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Abstract

The use of social contact rates is widespread in infectious disease modeling since it has been

shown that they are key driving forces of important epidemiological parameters. Quantifi-

cation of contact patterns is crucial to parametrize dynamic transmission models and to

provide insights on the (basic) reproduction number. Information on social interactions,

can (for instance) be obtained from population-based contact surveys, such as the European

Commission project POLYMOD. Estimation of age-specific contact rates from these studies

is often done using a piecewise constant approach or bivariate smoothing techniques. For

the latter, typically, smoothing is done in the dimensions of the respondent’s and contact’s
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age. We propose a new flexible strategy based on a smoothing constrained approach - taking

into account the reciprocal nature of contacts - where the contact rates are assumed smooth

from a cohort perspective as well as from the age distribution of contacts. This is achieved

by smoothing over the diagonal components (including all subdiagonals) of the social con-

tact matrix. This approach is supported by the fact that people age with time and thus

motivates smoothly varying contact rates from a cohort angle. Two approaches that allow

for smoothing of social contact data over cohorts are proposed namely, (1) reordering of the

diagonal components of the social contact matrix; and (2) reordering of the penalty matrix

associated with the diagonal components. Parameter estimation is done in the likelihood

framework by using constrained penalized iterative reweighted least squares (C-PIRLS),

under Poisson and negative Binomial distributional assumptions for the observed contacts.

A simulation study underlines the benefits of cohort-based smoothing based on two scalar

measures of performance. Finally, the proposed methods are illustrated on the Belgian

POLYMOD data of 2006. Code to reproduce the results of the article can be downloaded

on this Github repository https://github.com/oswaldogressani/Cohort_smoothing.

Keywords: Penalized iterative reweighted least squares, Penalized likelihood, Constrained

smoothing, Social contact matrix.

1 Introduction

Understanding the spread of infectious diseases in an epidemic context is a challenging

task for mathematical modelers. It is especially made difficult by the complexities and

intricacies of demography dynamics and rich social contact networks. Social contact mix-

ing patterns play a key role in assessing disease transmission and are known to be crucial

determinants of important epidemiological parameters such as the basic reproduction num-

ber and the force of infection (see e.g., Vynnycky and White, 2010; Hens et al., 2009).

One approach to account for mixing patterns is by the use of the so-called “Who Acquires

Infection From Whom” (WAIFW) matrix and the use of serological data to estimate the
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WAIFW parameters (Anderson and May, 1991; Greenhalgh and Dietz, 1994; Farrington

et al., 2001; Van Effelterre et al., 2009). Another approach proposed by Farrington and

Whitaker (2005) is to model contact rates as a continuous surface and estimate parameters

from serologic survey data. The main limitations of both approaches is that they rely on

structural assumptions on the WAIFW matrix and on an arbitrary choice of the parametric

model used for the continuous contact surface. Alternatively, over the last two decades or

so, several studies have reported on ways of collecting data on social mixing behaviour rele-

vant to the spread of close contact infections directly from individuals through self-reported

number of contacts (Wallinga et al., 2006; Beutels et al., 2006; Edmunds et al., 1997, 2006;

Mikolajczyk et al., 2007). The POLYMOD initiative can arguably be counted among the

most important studies in infectious disease epidemiology in Europe, providing a large and

representative popoulation based survey on social contacts (Mossong et al., 2008). The es-

timation of smooth age-specific contact rates from the POLYMOD project data is typically

performed by applying a negative Binomial model on the aggregated number of contacts.

To ensure enough flexibility, a bivariate frequentist smoothing method is implemented by

using a tensor product spline as a function of the respondent’s and contact’s ages as a

smooth interaction term (Mossong et al., 2008; Hens et al., 2009; Goeyvaerts et al., 2010).

From a Bayesian perspective, van de Kassteele et al., 2017 estimate social contact rates by

means of a Gaussian Markov Random Field (GMRF) and use Integrated Nested Laplace

Approximations (INLA) Rue et al. (2009) as the main tool for inference.

We propose a new smoothing constrained approach, where contact rates are assumed to

be smooth both from a cohort perspective and from the age distribution of contacts. This

means that smoothing in the direction of the age of contacts will remain. However, smooth-

ing over the dimension of the age of respondents will be replaced by smoothing contact rates

from a cohort perspective by focusing on the diagonal compontents (including all subdiag-

onals) of the social contact matrix. Under the likelihood framework and assuming Poisson

or negative Binomial models for the aggregated number of contacts, diagonal smoothing

of contact matrices is achieved through two alternative approaches: (1) reordering of the
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diagonal components yielding a rectangular grid; and (2) reordering of the penalty matrix

to translate a penalization scheme over the diagonal components. The first approach builds

further upon work published by two of the co-authors in a proceedings paper (reference not

provided in reviewing process).

The article is organized as follows. Section 2 aims at presenting three competing ap-

proaches to smoothly estimate social contact rates. Section 3 investigates the statistical

performance of the proposed approaches through a numerical study and Section 4 illus-

trates the methodology on the Belgian POLYMOD data. Finally, Section 5 concludes with

a discussion and prospects for future research.

2 Smoothing social contact data

In this section, we present three competing smoothing constrained approaches (SCAs) to

infer social contact rates. First, we describe the classic approach where smoothing is per-

formed in the dimensions of the respondent’s and contact’s ages, thus ignoring the cohort

effect. The latter baseline model will be referred to M0. Second, we present the new com-

peting models, namely the SCA where contact rates are assumed smooth from a cohort

perspective. Two approaches are investigated both in terms of performance and com-

putational speed, namely model M1, where a reordering of the diagonal components is

considered to reproduce a rectangular contact matrix; and model M2, where a reordering

of the components of the penalty matrix yields a penalization scheme targeting the diagonal

components of the social contact matrix.

2.1 Absence of smoothing over cohorts

Let Y = (yij) be a square (m × m) matrix where the ijth entry is the total number

of contacts made by the respondents of age i − 1 with individuals of age j − 1, with

indices i = 1, . . . ,m and j = 1, . . . ,m. This information can be extracted from the self-

reported contact diaries of the participants and in our specific case m = 77 for the Belgian

POLYMOD data. Let y be the m2 × 1 vector obtained by arranging the matrix Y by row
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order into a vector. Furthermore, let the m× 1 vector r = (ri) contain the total number of

respondents of age i− 1. Define the m×m matrix E = r1m, where 1m is a 1×m vector of

ones, and define e as the m2 × 1 vector obtained by arranging the matrix E by row order

into a vector. Let the m × 1 vector p = (pi) denote the population size of individuals of

age i − 1 and define the m × m matrix P = p1m. The supplementary materials provide

examples of how to construct these vectors and matrices for the specific case m = 4. The

expected number of contacts made by participants of age i − 1 with contacts of age j − 1

is denoted by E(yij) = µij = riγij, where γij is the actual contact rate of individuals of age

i − 1 with contacts of age j − 1. In other words, γij is the average number of contacts an

individual of age i − 1 makes with an individual of age j − 1. Define the so-called social

contact matrix Γ as the m ×m matrix with elements γij (see Figure 1 left panel) and let

γ be the m2 × 1 vector obtained by arranging the matrix Γ by row order into a vector.
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Figure 1: Schematic representation of the original data structure of Γ over ages of respon-
dents and ages of contacts (left panel) and the restructured matrix Γ̆ over cohorts of the
respondents and age differences of the contacted persons (right panel). Cells with nuisance
parameters in Γ̆ are depicted with gray squares.

The expected number of contacts can also be written as E(y) = µ = e⊙γ, where ⊙ denotes

component-wise multiplication (also known as the Hadamard product). The interest lies in

estimating the unknown contact parameters γij from data y in a smooth way, such that the
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important signal in the mixing patterns is captured. For this purpose, we assume that the

observed contacts (yij) are realizations from a Poisson distribution, i.e. y ∼ Poiss(µ). For

modeling purposes, a log-link function is specified, namely log(γ) = η, so that log(µ) =

log(e) + log(γ) = log(e) + η.

Let H be the m ×m matrix with ijth element ηij. Interest is in the estimation of the

m2 unknown parameters η. It can be readily seen that the maximum likelihood estimates

are given by η̂ = log(y/e), and thus γ̂ = y/e, in case the parameters can be estimated

freely. However, these estimates do not yield a smooth contact rate surface and hence are

only of interest for exploratory purposes. We prefer to work with a modeling approach that

yields social contact rates that are smooth and reciprocal. Reciprocity of contacts in this

context means that the total number of contacts on the population level from age i to age

j must equal the total number of contacts from age j to age i. The latter reciprocal nature

can be expressed mathematically as γijpi = γjipj for all i = 1, . . . ,m and j = 1, . . . ,m and

can be written as the difference log(γij)− log(γji) = log(pj)− log(pi) and thus:

ηij − ηji = log(pj)− log(pi). (1)

In matrix form:

Lη = ν, (2)

where L is a m(m−1)
2

×m2 allocation matrix with entries +1 and −1 to suit the left-hand

side of (1) and vector ν is given by:

νT =
(
log (p2)− log (p1), log (p3)− log (p1), . . . , log (pn)− log (p1),

log (p3)− log (p2), log (p4)− log (p2), . . . , log (pn)− log (p2),

, . . . ,

log(pn)− log(pm−1)
)
.

Estimation of the smoothed parameters η that satisfy the reciprocal constraints is per-
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formed through constrained penalized iterative reweighted least squares (C-PIRLS) (Nelder

and Wedderburn, 1972; McCullagh and Nelder, 1989; Eilers and Marx, 1996; Wood, 2006).

Given current estimates η̂[k] and µ̂[k] at iteration k, parameter estimates η̂[k+1] at itera-

tion k + 1 are obtained by solving the set of linear equations:

 W[k] +P LT

L 0


 η̂[k+1]

ζ [k+1]

 =

 W[k]z[k]

ν

 . (3)

The parameter estimates γ̂ [k+1] are obtained by exponentiation γ̂ [k+1] = exp
(
η̂[k+1]

)
.

In (3), ζ [k+1] is a m(m−1)
2

× 1 vector of Lagrange multipliers, W[k] is a m2 × m2 diago-

nal matrix with entries W
[k]
ll = µ

[k]
l = el exp

(
η
[k]
l

)
and z[k] is a m2×1 vector of the so-called

pseudodata given by:

z
[k]
l = η

[k]
l +

(
yl

µ
[k]
l

− 1

)
. (4)

To enforce smoothness over two dimensions, the penalty term P in (3) is a m2×m2 matrix

given by (see Marx and Eilers, 2005):

P = λ1Im ⊗ (DT
hDh) + λ2(D

T
vDv)⊗ Im, (5)

where ⊗ denotes the Kronecker product and λ1 and λ2 are smoothing parameters for,

respectively, the horizontal and vertical dimension in Figure 1 (left panel). The matrices

Dh and Dv are second order difference matrices and I is the identity matrix. The above

iterative process is repeated until convergence, namely until max | η̂[k+1]−η̂[k] |< 10−4. The

optimal smoothing parameters are chosen based on minimization of the Akaike Information

Criterion (Akaike, 1973) via a grid search:

AIC = −2 log(L̂) + 2ÊD, (6)

where L̂ is the maximized value of the likelihood function and the effective degrees of

freedom, ÊD, is the trace of the hat matrix given by (see Wood, 2006):
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A = W1/2 (W +P)−1W1/2. (7)

2.2 Cohort smoothing by reordering the contact matrix (M1 model)

In the previous section, contact rate parameters are smoothed in the dimensions of the

respondent’s and contact’s ages. We now describe a new strategy where contact rates are

smoothed over the diagonal components and thus over cohorts. In addition, we also smooth

over the dimension of the contact’s age since the distribution of the age of (grand)parents

can in general be assumed smooth (e.g., children will meet their parents and grandparents

who are, for example, ± 30 and ±60 years older). We describe how this can be achieved

by restructuring the data and contact matrix over the cohorts and the contacts’ ages.

The contact matrix Γ is restructured in such a way that each diagonal (the main diago-

nal and all sub-diagonals) is present as a row in the restructured matrix. The restructured

matrix is denoted Γ̆. Figure 1 (right panel) gives a graphical representation of this restruc-

tured matrix. The matrix Γ̆ has dimension (2m − 1) × m and is constructed by entering

row i of Γ in column i of Γ̆ at positions m− i+1 to 2m− i. In that manner, all subsequent

diagonal elements are present in the same row. By construction, matrix Γ̆ contains nuisance

contact rate parameters that are not directly of interest. Restructured matrices Y̆ and Ĕ,

constructed from Y and E, are created similarly as Γ̆. Missing cell entries are present for

Y̆ and Ĕ at the same cells where the nuisance parameters are present for Γ̆. To handle

these missing entries, we impute arbitrary values (say, 9999) in Y̆ and Ĕ and construct a

(2m − 1) ×m weight matrix W̆, where the ijth entry of W̆ equals zero if the ijth entry

in Γ̆ is a nuisance parameter and equals one otherwise. This weight matrix avoids that the

imputed values for the missing entries influence parameter estimation.

Let y̆, ĕ, w̆ and γ̆ be the (2m2 −m)× 1 vectors obtained by arranging the matrices Y̆,

Ĕ, W̆ and Γ̆ by column order into a vector. Again, we assume that E(y̆) = µ̆ = ĕ⊙ γ̆ ⊙ w̆

and that the observations come from a Poisson distribution, namely y̆ ∼ Pois(µ̆) and

log(γ̆) = η̆. The objective is now to estimate the 2m2 −m unknown parameters η̆. How-
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ever, only the m2 parameters of η̆ corresponding to the non-nuisance parameter entries in

Γ̆ are of interest. The reciprocity assumption of the contacts, namely γ̆ijpi = γ̆jipj, can

again be written in matrix form as:

Lη̆ = ν, (8)

where L is an (m(m−1)
2

)× (2m2−m) allocation matrix to accommodate the reciprocity con-

straints. Estimation of the smoothed parameters η̆ is again performed through C-PIRLS.

Updated parameter estimates are now obtained by solving the set of linear equations:

 W[k] +P LT

L 0


 ˆ̆η[k+1]

ζ [k+1]

 =

 W[k]z[k]

ν

 . (9)

In (9), ζ [k+1] are again Lagrange multipliers, W[k] is an (2m2 −m) × (2m2 −m) diagonal

matrix with entries W
[k]
ll = µ̆

[k]
l = ĕl exp(η̆

[k]
l )w̆l and z[k] is an (2m2 − m) × 1 vector of

pseudovalues given by:

z
[k]
l = η̆

[k]
l +

(
y̆l

µ̆
[k]
l

− 1

)
. (10)

Here, the penalty term P in (9) is a (2m2 −m)× (2m2 −m) matrix given by:

P = λ1Im ⊗ (DT
vDv) + λ2(D

T
hDh)⊗ I2m−1, (11)

where λ1 and λ2 are smoothing parameters for, respectively, the vertical and horizontal

dimension in Figure 1 right panel, i.e. age and cohort of the original data structure.

Optimal smoothing parameters are again computed via grid search using the AIC.

2.3 Cohort smoothing by reordering the penalty matrix (M2

model)

An altenative approach to smooth over cohorts is to work from the perspective of the

penalty matrix without rearranging the original social contact matrix. The methodology
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is very similar as the one described in Section 2.1. Matrices Y, E, P, Γ and vectors y, e,

µ, γ, η are defined similarly as in Section 2.1. Again, a Poisson distribution is assumed

for the observed contact rates and the reciprocity constraint is written in matrix form as

Lη = ν. C-PIRLS is used once more to solve the set of linear equations in (3) for parameter

estimation. The penalty matrix P, constructed differently as the penalty term in (5), is

now a m2 ×m2 matrix given by:

P = λ1Im ⊗ (DT
hDh) + λ2Pd, (12)

where λ1 and λ2 are smoothing parameters for, respectively, the horizontal and the diagonal

dimension in Figure 1 (left panel), with optimal values chosen by the AIC. The m2 ×m2

matrix Pd is responsible for the penalization of the parameters of the cohorts (all diagonals

and subdiagonals). For example, in the specific case where Γ is a 4 × 4 matrix (i.e. γ =

{γ11, γ12, γ13, γ14, γ21, . . . , γ44}), the penalty matrix Pd is a 16×16 matrix (see appendix A).

A major advantage of using the penalty matrix Pd to achieve cohort smoothing is

the absence of nuisance parameters in the matrix Γ (cf. the approach in the previous

section using Γ̆). This entails a non-negligible computational gain, since onlym2 parameters

in Γ need to be estimated, whereas the M1 approach requires estimation of 2m2 − m

parameters in Γ̆ (thus including m2 − m nuisance parameters). However, the modified

penalty matrix Pd is less trivial to construct. Whereas the penalty in (11) is easily obtained

using standard matrix multiplication, the construction of Pd requires an algorithm (see

supplementary materials). This is not a major disadvantage as the construction of Pd

is performed only once and outside the C-PIRLS algorithm without requiring a too high

computational budget.

2.4 Kink on the main diagonal of the social contact matrix

The use of smoothing approaches for estimating social contact rates can lead to estimates

that are oversmoothed for individuals of the same age, meaning that the estimated contact

rate is smaller than the true one in the population. For example, students make an above
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average number of contacts with individuals of their own age (e.g., in school, sport clubs,

etc.). Smoothing approaches thus, potentially, lead to an underestimation of the social

contact rates on the main diagonal of the contact matrix, especially for children and young

adults. To take this into account, we introduce the use of a so-called kink on the main

diagonal of the social contact matrix for M0,M1 and M2, that can force a sudden increase

(or decrease) of the estimated social contact rates for children and young adults of the same

age.

The kink is introduced through a small adjustment in the penalty matrices in (11) and

(12). More specifically, in the dimension of the contact’s age, the social contact rates that

belong to the main diagonal, i.e. ηii and γii, are not penalized. In (11) this is achieved by

changing the (2m− 3)× (2m− 1) matrix Dv as follows:

D∗
v =



... m−3 m−2 m−1 m m+1 m+2 m+3 ...

...

m−3 1 −2 1

m−2 1 −1 0

m−1 1 0 −1

m 0 −1 1

m+1 1 −2 1

m+2 1 −2

...



. (13)

From the above matrix D∗
v, it is clear that the social contact rates that belong to the main

diagonal, namely, ηii and γii, are not penalized since column m only has zero values. The

penalty matrix in (11) is now reformulated as follows:

P = λ1

(
I(1)m ⊗ (D∗T

v D∗
v) + I(2)m ⊗ (DT

vDv)
)
+ λ2(D

T
hDh)⊗ I2m−1, (14)

where I
(1)
m and I

(2)
m are diagonal indicator matrices given by:
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I(1)m = { 1, . . . , 1︸ ︷︷ ︸
× max.kink.age

, 0, . . . , 0︸ ︷︷ ︸
× m-max.kink.age

} and

I(2)m = { 0, . . . , 0︸ ︷︷ ︸
× max.kink.age

, 1, . . . , 1︸ ︷︷ ︸
× m-max.kink.age

} ,

where max.kink.age indicates the maximum age at which a kink on the main diagonal is

possible. In this paper, we calibrate max.kink.age = 31 (i.e., {0, . . . , 30} years), although

a sensitivity analysis with higher values for max.kink.age yielded quantitatively similar

results. In penalty matrix (12), a similar adjustment is applied to the matrix Dh. It is

worth noting that social contact rates on the main diagonal that are adjusted by the kink

are still penalized in the dimension of the cohort to assure that smooth contact rates are

obtained on the diagonals of the contact matrix. The introduction of this kink thus leads to

a smoothed contact surface that is non-differentiable on the main diagonal in the dimension

of the contact’s age.

2.5 Negative Binomial Likelihood

Using the Poisson distribution for the observed contacts yij implies that the mean and

the variance are equal, i.e. E(Yij) = Var(Yij), while in practice, contact data often dis-

play overdispersion. Not accounting for possible overdispersion can lead to biased re-

sults. We therefore also impose a negative Binomial distribution for the observed contacts,

namely yij ∼ NegBin(µij, αij). The use of a negative Binomial distribution implies that

E(Yij) = µij and Var(Yij) = µij + µ2
ijα

−1
ij . Here, we consider the parameterization with

αij = µijϕ
−1, where ϕ > 0 denotes the disperion parameter and the variance is given by

Var(Yij) = µij(1+ϕ). In the limiting case where ϕ tends to zero, the mean and variance will

be equal. Note that the variance term resembles the error term of an overdispersed Pois-

son distribution (Nelder and Lee, 1992). The alternative parameterization with αij = ϕ−1

(leading to Var(Yij) = µij(1 + ϕµij)) was also explored but not further described since it

performed worse in terms of AIC for the application on the Belgian contact data.
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In case ϕ is fixed at a certain value, parameter estimates η̂ are again obtained through

C-PIRLS. The only adaptation is that the entries of W[k] are given by W
[k]
ll = µ

[k]
l /(1 + ϕ).

Rather than fixing ϕ at a certain value, we are also interested in obtaining a data-driven

estimate of ϕ. In that endeavor, a two-stage iteration scheme is undertaken, namely by iter-

ating and cycling between holding ϕ fixed and holding η fixed at its current estimate. More

specifically, by holding ϕ fixed at the current estimate ϕ̂[k], estimates η̂[k+1] are obtained

through C-PIRLS. Next, η is fixed at η̂[k+1] and an updated estimate ϕ̂[k+1] is obtained

using the moment estimator (Breslow, 1984). This process is iterated until convergence.

Moment estimation of ϕ is based on the Pearson’s chi-squared statistic (Breslow, 1984),

namely:

m∑
i,j=1

(
yij − µ

[k]
ij

)2
(1 + ϕ)µ

[k]
ij

= m2 − ÊD, (15)

where ÊD is the trace of the matrix given in (7). This leads to a straightforward estimate

of ϕ̂[k]:

ϕ̂[k] =
1

m2 − ÊD

m∑
i,j=1

(
yij − µ

[k]
ij

)2
µ
[k]
ij

. (16)

Optimal smoothing parameters λ1 and λ2 are again chosen via a grid search using the

criterion AIC = −2 log(L̂) + 2(ÊD + 1). Adding 1 to ÊD accounts for the estimation of

the additional ϕ parameter in the negative Binomial setting.

2.6 Quantifying the uncertainty of estimates

In order to quantify the uncertainty of the estimate η̂, we need to compute its associated

variance-covariance matrix. For this purpose, we follow Wood (2006) and use a Bayesian

approach to determine the posterior variance-covariance matrix by:

Vη = (W +P)−1 . (17)

Moreover, as justified by large sample results, the corresponding posterior distribution is
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taken to be multivariate normal:

η ∼ N (η̂,Vη) . (18)

The above (approximate) posterior distribution can be used to calculate confidence intervals

for parameters ηij or for non-linear functions of these parameters (such as γij). An estimate

ofVη can be obtained by plugging inW at convergence together with the estimated optimal

smoothing parameters λ̂1 and λ̂2 in P. The result in (18) can also be used to generate new

social contact matrices by sampling from the obtained multivariate Gaussian distribution.

This can be extremely useful to acknowledge the variability originating from social contact

data in the estimation of epidemiological parameters and/or health economic evaluations

(Bilcke et al., 2011). Further computational and algorithmic considerations related to C-

PIRLS are given in appendix B.

3 Simulation Study

A comparison of the methods introduced in Sections 2.1-2.3 is implemented via a simulation

study, where the observed contact rates are generated from a Poisson and negative Binomial

distribution respectively. We investigate a scenario in which no kink is needed on the main

diagonal, and another scenario in which the kink is specified.

Our data generating process is based on a so-called true social contact matrix, denoted

by Γ∗, from which data is simulated. To obtain such a matrix, a non-parametric regression

is applied to the Belgian social contact data. More specifically, the observed contacts rates

(see Figure 2 left panel), yij/ri are smoothed using local linear regression. Using a local

linear regression approach, there is no guarantee that K∗ ≡ Γ∗⊙P is symmetric. Therefore,

we derive a simple symmetric matrix from K∗, denoted by K̆∗, computed as:

(
K̆∗
)
ij
=
(
K̆∗
)
ji
=

(K∗)ij + (K∗)ji
2

.
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The true contact surface, Γ̆
∗
that is used for data simulation is obtained by Γ̆∗

ij = K̆∗
ij/Pij.

Finally, we denote the log-transformed matrix by H∗
ij = log

(
Γ̆∗
ij

)
. In Figure 3, the true

social contact matrices used to generate the data for the simulation study Γ̆
∗
and H∗ are

shown. To account for a kink in the simulation study, we proceed as follows. Let Γ̆
†
denote

the true social contact matrix with a kink on the main diagonal. Matrix Γ̆
†
is similar

as matrix Γ̆
∗
, with the exception that the values of Γ̆†

ii, for i = 1, . . . , 24, are artificially

increased in the following manner:
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Figure 2: The number of respondent per age (left panel) and the observed log-contact rates
(log(yij/ri)) (right panel) of the Belgian social contact data. A white cell indicates that
there were no contacts observed for those particular ages of the respondents and contacts.
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Figure 3: True social contact matrices Γ̆
∗
(left) and H∗ (right) used for the data generating

process in the simulation study. The true social contact surfaces are obtained from a non-
parametric regression using a local linear fit to the Belgian social contact data.
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Γ̆†
ii =


Γ̆∗
ii

(
1 + 1

11
(i− 1)

)
i ∈ {1, . . . , 12},

Γ̆∗
ii

(
2.0− 1

11
(i− 13)

)
i ∈ {13, . . . , 24},

Γ̆∗
ii i > 24.

Thus for ages between 0 and 23 a higher number of contacts is obtained on the main

diagonal. Data is simulated using the same participant distribution as in the Belgian social

contact data with sample size n = 745 (see Figure 2 left). For the Poisson distribution,

data is simulated as follows:

y∗ij ∼ Pois
(
riΓ̆

∗
ij

)
. (19)

For the negative Binomial distribution (with ϕ = 2), the observed number of contacts are

obtained as:

y∗ij ∼ NegBin
(
µij = riΓ̆

∗
ij, αij = µij2

−1
)
. (20)

We simulate S = 100 datasets for each distributional setting (i.e. Poisson and negative

Binomial) and fit models M0,M1 and M3 to each dataset with and without consideration

of a kink. Optimal smoothing parameters are obtained via grid search using the AIC. This

yields estimated social contact matrices Γ̂
(s)

and Ĥ(s), for s = 1, . . . , S. The estimation

performance of the different methods are compared using the squared bias and mean square

error (MSE). These scalar measures of performance are given by:

Bias2Γ =
m∑
i=1

m∑
j=1

(
1

S

S∑
s=1

(
Γ̆∗
ij − Γ̂

(s)
ij

))2

, (21)

Bias2H =
m∑
i=1

m∑
j=1

(
1

S

S∑
s=1

(
H∗

ij − Ĥ
(s)
ij

))2

, (22)

MSEΓ =
m∑
i=1

m∑
j=1

(
1

S

S∑
s=1

(
Γ̆∗
ij − Γ̂

(s)
ij

)2)
, (23)

MSEH =
m∑
i=1

m∑
j=1

(
1

S

S∑
s=1

(
H∗

ij − Ĥ
(s)
ij

)2)
. (24)
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Besides the performance of pointwise estimators given in Tables 1 and 2, we also assess the

accuracy with which uncertainty is quantified by looking at the coverage performance of

95% pointwise confidence intervals (CIs) of ηij in Table 3. Using the approximate posterior

distribution in (18), 95% pointwise CIs are easily calculated (i.e., ±1.96× the square root of

the Bayesian posterior variance). The reported nominal coverages of the CIs are calculated

by averaging over the entries of the entire social contact matrix.

For all simulation settings, we observe that models that smooth over cohorts (M1 and

M2) are performing better in terms of MSE than M0, and this holds for both H∗ and Γ̆
∗
.

In terms of bias, the results are less clear, but overall model M2 is performing best. When

comparing models M1 and M2, we observe that the latter model has better performance.

In the simulation settings in which no kink is introduced on the main diagonal, we observe

that models with a kink on the main diagonal perform slightly worse than those without

a kink. However, in the simulation settings with a kink, a more pronounced difference is

observed in favour of the models with a kink on the main diagonal, especially for Γ̆
∗
. The

better performance of models including a kink is mainly due to the better estimation of

the main diagonal components of the social contact matrix. No meaningful differences are

observed outside the main diagonal region.

Table 1: Squared bias of the social contact matrices H∗ and Γ̆
∗
over S = 100 simulations

using M0,M1 and M3 with and without a kink on the main diagonal.

Squared bias Models without kink on main diagonal

bias2 of H∗ (H†) bias2 of Γ̆
∗
(Γ̆

†
)

Simulation setting M0 M1 M2 M0 M1 M2

Poisson w/o kink 69.62 58.62 49.41 1.53 1.39 1.32
NegBin w/o kink 93.16 91.53 77.76 2.50 2.63 2.52
Poisson w kink 57.67 60.86 51.79 3.32 3.37 3.31
NegBin w kink 96.52 82.14 70.44 4.77 4.38 4.31

Squared bias Models with kink on main diagonal

bias2 of H∗ (H†) bias2 of Γ̆
∗
(Γ̆

†
)

Simulation setting M0 M1 M2 M0 M1 M2

Poisson w/o kink / 58.92 49.66 / 1.49 1.43
NegBin w/o kink / 93.64 79.42 / 3.05 2.92
Poisson w kink / 58.57 49.33 / 1.53 1.47
NegBin w kink / 80.70 68.63 / 2.62 2.53
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Table 2: Mean square error of the social contact matrices H∗ and Γ̆
∗
over S = 100

simulations using M0,M1 and M3 with and without a kink on the main diagonal.

MSE Models without kink on main diagonal

MSE of H∗ (H†) MSE of Γ̆
∗
(Γ̆

†
)

Simulation setting M0 M1 M2 M0 M1 M2

Poisson w/o kink 90.81 74.45 68.05 2.41 1.98 1.94
NegBin w/o kink 154.73 130.41 123.72 4.79 3.99 3.96
Poisson w kink 82.36 77.78 71.85 4.33 3.98 3.95
NegBin w kink 156.94 123.59 120.50 7.11 5.86 5.87

MSE Models with kink on main diagonal

MSE of H∗ (H†) MSE of Γ̆
∗
(Γ̆

†
)

Simulation setting M0 M1 M2 M0 M1 M2

Poisson w/o kink / 75.13 68.67 / 2.18 2.14
NegBin w/o kink / 133.15 126.00 / 4.57 4.51
Poisson w kink / 75.72 69.63 / 2.28 2.24
NegBin w kink / 122.71 119.25 / 4.41 4.40

In the negative Binomial simulation setting, the overdisperion parameter ϕ is estimated

well. In the simulation setting without a kink, model M2 without a kink has an average

estimate for ϕ of 1.92 with 95% of the estimated overdispersion parameters between 1.74

and 2.22. For the simulation setting with a kink, we find 1.93 (1.71 - 2.20) for model M2.

Table 3: Nominal coverage of 95% pointwise confidence intervals of the social contact
matrices H∗ (H†) over S = 100 simulations using M0,M1 and M3 with and without a
kink on the main diagonal. The nominal coverage is calculated by averaging over the entire
social contact matrix.

Models without kink Models with kink
on main diagonal on main diagonal

Simulation setting M0 M1 M2 M1 M2

Poisson w/o kink 92.06 93.86 95.47 93.57 95.16
NegBin w/o kink 95.10 94.51 95.92 93.90 95.36
Poisson w kink 94.79 93.17 94.76 93.48 95.06
NegBin w kink 95.01 96.26 97.26 96.22 97.26

Table 3 highlights the nominal coverage results of the different simulation settings. We

observe that all methods produce pointwise CIs with close to 95% nominal coverage. In

the last simulation setting (the negative Binomial distribution with a kink on the main

diagonal), a slight overcoverage is observed for models M1 and M2. In the latter scenarios,

the average lengths of the 95% CIs are 0.65, 0.61 and 0.60, for M0, M1 and M2 with a

kink, respectively. This implies that the overcoverage is not directly associated with wider
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CIs. Finally, the results in Table 3 indicate that the large sample result in (18) can be used

to construct CIs with appropriate nominal coverage.

4 Application: Belgian Social Contact Data

The proposed smoothing methods are illustrated on the POLYMOD social contact data of

Belgium, obtained through a population-based contact survey carried out over the period

of March to May 2006. Participants kept a paper diary with information on their contacts

over one day. A contact was defined as a two-way conversation of at least three words

in each other’s proximity and the gathered information included the age of the contact,

gender, location, duration, frequency, and whether or not touching was involved. Sampling

weights – the inverse of the probability that an observation is included because of the sam-

pling design – are available for each participant, based on official age and household size

data of the year 2000 census published by Eurostat (Mossong et al., 2008). To estimate

population-related social contacts, these sampling weights are included in the analysis. We

consider the contact data of all participants aged between 0 and 76 years (both included).

In total, we have information on 745 participants from which 399 (53.6%) are females and

345 (46.3%) are males (the information on gender was omitted for one participant). The

mean age of the respondents is 31 years. We also restrict to contacts made with individuals

between 0 and 76 years (both included), resulting in a total of 13 493 contacts. This gives a

crude mean of 18.1 contacts per participant. Furthermore, the age structure of the general

population in which the contact survey is conducted in 2006 is obtained from Eurostat

(Eurostat, 2017), where the population size in the 0-76 years interval is N=9 777 488.

In Figure 2 (right panel), the observed log-contact rates log(yij/ri) of the POLYMOD

Belgian social contact data are shown. To estimate the social contact rates from these data,

we use models M0, M1 and M2 under a Poisson and negative Binomial assumption on

the number of contacts with and without a kink on the main diagonal. Let w∗
k denote the

normalized sampling weight of respondent k, with k = 1, . . . , 745. The ijth input of Y

is constructed as (Y)ij = yij =
∑

k ∈ age (i−1)w
∗
kyk,(i−1,j−1) and corresponds to a weighted
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sum of the number of contacts made by respondents of age i− 1 with contacts of age j− 1.

It follows that the inputs of the vector r are given by ri =
∑

k ∈ age (i−1)w
∗
k.

In Table 4, summary results of the fitted models are given. It can be seen that the neg-

ative Binomial distribution performs better in terms of the AIC (smaller AIC is “better”),

so that the assumption of a variance that is linearly dependent on the mean is preferred.

The effective degrees of freedom (ÊD) for the Poisson case are higher, indicating that the

Poisson distribution tries to explain the observed variability through the mean. From here,

we focus on the results of the negative Binomial model. It can be observed that approaches

M1 and M2 including a kink are performing better in terms of the AIC as compared to

those without a kink. Regarding the estimated smoothing parameters λ̂1 and λ̂2, an inter-

esting difference is observed between M0 and models M1 and M2. In M0, the optimal

values for λ̂1 and λ̂2 are similar, while for the models accounting for cohort smoothing, the

optimal value for λ̂2 is larger than λ̂1, indicating that more penalization is needed in the

direction of the cohorts. In terms of computational speed, fitting model M2 is much faster

(≈ 4 times faster) as compared to model M1, as for the latter model 2m2 −m = 11 781

parameters (including m2 −m nuisance parameters) need to be estimated, as compared to

m2 = 5 929 parameters for M2.

Table 4: Summary results of the fitted models to the Belgian social contact data. Estimated
smoothing parameters, effective degrees of freedom, -2 times log-likelihood, AIC and ϕ are
provided.

Model λ̂1 λ̂2 ÊD −2 log(L̂) AIC ϕ̂

M0 Poisson 0.46 0.46 1 979.5 20 151.7 24 110.7 -
M0 NegBin 15.17 16.64 181.5 20 732.7 21 097.7 3.08
M1 Poisson 0.50 0.32 2 085.6 20 318.4 24 489.6 -
M1 NegBin 22.76 1714.91 55.8 20 988.5 21 102.1 3.76
M2 Poisson 0.50 0.32 2 125.0 20 287.6 24 537.7 -
M2 NegBin 27.36 1564.02 59.5 20 994.2 21 115.2 3.76

With kink
M1 NegBin 30.00 1584.89 54.3 20 967.6 21 078.2 3.70
M2 NegBin 40.00 1584.89 55.4 20 973.2 21 086.0 3.70
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In Figures 4 and 5, the estimated log contact rate surfaces, Ĥ, and the mixing at the popu-

lation level, Γ̂⊙P, for models M0, M1 and M2 under the negative Binomial distribution

without a kink are shown. Generally, the surfaces are able to capture important features of

human contact behaviour. There is a clear difference in the estimated surfaces for model

M0 and models M1 and M2 in the sense that diagonal components are more pronounced

for models accounting for cohort smoothing. The shifted diagonal between children and

parents is also more clearly visible.
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Figure 4: The estimated log contact rates surface, Ĥ, for models M0, M1 and M2 without
kink (left to right) with the negative Binomial distribution.
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Figure 5: The estimated mixing at the population level, Γ̂ ⊙ P, for models M0, M1 and
M2 without kink (left to right) with the negative Binomial distribution.

Based on the AIC values in Table 4, we see that the models including a kink are preferred.

In addition, based on the results of the simulation study in Section 3, the estimated contact

rates are very similar for models M1 and M2, so that we prefer the use of model M2 for

the POLYMOD Belgian social contact data as it is less computationally intensive.

In Figure 6, estimated contact surfaces are shown for model M2 with the negative

Binomial distribution and a kink on the main diagonal. From the figure on the bottom,

it is observed that the main diagonal has higher values for younger ages for the model

including the kink and this yields higher values on the main diagonal of Ĥ and Γ̂⊙P. For

the model where the kink is absent, the values in the estimated matrix Γ̂ ⊙ P range from
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1 496.2 to 162 986.5, whereas for the model with kink, the values range from 1 608.4 to

375 371.5. The kink thus allows for a huge increase in the estimated number of contacts for

children and young adults with individuals of the same age. These results enforce the fact

that a kink is needed to capture the non-smooth effect of mixing with people of the same

age, especially for the children and young adults.
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Figure 6: The estimated log contact rates surface (left), Ĥ, and the mixing at the population
level (right), Γ̂ ⊙ P, for model M2 with the negative Binomial distribution including an
additional kink on the main diagonal. The diagonal elements of Ĥ for the model with and
without a kink (bottom), together with the observed log-contact rates.

5 Discussion

Quantifying contact behaviour contributes to a better understanding of how infectious

diseases spread (Anderson and May, 1991; Edmunds et al., 1997). Social contact rates play

a major role in mathematical models used to model infectious disease transmission. In this

paper, we describe a smoothing constrained approach to estimate social contact rates from

self-reported social contact data. The proposed approach assumes that the contact rates

are smooth from a cohort perspective as well as from the age distribution of contacts. Thus,

besides smoothing in the direction of the age of contacts, we propose to smooth contact

rates from a cohort perspective by following two alternative strategies.
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The simulation study and the data application show that approach M2, in which the

penalty matrix is reordered (and penalization is performed over the diagonal components),

is performing better. It was observed that this method yielded the smallest MSE over all

simulation settings. Additionally, confidence intervals with nominal coverage close to 95%

were obtained. In the Belgian data application, the computation time of method M2 is

three to four times faster than method M1, and so we recommend the use of the former

approach for the estimation of social contact rates. The true social contact surface used

in the data generating process of the simuation study was obtained through local linear

regression of the raw social contact rates of the Belgian POLYMOD study. This approach

is preferred for two reasons. First, by using the same data in the simulation study as in

the application presented in Section 4, a better view of the performance of the different

approaches can be obtained. Second, we are not aware of any easy applicable mathematical

formula or fully parametric model of a two dimensional surface that would be suitable to

represent a contact rate surface. A search is needed to calibrate the smoothing parameters

λ1 and λ2. This is a disadvantage compared to the approach by van de Kassteele et al. (2017)

in which the amount of smoothing is directly estimated together with model parameters

from the information in the data. However, with the availability of fast parallel computing

and multi-core machines, the grid search can be performed relatively fast.

In this paper, the contact rates are assumed indifferent for men and women. Recently,

van de Kassteele et al. (2017) presented a Bayesian model for estimating social contact

rates for men and women, with results suggesting that different contact patterns exist and

thus that there is a gender effect. Future work could investigate how the methodology

proposed in this paper can be extended to estimate social contact rates between both

sexes without increasing the computational burden. A comparison with other methods

used to smooth social contact data was not done in this paper. Future extensions could

focus on the impact of social contact matrices obtained from different methods on key

epidemiological parameters. In general, age-specific contact rates are also used as an input

in the comparison and evaluation of vaccination schedules via future projections (Beutels
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et al., 2013). Most evaluations assume a fixed social contact rate matrix and thus that

no uncertainty is related to this input. The result derived in equation (18) offers a tool

to account for the variability associated with the estimation of social contact rates. By

simulation of new contact matrices from (18), the associated variability can be taken into

account in the evaluation of vaccination strategies and related health economic evaluations.

Finally, our proposed methodology does not employ any regression basis such as B-

splines because an exact link between the constraints and linear predictors is needed. We

are exploring whether the proposed methodology can be extended to make use of basis

functions that will likely lead to a reduction of the computational cost. Alternative ways

of incorporating the reciprocal nature of the phenomenon will thus be necessary.
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Appendix

Appendix A. Penalty matrix Pd

Pd =



γ11 γ12 γ13 γ14 γ21 γ22 γ23 γ24 γ31 γ32 γ33 γ34 γ41 γ42 γ43 γ44

γ11 1 −2 1

γ12 1 −2 1

γ13 1 −1

γ14 0

γ21 1 −2 1

γ22 −2 5 −4 1

γ23 −2 4 −2

γ24 −1 1

γ31 1 −1

γ32 −2 4 −2

γ33 1 −4 5 2

γ34 1 −2 1

γ41 0

γ42 −1 1

γ43 1 −2 1

γ44 1 −2 1



.

Appendix B. Computational considerations.

R version 4.1.2 is used to fit the proposed models. To enhance convergence of the proposed

C-PIRLS fitting scheme, we first perform parameter estimation using penalized iterative

reweighted least squares without using the symmetry constraint and use the obtained esti-

mated parameters as starting values in the C-PIRLS algorithm. To initiate the estimation

of PIRLS without the symmetry constraint, starting values η̂[0] are needed. These can, for

example, be set at η̂[0] = log ((y + 1)/(e+ 1)).

The same number of parameters are estimated as there are entries in the matrices Γ or

Γ̆. For instance, in our application (m = 77) in Section 4, we need to estimate m2 = 5 929

and 2m2−m = 11 781 parameters, respectively. This is practically challenging on a regular

personal computer. Therefore, we make use of sparse matrix implementations by using the

R-package Matrix (Bates and Maechler, 2017).

To choose the optimal smoothing parameters λ1 and λ2, a grid search is performed with
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both λ1, λ2 ∈ {0.5, 1, 5, 10, 50, 100, 500, 1000, 5000, 10000}. This initial grid search gives

an indication (based on minimization of the AIC) of the values of the optimal smoothing

parameters. In a second step, a greedy grid search is performed an a denser grid using the

cleversearch function in the R-package svcm (Heim, 2007).
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