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Abstract

The three-dimensional structure of proteins captures evolutionary ancestry, and serves
as starting point to understand the origin of diseases. Proteins adopt their structure
autonomously by the process of protein folding. Over the last decades, the folding
process of several proteins has been studied with temporal and spatial resolution which
allowed the identification of so-called Early Folding Residues (EFR) in the folding
process. These structurally relevant residues become affected early in the folding process
and initiate the formation of secondary structure elements and guide their assembly.

Using a dataset of 30 proteins and 3,337 residues provided by the Start2Fold
database, discriminative features of EFR were identified by a systematical
characterization. Therefore, proteins were represented as graphs in order to analyze
topological descriptors of EFR. They constitute crucial connectors of protein regions
which are distant at sequence level. Especially, these residues exhibit a high number of
non-covalent contacts such as hydrogen bonds and hydrophobic interactions. This
tendency also manifest as energetically stable local regions in a knowledge-based
potential. Conclusively, these features are not only characteristic for EFR but also differ
significantly with respect to functional residues. This unveils a split between
structurally and functionally relevant residues in proteins which can drastically improve
their evolvability and robustness.

The characteristics of EFR cannot be attributed to trivial features such as the
accessible surface area. Thus, the presented features are novel descriptors for EFR of
the folding process. Potentially, these features can be used to design classifiers to
predict EFR from structure or to implement structure quality assessment programs.
The shown division of labor between functional and EFR has implications for the
prediction of mutation effects as well as protein design and can provide insights into the
evolution of proteins. Finally, EFR allow to further the understanding of the protein
folding process due to their pivotal role.

Author summary

Proteins are chains of amino acids which adopt a three-dimensional structure and are
then able to catalyze chemical reactions or propagate signals in organisms. Without
external influence, most proteins fold into their correct structure, and a small number of
Early Folding Residues (EFR) have been shown to become affected at the very start of
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the process. We demonstrated that these residues are located in energetically stable
local conformations. EFR are in contact to many other residues of a protein and act as
hubs between sequentially distant regions of a proteins. These distinct characteristics
can give insights into what causes certain residues to initiate and guide the folding
process. Furthermore, it can help our understanding regarding diseases such as
Alzheimer’s or amyotrophic lateral sclerosis which are the result of protein folding gone
wrong. We further found that the structurally relevant EFR are almost exclusively
non-functional. Proteins separate structure and function, which increases evolvability
and robustness and gives guidance for the artificial design of proteins.

Introduction 1

Most proteins adopt their three-dimensional conformation autonomously during the 2

process of protein folding [1, 2] which is strongly connected to protein design as well as 3

the quality assessment of structures and in silico models [1, 3]. Various diseases are 4

caused by misfolding or aggregation of proteins [4–7]. During the protein folding 5

process, the denatured chain of amino acids passes a energetic barrier, called transition 6

state, to form a compact and functional native structure [2]. 7

How proteins fold is an open question [1]. There is a lack of experimental data 8

describing which events or residues guide the folding process [8–10]. The protein 9

sequence resembles the starting point and the three-dimensional structure captures the 10

result of the protein folding process for a wide range of proteins, yet how they connect 11

via the transition state is unclear. The unstable nature of the transition state hinders 12

its experimental determination [11, 12]. Another hindrance for the understanding of the 13

sequence-structure relation is that some proteins depend on chaperons to fold 14

correctly [7]. 15

The defined pathways model 16

Whether general folding patterns exist [13] and whether folding is stochastic or 17

deterministic [14] remains to be answered – even within some protein families the 18

process differs [15]. The defined pathways model proposes that small fragments fold 19

first and then guide a step-wise assembly of further parts of the protein until the native 20

structure is formed [14,16,17]. The process is believed to be deterministic and 21

fragments folding first do so autonomously from other parts of the protein – no other 22

region directly supports or hinders their formation [14,17]. Which parts of the protein 23

initiate the formation of local, ordered structures, e.g. secondary structure elements, is 24

encoded in their sequence [18–23]. Consequently, these regions decrease in energy as 25

well as entropy and stabilize the protein during the folding process [23,24]. This also 26

supports the observation that proteins fold cotranslationally as they are being 27

synthesized by a ribosome and stabilizing long-range contacts cannot be formed yet [25]. 28

These local structures form long-range contacts and assemble the global 29

structure [14,18,22,26,27]. The formation of a native structure causes a further 30

decrease in free energy [3, 17,28]. Long-range contacts are especially important for the 31

stability of the hydrophobic core of the native structure [29]. 32

Identifying Early Folding Residues during protein folding 33

In recent years, various experimental strategies [30–33] were established which can 34

identify residues crucial for the folding process. Probably the most elegant approach to 35

track the protein folding process with spatial and temporal resolution is pulse labeling 36

hydrogen-deuterium exchange (HDX) [14,29,34–39]. The state of a protein can be 37
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controlled e.g. by denaturants or temperature [35]. Starting from a denatured protein, 38

folding conditions are gradually established until the protein refolded completely. The 39

resulting folding trajectory can be studied by HDX. Depending on the state of the 40

folding process, individual amino acids will be susceptible to or protected from an 41

exchange of the hydrogen atom of their amide group. Residues become protected when 42

their amide group is isolated from the solvent as the effect of other residues surrounding 43

them. When the folding process affects a residues, its spatial neighborhood is altered. 44

Where and when these exchanges occur is tracked by a downstream mass spectroscopy 45

or nuclear magnetic resonance spectroscopy. Residues which are protected from the 46

exchange at the earliest stages [14,37–39] are called Early Folding Residues (EFR). 47

Residues which became protected at later stages or not at all are referred to as Late 48

Folding Residues (LFR). EFR were shown to initiate the folding process and the 49

formation of secondary structure elements [39] or even larger autonomously folding 50

units [14]. They tend to be conserved, but non-functional residues [40]. In contrast, 51

LFR may be relevant during later stages of the folding process, implement protein 52

function, or be mere spacers between protein regions. 53

The data obtained by HDX experiments is still difficult to interpret [41] and results 54

of other experiments or techniques are tedious to compare [29,39]. The Start2Fold 55

database [39] provides an invaluable annotation of EFR which became protected early 56

in a standardized manner [29]. In a previous study [38], EFR have been shown to 57

exhibit lower disorder scores and higher backbone rigidity. Regions with relatively high 58

backbone rigidity are likely to constitute ordered secondary structure elements and this 59

tendency is manifested in local sequence fragments [19,20,38,39,42]. Especially 60

aromatic and hydrophobic amino acids were linked to ordered regions of proteins [38]. 61

Subsequently, it was shown that EFR are likely buried according their relative accessible 62

surface area (RASA) and proposed that they are also the residues which form the 63

greatest number of contacts in a structure [39]. EFoldMine [10] is a classifier that 64

predicts EFR from sequence. Due to the nature of the trained models [10, 38], it is still 65

unclear what the relation between sequence and structure is and if EFR cause their 66

surroundings to fold first or vice versa [23]. 67

Representing proteins by Energy Profiling and graphs 68

A protein’s native structure exhibits minimal free energy [14]. Thus, knowledge-based 69

potentials are a potent tool to describe the process of protein folding [28] and have been 70

previously employed for the quality assessment of protein structures [3]. In an approach 71

called Energy Profiling the surroundings of each residue are expressed as energy value. 72

Low energy values occur for hydrophobic amino acids which are stabilized by many 73

contacts. Thus, this approach is a valuable feature to assess the stability of individual 74

residues as well as their interactions with their spatial neighborhood. 75

Individual residues can also be characterized in the context of protein structures by 76

topological features derived from network analysis. Protein structures are represented as 77

graphs: amino acids constitute the nodes and contacts between residues are represented 78

as edges [12,43–49]. There is a plethora of contact definitions and most are based on 79

distance cutoffs between certain atoms of amino acids [50]. Graph representations of 80

proteins were previously employed to describe residue flexibility [51] as well as residue 81

fluctuation [43], protein folding [12,46], structural motifs [52], and evolvability [49]. 82

Furthermore, protein graphs were shown to exhibit the character of small world 83

networks [12,43–46] whereby a small number of residues has high connectivity and the 84

average path length in the graph is small. Hydrophilic and aromatic amino acids were 85

found to be crucial connectors in the graph – so-called hubs – which underlines their 86

importance in the context of protein folding [53]. 87

Graph representations of proteins also allow to assess whether proteins feature a 88
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modular design [54,55]. Reinvention is rarely observed in nature and whenever possible 89

existing, established, and safe strategies are reused [56]. This can explain why the 90

conceivable sequence and structure space is explored so little: by evolving established 91

sequences, misfolding sequences or those prone to aggregation are avoided [56,57]. This 92

behavior is likely the result of a separation of residues relevant for folding and those 93

relevant for protein function [40] such as ligand binding sites or active sites. Functional 94

residues also were shown to exhibit distinct topological features [45]. A division of labor 95

between fold and function increases robustness and evolvability of protein 96

sequences [40,49,54,55,58] because functional residues can be changed without any 97

impairment of the protein’s stability and the fold can be improved without 98

compromising function. 99

Motivation 100

The Start2Fold database [39] constitute a dataset of EFR [10,14,17,23]. Previous 101

studies considered a small number of proteins, whereas the 30 proteins of the Start2Fold 102

database [39] allow a more robust characterization of EFR. Because the annotation of 103

EFR is standardized, a workflow can be established to analyze also future results of 104

HDX experiments added to the database. 105

It is unknown what sequence features causes particular residues to fold early and 106

how these residues contribute to the formation of the native structure (Fig 1A). EFR 107

are strongly connected to the defined pathways model and provide an opportunity to 108

understand the driving forces behind the assembly of stabilizing local structures as well 109

as the formation of tertiary contacts [14,23]. 110

Fig 1. Graphical abstract. (A) During the folding process, an extended protein
chain passes the transition state and forms a native structure [2]. (B) Protein structures
are represented as graphs to derive topological descriptors of residues. Amino acids
constitute nodes, whereas residue contacts are represented as edges. EFR are
structurally relevant residues which participate early in the folding process by forming
local contacts to other residues. They are separated from functional residues which are
primarily ligand binding sites and active sites as derived from UniProt [59]. EFR show
a great number of long-range contacts which furnish the spatial arrangement of protein
parts which are far apart on sequence level.

In this study, several novel structural features are employed for the characterization 111

of EFR. Especially, the Energy Profiling approach, topological descriptors of protein 112

graphs, and the explicit consideration of non-covalent contacts types provides a new 113

level of information in order to describe the folding process. EFR exhibit lower, more 114

stable energy values in their Energy Profile [3, 28]. A network analysis reveals that EFR 115

are more connected to other residues and that they are located at crucial positions in 116

the protein graph (Fig 1B). This distinct wiring to the rest of the protein is especially 117

furnished by hydrophobic interactions. EFR are likely structurally relevant for the 118

correct protein fold [10]. This information is used to demonstrate that proteins separate 119

structurally relevant residues from functional residues (Fig 1B). 120

Results and Discussion 121

A previously described dataset [23] of 30 proteins and 3,377 residues is the basis of this 122

study and summarized in S1 Table. 482 (14.3%) of the residues are labeled as EFR, the 123

remaining residues are considered LFR. 124
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To characterize EFR in more detail, various features were defined and compared to 125

the values of LFR. EFR form a significantly greater number of contacts than their LFR 126

counterparts (Fig 2A). The loop fraction is defined as the ratio of unordered secondary 127

structure elements in a window centered on a particular residue [60]. Fewer unordered 128

secondary structure elements can be found around EFR (Fig 2B), whereas LFR exhibit 129

a higher propensity to occur in coil regions. EFR are on average closer to the centroid 130

of a protein structure and are likely embedded in the hydrophobic core (Fig 2C). 131

Analogously, they also tend to be more distant to the N- or C-terminus of the sequence 132

than other residues and are likely buried regarding their RASA as per S2 Table. 133

Fig 2. General properties discriminative between EFR and LFR. (A) EFR
form more contacts to their surroundings than LFR. (B) The loop fraction [60] is the
ratio of unordered secondary structure elements which are observed in a windows of
nine amino acids around a residue. EFR are more commonly surrounded by ordered
secondary structure elements. (C) EFR are located significantly closer to the centroid
of the protein than LFR.

The propensity of EFR to participate in more contacts and to occur in the core of a 134

protein are in agreement with previous studies [14, 23, 38, 46]. The shift in loop fraction 135

can also be attributed to these findings and is further substantiated by the fact that 136

long ordered secondary structure elements tend to contain more EFR [23]. It has been 137

reported that buried residues are more likely to be EFR [23,29] which also explains why 138

they are closer to the spatial centroid of a protein and more separated from sequence 139

termini (S2 Table). Yet, all these factors cannot explain why some residues become 140

EFR and others do not. 141

Early Folding Residues constitute stable local conformations 142

To assess the energetic contribution of EFR to the native structure, the proteins of the 143

dataset were transformed by the Energy Profiling approach [3, 28]. Computed energy 144

values of EFR are significantly lower than the values of LFR. A more detailed 145

investigation of the computed energy values (Fig 3) shows that this trend can be 146

observed for individual amino acids, but the change is insignificant for aspartic acid and 147

isoleucine. Hydrophilic amino acids commonly feature high energy values, whereas the 148

values for hydrophobic and aromatic amino acids are low. The changes in energy for 149

amino acids with hydroxyl groups in their side chain such as serine and threonine are 150

remarkable. This trend also manifests in sequence; thus, energy values predicted by 151

sequence using the eGOR method [28] are also lower for these residues (see S2 Table). 152

Regarding the average absolute contact frequencies, a EFR participates in 3.87 153

hydrogen bonds and forms 1.30 hydrophobic interactions to other residues. This 154

constitutes a significant increase compared to LFR (see S2 Table). 155

Fig 3. Computed energy by amino acid. A knowledge-based potential [3, 28] was
used to characterize the surrounding of each residue. Hydrophobic and aromatic amino
acids have a high tendency to be located in the buried core of a protein. Hydrophilic
and polar amino acids prefer to be exposed to the polar solvent. This tendency is
reflected by low and high average energy values respectively. The distribution of energy
values of EFR always exhibits a lower median than LFR. Significance in change is
indicated by asterisks (*). EFR observations of serine and threonine exhibit relatively
low energy values. The side chains of both amino acids can form hydrogen bonds. The
decrease in energy is insignificant for aspartic acid and isoleucine. No annotation of
EFR is available for proline.
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EFR exhibit significantly lower values in computed Energy Profiles as well as those 156

predicted from sequence. This indicates that they occur in parts of proteins which are 157

more stable and contain an increased number of hydrophobic amino acids in their 158

spatial surroundings. Especially amino acids such as serine or threonine, which can form 159

hydrogen bonds via their side chains, feature relatively low energy values even though 160

they have an overall tendency to be exposed to the solvent due to their hydrophilic 161

nature. The energy contribution of hydrogen bonds has been shown to be context 162

specific [61], but also crucial for the correct formation of protein structure [53]. 163

Especially amino acids capable of forming side chain hydrogen bonds contribute to the 164

protein stability [1, 61]. Hydrophilic and aromatic amino acids like arginine, histidine, 165

and methionine are considered strong hubs in protein structures, which is substantiated 166

by a significant change in computed energy values for EFR. Hydrophobic amino acids 167

occur in the core of a protein and are stabilized by an increased number of hydrophobic 168

interactions. Thus, they have an intrinsic propensity to form stable, low energy 169

conformations which is also reflected by the computed energy values. EFR might be the 170

mediators between the formation of local structure elements and their assembly in the 171

context of the three-dimensional structure. Secondary structure elements such as helices 172

interact e.g. by hydrophobic interactions [62], however, it seems that single contacts are 173

neither strong nor specific enough to guide their assembly [17,63,64]. A future, 174

fine-grained distinction of contact types including π-stacking and hydrophobic 175

interactions is needed to assess the role of EFR as potential driving force behind the 176

correct of arrangement of secondary structure elements. 177

Network analysis shows a unique wiring of Early Folding 178

Residues 179

The way residues interact with their spatial surrounding was assessed by network 180

analysis based on protein graphs. Regarding the topological properties of residues 181

derived from network analysis, EFR show a higher interconnectedness than LFR. They 182

exhibit higher betweenness (Fig 4A) and closeness (Fig 4B) values. High betweenness 183

values are observed for well-connected nodes which are passed by many of the shortest 184

paths in a graph. High closeness values occur for nodes which can be reached by 185

relatively short paths from arbitrary nodes. The distinct neighborhood count expresses 186

to how many sequentially separated regions of a protein a residue is connected. Again a 187

significant increase can be observed for EFR (Fig 4C). Residues are considered 188

separated when they are more than five sequence positions apart. This threshold was 189

also used to distinguish local contacts (i.e. less than six residues apart) and long-range 190

contacts. Interestingly, the clustering coefficient features a significant decrease when 191

EFR are considered. The clustering coefficient of a node is the number of edges between 192

its adjacent nodes divided by the theoretical maximum of edges these nodes could form. 193

However, EFR are biased to be in the core of the protein [39], thus, it was assessed if 194

this change is also significant when only buried [65] residues are considered. The 195

differences are insignificant in that case (see S2 Table). 196

Fig 4. Topological properties of EFR and LFR. Proteins were represented as
graphs and a network analysis was performed. (A) EFR have higher betweenness values
implying that shortest paths in the graph tend to pass through these nodes more often.
(B) They also exhibit higher closeness values because their average path length to other
nodes is lower on average. (C) The distinct neighborhood count of a residues describes
to how many separated regions it is connected. Residues are considered separated when
their separation on sequence level is greater than five. EFR connect significantly more
regions of a protein than LFR.
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By topological terms, EFR are more connected to the rest of the protein as expressed 197

by betweenness, closeness, and the distinct neighborhood count. The betweenness 198

property is closely related to the small-world characteristics of networks and can be 199

observed in this case due to the ratio of protein surface and volume [46]. Residues 200

relevant for the folding process have been shown to exhibit high betweenness values in 201

the transition state and to be crucial for the formation of the folding nucleus [46]. 202

Interestingly, the clustering coefficient shows no difference between EFR and LFR when 203

only buried residues are considered. Also, the value is higher for LFR, which is probably 204

an effect of EFR being hubs which connect several separated regions of a protein (as 205

shown by the distinct neighborhood count). These regions themselves are not 206

well-connected, which results in a lower clustering coefficient for EFR. The performed 207

network analysis aids the understanding on the idiosyncratic properties of EFR in the 208

context of the whole protein and is in agreement with previous studies [11, 46, 53]. EFR 209

are hubs between sequentially distant protein regions which underlines their importance 210

for the correct assembly of the tertiary structure of a protein. The distinction between 211

local and long-range contacts provides new insights into the structural relation of 212

residues with their respective neighborhood. Nevertheless, the increased number of local 213

and long-range contacts of EFR point to their importance for the whole protein folding 214

process as described by the defined pathways model [14,17]. The existence of disordered 215

proteins [7, 38], chaperons [7], cotranslational folding [25], and the peculiarities of 216

membrane proteins [62] conceal important properties and EFR may be a welcome 217

simplification to advance the understanding of the protein folding process. 218

Early Folding Residues are non-functional residues 219

Division of labor is one of the most successful strategies of evolution [40,54,55,66–69]. 220

The separation of residues crucial for folding and those furnishing function may allow 221

reuse of established protein folds [32,40,54–56,58]. The sequence and structure space 222

ascertained over the course of evolutions seems small for a truly random exploration. 223

Reusing established folds could also avoid slow-folding sequences or those prone to 224

aggregation [31,56,70,71]. There seem to be a delicate balance in proteins between 225

robustness and evolvability [55,58]. Thus, functional residues [72] can be mutated and 226

new functions can be adopted without compromising the fold of the protein [32]. In 227

consequence, a clear division should be observable between EFR – which initiate and 228

guide the folding process – and the functional ones implementing protein function. 229

To address this question, residues in the dataset were labeled as either EFR or LFR 230

as well as being either functional or non-functional. Active sites and ligand binding 231

regions were considered to be the functional parts of proteins. The distribution of both 232

binary variables (Table 1) shows that the majority of residues in the dataset are neither 233

EFR (87.2%) nor functional (95.4%) residues. Only 0.5% share both classes, resulting in 234

a Cramér’s V of 0.01. The distribution of both variables separated by individual 235

proteins is presented in S1 Table. For most proteins, no residues are both EFR and 236

functional (Fig 5A). Furthermore, EFR tend to be located in the core of proteins, 237

whereas functional residues are exposed towards the solvent in order to realize their 238

respective function (Fig 5). Acyl-coenzyme A binding protein (STF0001) [33,73,74] 239

features five residues which are both EFR and functional (Fig 5B). 240

For the majority of the dataset, a clear separation of EFR and functional residues 241

can be observed. The acyl-coenzyme A binding protein may exhibit five residues which 242

are both EFR and functional because its a rather small protein of 86 residues which 243

binds ligands with large aliphatic regions. Intuitively, the residues furnishing the 244

bowl-like shape of the protein are also those which participate in the function of ligand 245

binding [33,73,74]. For acyl-coenzyme A binding protein, roughly half of its residues are 246

marked as EFR which further accentuates why the division of labor is less strict in this 247
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Table 1. Contingency table of folding characteristics and functional
relevance.

functional non-functional
early 14 345
late 116 2332

Out of 2807 observations, 0.5% are EFR and functional at the same time. Cramér’s V
amounts to 0.01 – this minimal association between both categories implies that EFR
are not functional and vice versa.

Fig 5. Rendered structures of 2 dataset entries. EFR are rendered in blue,
functional residues are rendered in orange. (A) In the case of lysozyme (PDB:2eql A)
the intersection is empty. For most proteins in the dataset, there is a clear distinction
between both classes and structurally relevant residues have a propensity to be located
in the core, while functional residues are exposed on the protein’s surface. (B) Five
residues are both EFR and functional in the acyl-coenzyme A binding protein
(PDB:2abd A) which is one of the exceptions in the dataset where some residues are
both EFR as well as functional.

case. Another case in which natures avoids limitations imposed by a defined structural 248

fold can be found in aminoacyl tRNA synthetases [68,69,75]. Ancient enzymes may 249

have existed as functional molten globules [76,77] in their earliest 250

implementations [68,69] in order to not restrict evolution prematurely by ensuring 251

integrity of the protein’s fold [78]. Disordered proteins are another example of proteins 252

without structural integrity which achieve a high robustness of function [49]. In 253

structural biology, structure is commonly considered to be equal to function [49,79]. 254

However ultimately, it is most important that proteins are functional [79,80]. This 255

potential unimportance of a particular fold underlines that structurally and functionally 256

relevant residues are detached entities in proteins and that their separation is 257

advantageous for evolvability. Another interpretation with respect to the defined 258

pathways model [14] is that EFR initiate and guide the folding process. By assigning 259

this responsibility to a small number of residues, the remaining residues are available to 260

carry other responsibility such as constituting active sites. 261

Early Folding and functional residues exhibit distinct features 262

The previously described features were employed to substantiate the identified 263

separation of structure and function on residue level (S3 Table). EFR show significantly 264

lower computed energy values when compared to LFR or functional residues (Fig 6A). 265

Functional residues exhibit higher energy values than their non-functional counterparts. 266

Most residues form only a small number of hydrophobic interactions, however, the 267

number for EFR is significantly increased (Fig 6B). 97.7% of EFR form hydrogen bonds 268

and 64.3% participate in hydrophobic interactions. Functional residues participate to 269

93.1% in hydrogen bonds and to 43.8% in hydrophobic interactions. On the contrary, 270

the change between the hydrogen bond count of EFR and functional residues in a 271

buried state is insignificant (S3 Table). The clustering coefficient of a node captures 272

how many edges can be observed between the adjacent nodes and, thus, describes how 273

well-connected the direct surroundings of a node are. Functional residues show an 274

insignificant change regarding this property (S3 Table). In contrast, the clustering 275

coefficient significantly decreases when EFR are compared to LFR or functional residues 276

(Fig 6C). In summary, EFR exhibit distinct properties compared to functional residues. 277

Their surrounding secondary structure elements, values in Energy Profiles, and the 278
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number of hydrophobic interactions are especially discriminative. 279

Fig 6. Characteristics of EFR and functional residues. EFR and LFR are
compared to functional and non-functional residues. (A) EFR show lower energy values
as they are in contact with many residues and tend to be embedded in the hydrophobic
core. In contrast, functional residues are exposed to the solvent in order to constitute
e.g. binding sites. (B) Hydrophobic interactions occur especially in the core of a
protein. Therefore, most residues do not form any. EFR however show an significant
increase compared to LFR. (C) The clustering coefficient of a node describes how
well-connected its adjacent nodes are. EFR connect regions of a protein which are
separated on sequence and, thus, not well-connected on their own. Functional residues
exhibit higher values.

Due to their purpose, EFR are located in the hydrophobic core and functional 280

residues are primarily exposed to the solvent. This distinct requirements manifest in the 281

computed energy values. Furthermore, protein function can commonly be broken down 282

to amino acids which feature hydrophilic, chemically functional groups [72]. Hydroxyl 283

groups are a prominent examples for functional groups contributing to catalysis [72]. 284

Thus, functional residues are likely to exhibit above average energy values because of 285

their higher propensity to contain hydrophilic side chains. Analogously, fewer 286

hydrophobic amino acids constitute the functional residues of binding sites and they 287

form fewer hydrophobic interactions. Most of the hydrophobic interactions are 288

accumulated in the hydrophobic core of a protein [1, 28,81]. EFR tend to be crucial 289

connectors in proteins, however, their clustering coefficient is low. This can be 290

attributed to the fact that EFR connect many distinct neighborhoods. Furthermore, 291

functional residues feature above average closeness values: they are well-connected to 292

other parts of the protein, even though they are unaffected during the early folding 293

process. It was shown that functional residues have special requirements on how they 294

are wired to the rest of a protein [45]: Surrounding residues ensure the correct 295

placement of functional residues [45, 82,83], modulate their chemical properties such as 296

pK a values [45,72,84], or propagate signals to other parts of a protein [45]. 297

Modularity in proteins is also present in domains [54], secondary structure elements, 298

and autonomous folding units of the defined pathways model [17,27]. Particularized 299

knowledge of EFR may improve synthetic biology and could allow the design of proteins 300

combining existing functional domains without influencing one another 301

negatively [2, 54,55,85]. Furthermore, understanding the differences of structurally 302

relevant residues and those implementing function could help in predicting mutation 303

effects and provide a new level of detail by allowing whether a mutation disrupts the 304

protein’s fold or its function [86,87]. 305

Conclusion 306

A dataset of EFR for the protein folding process was studied. They were found to be 307

highly connected nodes in protein graphs and were observed to be located in 308

energetically favorable conformations as pointed out by the approach of Energy 309

Profiling [3, 28]. These structurally relevant residues have distinct properties e.g. 310

regarding the number of hydrophobic interactions compared to functional residues. 311

Future HDX data can substantiate the presented trends regarding the nature of 312

EFR. Potentially, the arsenal of experimental techniques to study the folding process of 313

proteins will expand and become more refined and standardized, so that the underlying 314

dataset of studies like this one will become more robust. EFR are an excellent tool to 315

gain insights into the folding process with spatial and temporal resolution. Future 316
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studies may link them to characteristics on sequence level to understand the sequence 317

composition which causes particular regions of a protein to initiate the folding process. 318

Features presented in this study were shown to be highly discriminative for EFR. 319

Insights into topological properties of residues can also improve structure quality 320

assessment programs [3]. Classifiers for EFR based on sequence [23] or structure may 321

annotate residues crucial for protein folding. Trained classifiers can also report as well 322

as visualize the most discriminative features [88,89] which may further delineate EFR. 323

This information is also invaluable for mutation studies, φ-value analysis, or protein 324

design and can serve as basis for the prediction of mutation effects [86]. Understanding 325

the protein folding problem may also give insights into the cause of diseases such as 326

amyotrophic lateral sclerosis [4, 5], Alzheimer’s [7], and Parkinson’s disease [7]. The 327

same is true for the observed division of structurally relevant and functional residues in 328

proteins. Understanding these topological differences provides insights into the way they 329

interact with the rest of the protein and to what degree they tolerate or compensate 330

manipulation. For decades, scientists longed for a glimpse into the folding process [8–10] 331

and the dataset of EFR [39] provides just that. It is stunning that not more studies are 332

focused on this resource. 333

Methods 334

Dataset creation 335

Folding characteristics of residues were obtained from the Start2Fold database [39]. 336

Therein, the authors adopted the definition of EFR from Li et al. [29] and presented a 337

refined dataset which ignores possible back-unfolding and aggregation events [90]. 338

This procedure resulted in a dataset for EFR characteristics encompassing 30 339

proteins and 3,377 residues – 482 of the EFR class and 2,895 of the LFR class. Due to 340

the nature of the HDX experiments no data can be obtained for proline residues [37], 341

rendering them LFR in any case. Annotation of functional residues was performed using 342

the SIFTS [91] and UniProt [59] resources. For 23 proteins an annotation of binding 343

sites or regions existed, totaling in 2,807 residues – 130 classified as functional and 2,677 344

as non-functional. A detailed summary of the dataset is provided in S1 Table. 345

Information used from the Start2Fold database can be found in S1 File. Residues 346

annotated as functional are summarized in S2 File. 347

Graph representation and analysis 348

Protein structures are commonly represented as graphs. This allows a scale-invariant 349

characterization of the neighborhood relation of individual amino acids in the context of 350

the whole protein [47]. 351

In this study, amino acids constitute the nodes of a graph, whereas covalent bonds 352

and residue contacts are represented as edges. Residues were considered in contact 353

when their Cβ atoms were less than 8 Å apart – if no Cβ atom was present the Cα 354

position was used as fallback. Furthermore, contacts were labeled as either local (i.e. 355

the separation in sequence is less than six) or long-range (i.e. sequence separation 356

greater than five) [92]. This distinguishes contacts stabilizing secondary structure 357

elements and those which represent contacts between secondary structure elements. The 358

set of distinct neighborhoods of a node is defined as all adjacent nodes which do not 359

share any local edge to any element of the set. Betweenness is defined the number of 360

shortest paths on the graph passing through a specific node, normalized by the number 361

of node pairs [46,93]. Closeness of a node is defined as the inverse of the average path 362

length to any other node [45]. The clustering coefficient of node is the number of edges 363
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between its nk adjacent nodes divided by the maximal number of edges between nk 364

nodes: 0.5 · nk · (nk − 1) [46]. 365

Feature computation 366

Energy Profiles were calculated from structure and predicted from sequence according 367

to the methodology used in the eQuant web server [3, 28]. Energy Profiles represent a 368

protein’s complex three-dimensional structure as one-dimensional vector of energy 369

values. Thereby, the surroundings of each residue are characterized by one energy value. 370

RASA values were computed by the algorithm of Shrake and Rupley [94]. Buried 371

residues are defined as those with RASA values less than 0.16 [65]. Non-covalent 372

residue-residue contacts were detected by PLIP [95]. Secondary structure elements were 373

annotated using DSSP [96]. The loop fraction is defined as fraction of unordered 374

secondary structure in a window of nine residues around the evaluated amino acid [60]. 375

This yields a fraction, where high values are tied to regions of high disorder, whereas 376

amino acids embedded in α-helices or β-sheets result in scores close to zero. The 377

centroid distance of a residue is the spatial distance of its centroid to that of all atoms. 378

The terminus distance is lower of the sequence separation to either terminus divided by 379

the number of residues. 380

Data integration was performed by a Java library publicly available at 381

https://github.com/JonStargaryen/jstructure. 382

Statistical analysis 383

Association between distributions of nominal variables was quantified with Cramér’s V. 384

Dependence of distributions of real-valued variables was tested by the Mann-Whitney U 385

test. Dependence of distributions of count variables was tested using the Dunn test with 386

Bonferroni correction. * corresponds to significant p-values <0.05 for the 387

Mann-Whitney U and p-values <0.025 for the Dunn test. 388
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Supporting information

S1 Table. EFR dataset summary. Summarizes identifiers [23] of each entry as
well as the number of residues in the corresponding protein chain, the number of EFR
and functional residues as well as the cardinality of the intersection of both sets.
Proteins not containing any functional residues according to UniProt [59] are marked
with dashes.

S2 Table. Statistical characterization of EFR. For each presented feature the
mean (µ) and standard deviation (σ) of both the EFR and LFR category is reported.
pburied refers to the p-value of the test on residues buried according their RASA value,
this was done because EFR have a tendency to be located in the core of a protein and
without filtering all differences are significant. Features and employed tests are
described in the Methods section.

S3 Table. Comparison of EFR and functional residues. For each presented
feature the distribution of values is compared between functional and non-functional
residues as well as EFR and functional residues. The corresponding p-values and
significance level are stated for buried residues. Mean values are shown for EFR (µearly)
and functional residues (µfunc). Features and employed tests are described in the
Methods section.
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S1 File. Dataset as JSON file. Machine-readable JSON version of the dataset.
Provides protein name, Start2Fold identifier, PDB identifier, UniProt identifier, number
of EFR, range of residues numbers, and the secondary structure element composition for
each dataset entry.

S2 File. Dataset as table. Summary table of all protein chains used for the
analysis. Provides Start2Fold identifier, PDB identifier, evaluated experiments, number
of EFR, UniProt identifier, and identifiers of functional residues derived from UniProt.

18/18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290627doi: bioRxiv preprint 

https://doi.org/10.1101/290627
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290627doi: bioRxiv preprint 

https://doi.org/10.1101/290627
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290627doi: bioRxiv preprint 

https://doi.org/10.1101/290627
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290627doi: bioRxiv preprint 

https://doi.org/10.1101/290627
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290627doi: bioRxiv preprint 

https://doi.org/10.1101/290627
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290627doi: bioRxiv preprint 

https://doi.org/10.1101/290627
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290627doi: bioRxiv preprint 

https://doi.org/10.1101/290627
http://creativecommons.org/licenses/by/4.0/

