios for a 200bp insert size were used as 839 
recommended in Table 1.1 of the NEBNext Ultra DNA Library Prep Kit for Illumina manual.   840 
To enrich for transposon-insertion sites, PCR amplification was done on the adapter-ligated 841 
DNA with NEBNext Q5 Hot Start HiFi Master Mix and Nspacer_barseq_pHIMAR and 842 
P7_MOD_TS_index3 primers (Wetmore et al. 2015) with the following program: 98°C 30 sec, 843 
98°C 10 sec, 65°C 75 sec, repeat steps 2-3 24X, 65°C 5 min, and then maintained at 844 
4°C.  Following PCR and clean-up of step 1.5 of the NEBNext Ultra DNA Library Prep Kit for 845 
Illumina manual, the two preps were pooled and the concentration was quantified with Qubit 846 
double-stranded DNA high-sensitivity assay kit (Invitrogen). A second size selection clean-up 847 
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was performed by repeating step 1.5 of the NEBNext Ultra DNA Library Prep Kit for Illumina 848 
manual.  849 

 850 

Library sequencing: The sample was analyzed on an Agilent TapeStation and the average size 851 
was 380bp and the concentration was 57pg/µL. This sample was then submitted for sequencing 852 
on a HiSeq 2500 Rapid Run (150bp fragments, paired-end) at the UCSD IGM Genomics 853 
Center: 854 

 855 

Library characterization: TnSeq reads were analyzed with the perl script MapTnSeq.pl from 856 
(Wetmore et al. 2015). That script maps each read to the P. psychrophila genome. The script 857 

DesignRandomPool.pl (Wetmore et al. 2015) was used to generate the file containing the list of 858 

barcodes that consistently map to a unique location as well as their location. 859 

 860 

RB-TnSeq experiments for E. coli and P. psychrophila JB418 861 
The E. coli barcoded transposon library Keio_ML9 and the P. psychrophila strain JB418 library 862 
were used for fitness assays on CCA during growth alone, growth in pairwise condition with 863 
each bloomy rind cheese community member and during growth with the full community. 864 

 865 

Library pre-culture: Each library has to be initially amplified before use. One aliquot of each 866 
library was thawed and inoculated into 25mL of liquid LB-kanamycin (50µg/mL). Once the 867 
culture reached mid-log phase (OD=0.6-0.8), 5mL of that pre-culture was pelleted and stored as 868 
the T0 reference for the fitness analysis. The remaining cells were used to inoculate the 869 
different fitness assay conditions. 870 

 871 

Inoculations: For each fitness assay, 7*106 cells of the library pre-culture were inoculated on 872 
10% cheese curd agar, pH 7 after having been washed in PBS1x-Tween0.05%. For each 873 
pairwise assay, 7*106 cells of the partner were co-inoculated with the library. For the community 874 
assay, 7*106 cells of H. lavei JB232 and G. candidum as well as 7*105 cells of P. camemberti 875 
were co-inoculated with the library. For each condition, assays were performed in triplicates. 876 

 877 

Harvest for gene fitness calculation: Harvests were performed at T= 24h, 48h and 72h. 878 
Sampling was done by flooding a plate with 1.5mL of PBS1X-Tween0.05% and gently scraping 879 
the cells off. The liquid was then transferred into a 1.5mL microfuge tube and cells were pelleted 880 
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by centrifugation. After removing the supernatant, the cells were washed in 1 mL of RNA-protect 881 
solution (Qiagen, Hilden, Germany), pelleted and stored at -80°C before further experiments. 882 

 883 

gDNA and mRNA extraction: gDNA and mRNA were simultaneously extracted by a phenol-884 
chloroform extraction (pH 8) from samples of the competitive assays. For each extraction: 885 
125µL of 425-600µm acid-washed beads and 125µL of 150-212µm acid-washed beads were 886 
poured in a screw-caped 2mL tube. 500µL of 2X buffer B (200mM NaCl, 20mM EDTA) and 887 
210µL of SDS 20% were added to the tube as well as the pellet and 500µL of 888 
Phenol:Chloroform (pH 8). Cells were lysed by vortexing the tubes for 2 minutes at maximum 889 
speed. Aqueous and organic phases were separated by centrifugation at 4°C, 8KRPM for 3 890 
minutes and 450µL of the aqueous phase (upper phase) was recovered in a 1.5mL eppendorf 891 
tube. 45µL of Sodium Acetate 3M and 450µL of ice cold isopropanol were added before 892 
incubating the tubes at -80°C for 10 minutes. The tubes were then centrifuged for 5 minutes at 893 
4°C at 13KRPM. The pellet was then washed in 750µL of 70% ice cold ethanol and re-894 
suspended in 50µL of DNAse/RNAse free water. Each sample was split into 2 times 25µL and 895 
stored at -80°C until further analysis. 896 

 897 

Library preparation and sequencing: After gDNA extraction, the 98°C BarSeq PCR as described 898 
and suggested in Wetmore et al., 2015 was used to amplify only the barcoded region of the 899 
transposons. Briefly, PCR was performed in a final volume of 50µL: 25µL of Q5 polymerase 900 
master mix (New England Biolab), 10µL of GC enhancer buffer (New England Biolab), 2.5µL of 901 
the common reverse primer (BarSeq_P1 – Wetmore et al., 2015) at 10µM, 2.5µL of a forward 902 
primer from the 96 forwards primers (BarSeq_P2_ITXXX) at 10µM and 50ng to 2µg of gDNA. 903 
For each triplicate, the PCR was performed with the same forward primer so all replicates of a 904 
condition could be pooled and have the same sequencing multiplexing index. So, for E. coli 905 
analysis, we performed 46 PCRs (1 T0 samples and 45 harvest samples) involving 16 different 906 
multiplexing indexes. For P. psychrophila JB418 analysis, we performed 46 PCR (1 T0 and 45 907 
harvest samples) involving 16 other multiplexing indexes. We used the following PCR program: 908 
(i) 98°C - 4 minutes, (ii) 30 cycles of: 98°C – 30 seconds; 55°C – 30 seconds; 72°C – 30 909 
seconds, (iii) 72°C – 5 minutes. After the PCR, 10µL of each of the 92 PCR products were 910 
pooled together to create the BarSeq library(920µL) and 200µL of the pooled library were 911 
purified using the MinElute purification kit (Qiagen). The final elution of the BarSeq library was 912 
performed in 30µL in DNAse and RNAse free water. 913 
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The BarSeq library was then quantified using Qubit® dsDNA HS assay kit (Invitrogen) and 914 
sequenced on HiSeq4000 (50bp, single-end reads), by the IGM Genomics Center at the 915 
University of California, San Diego. 916 

 917 

Data processing and fitness analysis: BarSeq data processing and gene fitness calculation was 918 
performed separately for the E. coli and the P. psychrophila JB418 experiments. For each 919 
library, BarSeq reads were processed using the custom perl script BarSeqTest.pl (Wetmore et 920 
al. 2015). This script combines two perl scripts essential for the BarSeq data processing. After 921 
the raw reads have been de-multiplexed into each conditions, the computational pipeline: (i) 922 
identifies each barcode and the associated number of reads, (ii) calculates the strain fitness for 923 
each insertion mutant as the log2 ratio of counts in the condition and in the T0 sample and (iii) 924 
calculates each “gene fitness” as the average of strain fitness of all the insertion mutants 925 
associated with that gene as well as calculation of a fitness t-score. The following rules were 926 
applied during the fitness calculations: (i) only insertion mutants with barcode insertion within 927 
the 10%-90% fraction of the genes were considered, (ii) barcodes with less than 3 reads in the 928 
T0 were ignored and (iii) genes with less than 30 counts in T0 were ignored. For each library, 929 
the pipeline uses a table where each barcode is mapped to a location in the genome. The Arkin 930 
lab (Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, 931 
California, USA) kindly provided the TNSeq table for the E. coli library and we generated a 932 
TNSeq table for P. psychrophila strain JB418. 933 

We calculated E. coli and P. psychrophila JB418 genes fitnesses at T=24h, 48h and 934 
72h in the following conditions: growth alone, growth with H. alvei, growth with G. candidum, 935 
growth with P. camemberti and growth with the community. 936 

 937 
Keio collection mutant competitive assays 938 
We used mutants from the Keio collection to validate the genes identified by RB-TNseq as 939 
having a significant fitness in E. coli (see list in supplementary data S3). Each mutant was 940 
grown in a competition assay with the wild type (Keio ME9062 –(Baba et al. 2006)). 1000 cells 941 
of a specific mutant were inoculated with 1000 cells of the wild type on the surface of the same 942 
cheese plug in a 96 well plate containing 10% cheese curd agar, pH7. The number of the 943 
mutant cells and the WT cells were calculated at T0 and day 1 after harvesting, homogenizing 944 
the cheese plug, plating serial dilutions and counting CFUs. Experimental fitness of each mutant 945 
was calculated as the log2 of the mutant abundance (mutant CFUs divided by total CFUs (WT + 946 
mutant)) after 24 hours and its abundance at T0. 947 



 33 

 948 

RNASeq and differential expression analysis 949 
The RNASeq analysis was performed for the E. coli experiments only. 950 

 951 

RNASeq libraries preparations: Libraries were prepared for duplicates of the following 952 
conditions: E. coli growth alone, with H. alvei, with G. candidum, with P. camemberti and with 953 
the community for T= 24h, 48h and 72h. RNA samples from the E. coli BarSeq experiment were 954 
used to produce the RNASeq library.  955 
Each library was prepared as follows. First, RNA samples were treated with DNAse using the 956 
“Rigorous DNAse treatment” for the Turbi DNA-free kit (AMBIO – Life Technologies, USA) and 957 
RNA concentration was measured by nucleic acid quantification in Epoch Microplate 958 
Spectrophotometer (BioTek, Winooski, VT). Then, transfer RNAs and 5S RNA were removed 959 
using the MEGAclear Kit Purification for Large Scale Transcription Reactions (AMBION, Life 960 
Technologies, Waltham, MA) following manufacturer instructions. Absence of tRNA and 5S 961 
RNA was verified by running 100ng of RNA on a 1.5% agarose gel and RNA concentration was 962 
quantified by nucleic acid quantification in Epoch Microplate Spectrophotometer. Also, presence 963 
of trace amounts of genomic DNA was assessed by PCR using universal bacterial 16S PCR 964 
primers (Forward primer: AGAGTTTGATCCTGGCTCAG, Reverse Primer: 965 
GGTTACCTTGTTACGACTT). Final volume of the PCR was 20µL: 10µL of Q5 polymerase 966 
master mix (New England Biolab), 0.5µL of forward primer 10uM, 0.5µL of reverse primer 10uM 967 
and 5µL of non-diluted RNA. PCR products were run on a 1.7% agarose gel and when genomic 968 
DNA was amplified, another DNAse treatment was performed as well as a new verification of 969 
absence of genomic DNA. Ribomosomal RNA depletion was performed using the Ribo-Zero 970 
rRNA removal kit by Illumina (Illumina, San Diego, CA). Ribosomoal RNA depletion was 971 
performed according to manufacturer instructions, we used 1µL of RiboGuard RNAse Inhibitor 972 
in each sample as suggested, followed instructions for 1-2.5ug of RNA input and we used a 2:1 973 
mix of bacterial Ribo-Zero Removal solution and yeast Ribo-Zero Removal solution. rRNA 974 
depleted samples were recovered in 10µL after ethanol precipitation. Concentrations after 975 
ribodepletion were measured using Qubit® RNA HS Assay Kits (Invitrogen). The RNASeq 976 
library was produced using the NEBNext®UltraTM RNA Library Prep Kit for Illumina® for 977 
purified mRNA or ribosome depleted RNA. We prepared a library with a fragment size of 300 978 
nucleotides and used the 10uM NEBNext Multiplex Oligos for Illumina (Set 1, NEB #E7335) lot 979 
0091412 and the NEBNext multiplex Oligos for Illumina (Set 2, NEB #E7500) lot 0071412. We 980 
did the PCR product purification with 0.8X Agencourt AMPure XP Beads instead of 0.9X. Library 981 
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samples were quantified with Qubit® DNA HS Assay Kits before the quality and fragment size 982 
were validated by TapeStation (HiSensD1000 ScreenTape). Library samples were pooled at a 983 
concentration of 15nM each and were sequenced on HISeq4000 (50bp, single-end). 984 

 985 

Differential expression analysis: RNASeq reads were mapped to the concatenated genome of 986 
Escherichia coli K12 BW25113 (Grenier et al. 2014) and H. alvei using Geneious version R9 987 
9.1.3 (http://www.geneious.com, (Kearse et al. 2012))). Only the reads that uniquely mapped to 988 
a single location on the E. coli genome section were conserved. E. coli and H. alvei genome are 989 
divergent enough so 50 nucleotides reads potentially originating from H. alvei mRNA would not 990 
map to E. coli genome and few reads from E. coli would map on H. alvei genome. 991 
E. coli expression analysis was performed using the R packages: Rsamtool (R package version 992 
1.30.0), GenomeInfoDb (R package version 1.14.0.), GenomicFeatures (Lawrence et al. 2013), 993 
GenomicAlignments , GenomicRanges (Lawrence et al. 2013) and DESeq2 (Love et al. 2015). 994 
We followed the workflow described by Love et al. and performed the differential expression 995 
analysis using the package DESeq2. Differentially expressed genes between two conditions 996 
were selected with an adjusted p-value lower than 1% and an absolute log of fold change equal 997 
or greater than 1. 998 

 999 

KEGG pathway enrichment analysis 1000 
Functional enrichment analysis was performed using the R package clusterProfiler (Yu et al. 1001 
2012). We used the latest version of the package org.EcK12.eg.db for E. coli annotations (R 1002 
package version 3.5.0.). We used Benjamini-Hochberg for multiple comparison correction and 1003 
only the KEGG pathways enriched with an adjusted p-value lower than 5% were considered. 1004 
The E. coli database was used with the simplify function to avoid redundant GO Term and only 1005 
display the GO Term with the highest significance within a cluster. 1006 

 1007 
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 1181 
Supplementary figure 1: Quantification of free amino-acids in CCA. Free amino acid characterization and 1182 
quantification have been carried out by the Proteomics & Mass Spectrometry Facility of the Donald Danforth Plant 1183 
Science Center and each analysis has been performed in triplicate. Samples were prepared as according to the 1184 
Proteomics & Mass Spectrometry Facility of the Donald Danforth Plant Science Center instructions. For free amino 1185 
acid analysis 150 mg CCA were frozen in liquid nitrogen and grinded in the presence of 600 μL of 1186 
water:chloroform:methanol (3:5:12 v/v). Tubes were then centrifugated at full speed for two minutes and supernatant 1187 
was recovered in a new 2mL eppendorf tube. A second extraction with 600uL of water:chloroform:methanol was 1188 
performed followed by a two minute centrifugation at full speed. Supernatant was then recovered and combined with 1189 
the previous supernatant in a 2mL eppendorf tube. Then 300uL of chloroform and 450uL of water were added before 1190 
centrifugation at full speed for two minutes. The upper phase was recovered and transferred to a new tube. Samples 1191 
were dried in a speedvac overnight and stored at -20°C. The total concentration of free amino acids in CCA is 75.3 1192 
nmol/mL. Analysis of total amino acids was also performed by the Proteomics & Mass Spectrometry Facility of the 1193 
Donald Danforth Plant Science Center. It highlights that free aminos are a very small fraction of total amino acid 1194 
whose concentration is 16.5 ±2,97 μmol/mL, six times less than the LB concentration measured by Sezonov et al., 1195 
2012. 1196 
Ala: alanine, Gly: glycine, Ile: isoleucine, Leu: leucine, Pro: proline, Val: valine, Phe: phenylalanine, Trp: tryptophame, 1197 
Tyr: tyrosine, Asp: aspartate, Glu: glutamate, Arg: arginine, His: histidine, Lys: lysine, Ser: serine, Thr: threonine, Cys: 1198 
cysteine, Met: methionine, Asn: asparagine, Gln: glutamine. 1199 

 1200 

  1201 

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

Al
a

Gl
y Ile Le
u

Pr
o

Va
l

Ph
e

Tr
p

Ty
r

As
p

Gl
u

Ar
g

Hi
s

Ly
s

Se
r

Th
r

Cy
s

M
et

As
n

Gl
n

nm
ol

/p
la

te



 40 

Keio 
strain 

Gene 
name 

RB-TNSeq 
fitness 

 
Experimental 

Fitness 
value 

SEM of 
Experimental 
Fitness value 

z-score 

JW3932 argH Negative -0.61 0.02 24.60 
JW0391 brnQ Negative -0.45 0.37 1.21 
JW3789 corA Negative -4.37 0.30 14.58 
JW2407 cysK Negative -1.72 0.91 1.90 
JW2974 exbB Negative -1.48 0.05 27.25 
JW2973 exbD Negative -3.25 0.08 43.16 
JW5086 fepA Negative -1.97 0.46 4.28 
JW0584 fepB Negative -1.60 0.13 12.42 
JW0580 fepC Negative -3.11 0.74 4.21 
JW0582 fepD Negative -3.13 0.64 4.85 
JW0581 fepG Negative -2.07 1.02 2.03 
JW0576 fes Negative -1.98 0.08 24.75 
JW0742 galE Negative -3.69 0.41 8.89 
JW2464 gcvR Negative -3.56 0.42 8.54 
JW3377 nfuA Negative -4.09 0.29 14.07 
JW0018 nhaA Negative -1.82 0.40 4.56 
JW3627 recG Negative -0.63 0.28 2.23 
JW2755 relA Negative -2.49 0.19 13.39 
JW3624 rpoZ Negative -1.17 0.26 4.43 
JW2880 serA Negative -0.24 0.30 0.79 
JW4351 serB Negative -1.04 0.18 5.81 
JW0890 serC Negative -1.01 0.15 6.85 
JW5576 trkH Negative -0.57 0.10 5.49 
JW5856 trxA Negative -0.75 0.54 1.39 
JW3434 zntA Negative -0.64 0.19 3.37 

 1202 

 1203 
 1204 
 1205 
Supplementary figure 2: Competitive assays of 35 mutants of the Keio collection (Baba et al., 2006). 1206 
Competition assays between single knock outs and the wild-type strain have been carried out for 35 strains 1207 
associated with genes identified as essential for E. coli growth using RB-TnSeq (Significant fitness lower than -1 after 1208 
1 day of growth). * highlights fitness values different from 0 with a confidence higher than 95% 1209 

 1210 

  1211 

-5.00

-4.50

-4.00

-3.50

-3.00

-2.50

-2.00

-1.50

-1.00

-0.50

0.00
arg

H
brn

Q
co

rA
cy

sK
ex

bB
ex

bD
fep

A
fep

B
fep

C
fep

D
fep

G
fes ga

lE
gc

vR
nfu

A
nh

aA
rec

G
rel

A
rpo

Z
se

rA
se

rB
se

rC
trk

H
trx

A
zn

tA

M
ut

an
t e

xp
er

im
en

ta
l f

itn
es

s 
va

lu
e

*

*

*

*

*

* *

*

*

* *

*

*

*

*
* *

* *

*

*



 41 

 1212 
Supplementary figure 3: E. coli and community member growth curves alone, in pairwise conditions or 1213 
during community growth. Each graph represents the growth over time of E. coli, H. alvei, G. candidum or P. 1214 
camameberti alone, in pairwise growth or with the community. 1215 
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 1218 
Supplementary figure 4: P. psychrophila JB418 growth curve on CCA 1219 
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 1221 

 1222 
 1223 
Supplementary figure 5: Functional analysis of newly essential genes and relieved genes for P. psychrophila 1224 
JB418 growth in pairwise condition versus alone. 1225 
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