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Abstract

To achieve accurate assignment of peptide sequences to observed fragmentation spectra, a shotgun
proteomics database search tool must make good use of the very high resolution information produced
by state-of-the-art mass spectrometers. However, making use of this information while also ensuring
that the search engine’s scores are well calibrated—i.e., that the score assigned to one spectrum can be
meaningfully compared to the score assigned to a different spectrum—has proven to be challenging. Here,
we describe a database search score function, the “residue evidence” (res-ev) score, that achieves both of
these goals simultaneously. We also demonstrate how to combine calibrated res-ev scores with calibrated
XCorr scores to produce a “combined p-value” score function. We provide a benchmark consisting of
four mass spectrometry data sets, which we use to compare the combined p-value to the score functions
used by several existing search engines. Our results suggest that the combined p-value achieves state-of-
the-art performance, generally outperforming MS Amanda and Morpheus and performing comparably
to MS-GF+. The res-ev and combined p-value score functions are freely available as part of the Tide
search engine in the Crux mass spectrometry toolkit (http://crux.ms).
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1 Introduction1

In the analysis of protein tandem mass spectrometry data produced in a bottom-up fashion using traditional,2

data-dependent acquisition, the database search step is critical. In this step, each observed spectrum is3

assigned to a peptide sequence drawn from a given database, and the resulting peptide-spectrum match4

(PSM) is assigned a score. Ideally, a “good” score implies that the peptide was likely to have been responsible5

for generating the observed spectrum. Of course, in the context of a typical scientific study, the end goal is6

usually downstream of the PSMs—e.g., to detect and quantify proteins, or to characterize proteins whose7

quantification changes across experimental conditions. However, none of these downstream steps can be8

accomplished if the database search step fails. Furthermore, although in principle de novo approaches can9

help to identify some observed spectra, in practice de novo approaches do not approach the power of database10

search strategies to detect hundreds or thousands of peptides in a given complex mixture (1). Consequently,11

a database search engine forms the backbone of most shotgun proteomics analysis pipelines.12
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Figure 1: The figure plots, as a function of peptide length, the proportion of randomly generated peptide
sequences that obey Equation 1. The two series marked “Real” use monoisotopic masses from the 20 real
amino acids; the series marked “Random” uses masses that have a random number in the range 〈0, 1] added
to each mass. Two bin sizes (1.005079 Da and 0.02 Da) are used. For each series, a total of 100,000 peptides
were simulated.

Given the importance of database search, it is not surprising that dozens of search engines have been13

developed since the advent of the first such search tool, SEQUEST, in 1994 (2) (reviewed by (3)). The14

algorithms employed by all of these engines are remarkably consistent. For each spectrum, the algorithm15

extracts from the given database all peptides whose masses fall within a user-specified tolerance of the16

inferred precursor mass associated with the observed spectrum. Each of these candidate peptides is then17

scored against the observed spectrum, and the top-scoring peptide is reported as a PSM. Thus, in practice,18

the defining characteristic of any search engines lies in the details of its peptide-to-spectrum score function.19

The history of development of shotgun proteomics search engines can be seen primarily as a history of20

development of PSM score functions.21

Some new score functions are driven by technology. For example, over the past decade, the resolution at22

which tandem mass spectra can be efficiently collected has improved dramatically. Typical data sets offer23

fragment ion resolution in the range of 5–10 ppm, compared to the ∼1 Da resolution that was common24

a decade ago. This improved resolution means that score functions designed for low resolution data did25

not necessarily generalize well to higher resolutions. For example, the score function in Morpheus (4) was26

explicitly designed to make good use of high-resolution mass accuracy.27

On the other hand, some new score functions are driven by conceptual advances. A notable trend was28

the introduction of score functions that aim to achieve good calibration (5–7). We say that a score function29

is calibrated if a score of x assigned to one spectrum has the same meaning or significance as a score of30

x assigned to a different spectrum. In practice, many PSM score functions are not well calibrated with31

respect to spectra, that is, they tend to assign systematically different scores to different spectra. Therefore,32

performing database search with such a function yields a loss of statistical power (8). One way to improve33

the calibration of a given score function is to compute, for a given spectrum, the distribution of scores for34

all possible peptides. The cumulative density function of the resulting distribution then provides a well35

calibrated score, called a p-value. MS-GF+ demonstrated how to carry out this style of calibration using a36

dynamic programming procedure (5), and a similar approach was adopted subsequently by RAId aPS (6)37

and Tide (7).38

Unfortunately, a signficant drawback to the dynamic programming calibration procedure is that it typi-39

cally breaks down when employed in conjunction with data generated using high-resolution fragment mass40

accuracy. To explain the problem, it is first necessary to outline how the dynamic programming algorithm41

works. Any dynamic programming procedure involves building up a table of solutions to problems of in-42

creasing size. In the case of the procedures employed by MS-GF+, RAId aPS, and Tide, the entry in row i43

and column j of the dynamic programming table contains a count of the total number of peptide sequences44
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whose (discretized) mass is i and whose (discretized) score with respect to the current spectrum is j. The45

procedure works by filling in values in this table for increasingly large values of i and j, computing each new46

value by summing over existing entries in the table (see Methods for details).47

The problem arises in the discretization of the mass axis. The logic associated with filling in the table48

requires sequentially adding together discretized amino acid masses. For this sequential summation to work49

properly, it must be the case that, for any given peptide, the sum of the discretized amino acid masses equals50

the discretized sum of the amino acid masses. More concretely, using a bin size of w and for a peptide51

consisting of amino acids a1, a2, . . . , an, it must be the case that52

round((a1 + a2 + . . . an)/w) = round(a1/w) + round(a2/w) + · · ·+ round(an/w). (1)

Whether and how frequently Equation 1 is violated depends upon properties of the amino acid masses53

and the size of the bins used to discretize the mass axis. It is easy to see that, for arbitrary amino acid masses54

and peptides of reasonable length, Equation 1 will frequently be violated (“Random” series in Figure 1). On55

the other hand, when we use real amino acid masses and a bin size of ∼1 Da, short peptides uniformly obey56

Equation 1. This is because peptide masses are naturally discrete. Longer peptides do occasionally break the57

rules because peptide masses are not perfectly discrete; however, for peptides of the size typically considered58

by shotgun proteomics, this rule-breaking is quite rare. The story changes, however, when we modify the59

bin size used to discretize the fragment m/z axis. Because such bins do not align well with the natural60

discreteness of the peptide mass axis, Equation 1 is violated quite frequently. Consequently, the dynamic61

programming procedure ends up spreading the counts associated with peptides of mass i among bins in rows62

i−1, i, and i+1. We are thus left with a conundrum: we have two techniques to achieve improved statistical63

power—using increased resolution on the fragment m/z axis or using dynamic programming to achieve good64

score calibration—but we cannot use both of these techniques simultaneously.65

One solution to this problem is to modify the score function. MS-GF+ does this by creating a score66

function that takes into account both the intensity of each observed peak as well as its participation in a pair67

of peaks with a mass difference equal to the mass of an amino acid. The latter term, which is implemented68

as a weight associated with a given peak, can be computed in high resolution, even if the peaks themselves69

are scored in low resolution. The dynamic programming procedure can then be carried out in the usual70

fashion, simply by incorporating these weights.71

In this work, we propose an alternative solution. We begin with the XCorr score function, which was72

included in the very first search engine, SEQUEST, and continues to be used in SEQUEST and a variety of73

other search engines, including Comet (9), Tide (10), and RAId aPS (6). However, rather than modifying the74

XCorr score function to take into account high-resolution mass information, we create a new score function,75

the “residue-evidence” (res-ev) score, that considers pairs of peaks, similar to the MS-GF+ approach. We76

then score each observed spectrum twice: once with the low-resolution XCorr score that focuses on individual77

peaks, and once with the high-resolution score that focuses on pairs of peaks. We use dynamic programming78

to convert each of these scores to p-values, and we employ a previously described method to estimate the79

p-value for the product of dependent p-values (11).80

In this work, we demonstrate that the new res-ev score function provides improved performance on some81

high-resolution data sets, and that the res-ev and XCorr score functions are complementary to one another.82

Finally, we demonstrate that the combined XCorr+res-ev p-value yields state-of-the-art performance across83

a variety of data sets, outperforming MS Amanda and Morpheus and performing comparably to MS-GF+,84

despite having no trainable parameters. The combined p-value and res-ev p-value score functions are available85

in the Tide search engine, which is part of the Crux toolkit (http://crux.ms).86

2 Methods87

2.1 The XCorr score88

The XCorr score function was first described in 1994 as part of the SEQUEST search engine (2) and is still89

in use today in the commercial SEQUEST product from Thermo Scientific as well as search engines such as90

Comet (9), Tide (10), X!Tandem (12) and RAId aPS (6).91

In our implementation, the first part of the XCorr score involves preprocessing the observed spectrum in92

four steps, as follows:93
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1. The mass axis is discretized by creating a vector O of mass bins with bin width = 1.0005079 Da. Each94

bin Oi is assigned an intensity value, which is the maximum of the intensities of observed peaks whose95

masses fall within the mass range of Oi. The bin width is chosen to match the natural quasi-integer96

masses of peptides and peptide fragments, which in turn derive from the quasi-integer masses of the97

primary constituent elements of peptides (C, H, N, O, S).98

2. The intensity of each bin Oi is replaced by its square root.99

3. Peaks with intensity less than 5.0% of the maximum intensity peak are eliminated from the spectrum.100

4. O is divided into 10 equal length segments, and the intensities within each segment are normalized so101

the maximum intensity in the segment is 50.102

5. A scaled version of O is subtracted from itself at each position across a defined window of offsets:103

Ôi = Oi − 1
151

∑75
τ=−75Oi−τ104

Next, the preprocessed observed spectrum Ô is converted to an “evidence vector” E with n discretized105

mass bins, where n is the integer mass of the spectrum precursor. Each bin Ei specifies the cumulative106

evidence for cleavage at some hypothetical position on the backbone of the precursor peptide. More precisely,107

Ei holds the weighted sum of all intensities in Ô whose mass is consistent with a cleavage producing a b ion108

with integer mass mb = i:109

Ei =
∑
m∈I

wm · Ôm (2)

where I are the integer masses of the b, y, and neutral loss ions consistent with mb and n, and wm = 1110

for b- and y-ions and wm = 0.2 for neutral losses. We consider neutral losses of carbon monoxide (CO,111

also known as “a-ions”), ammonia (NH3) and water (H2O) groups. If the precursor charge assigned to the112

spectrum is > 2, then fragments with charge > 1 are possible. In this case all peaks are replicated into113

lower-mass bins with the appropriate m/z. In particular, for a precursor of charge n, fragment ions up to114

charge n − 1 are considered. In most implementations of XCorr, if two or more predicted peaks fall in the115

same mass bin, then the intensity in that bin is the maximum of those peaks’ intensities. However, in order116

to facilitate calibration via dynamic programming, we wish to make the XCorr score function fully additive.117

Consequently, Equation 2 uses the sum of the peak intensities rather than the maximum (7).118

We then predict a very simple theoretical spectrum from the sequence of the peptide. For this step,119

we use a discrete mass vector B, again using a bin width of 1.0005079 Da. For each possible backbone120

fragmentation of the peptide, B is populated with a single binary marker at the mass of the corresponding121

b ion.122

The final XCorr score is a simple dot product between the evidence vector E and the theoretical spectrum123

B. Thus, the score is essentially the sum of the evidence for all the cleavage events across the length of the124

peptide.125

2.2 The residue evidence score126

The computation of the residue evidence score proceeds in the same steps outlined above for XCorr: pre-127

processing of the observed spectrum, aggregation of evidence, generation of a theoretical spectrum, and128

calculation of a score based on the evidence and the theoretical spectrum. Unlike the XCorr processing,129

which aggregates evidence into a vector indexed by m/z, the res-ev score aggregates evidence in a matrix130

indexed by m/z and amino acid.131

The residue evidence score preprocessing employs a subset of the steps previously described for XCorr.132

1. The intensity of each peak is replaced by its square root.133

2. Peaks with intensity less than 5.0% of the maximum intensity peak are eliminated from the spectrum.134

Peaks within a 1.5 Th window of the precursor peak (assuming ’remove-precursor-peak=T’) are also135

eliminated.136

3. The spectrum is divided into 10 equal length segments, and the intensities within each segment is137

normalized so the maximum intensity in the segment is 50.138
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There are two important changes in this preprocessing compared to that for the XCorr score function. First,139

discretization of the peaks’ mass values is deferred until after the high-resolution residue evidence has been140

quantified and aggregated. Second, the final subtractive step, which induces a cross-correlation penalty in the141

XCorr score function, is omitted altogether. Another difference is the addition of two peaks, representing142

the m/z of the N-terminal group and the m/z of the precursor minus the C-terminal group (typically a143

hydroxyl group). Both of these peaks have intensities of zero.144

Next, we quantify and aggregate evidence for each type of residue inducing a b-ion cleavage at each145

possible m/z bin. The residue evidence is defined as follows. Let an arbitrary pair of MS2 peaks A and B146

have measured masses mA and mB , such that mA > mB and the difference in mass mdiff = mA −mB . We147

say evidence exists for a (charge 1+) b ion fragment with mass mA, terminating in amino acid residue X, if148

the deviation abs(mdiff −mX) < mtol, where mtol is the maximum deviation tolerated between mdiff and149

mX . In practice, mtol is on the order of the mass spectrometer’s MS2 resolution. The magnitude r assigned150

to this residue evidence is scaled so as to reward small deviations:151

r = max(0, 1− abs(mdiff −mX)/mtol) (3)

i.e., r takes a value of 1 when the deviation is 0, and 0 when the deviation is equal to or greater than mtol.152

This magnitude r is then multiplied by the sum of the rank intensities of the two peaks, prior to being stored.153

Residue evidence is stored in a two-dimensional residue evidence matrix R. The columns of R are indexed154

by discretized masses mj , and the rows or R correspond to the amino acids ai found in the peptide database155

(typically around 20 rows). The increment of evidence r generated according to Eq. 3 is added to element156

Raimj , where ai = X and mj is obtained by discretizing mA with a bin width W = 1.0005079 Da.157

Each pair of peaks A and B is also considered as a putative pair of charge 1+ y ions, charge 2+ b158

ions, and charge 2+ y ions, and additional residue evidence is generated using appropriate modifications159

to Eq. 3. In all cases, however, the evidence is added to the element of R indexed by the discretized mass160

of the corresponding charge 1+ b ion, so that all evidence related to a particular locus of fragmentation is161

aggregated together.162

Once all possible residue evidence has been accumulated into matrix R, the values in R undergo a linear163

discretization to integer values, such that the minimum value in R is 0 and the maximum is some specified164

integer rmax. This integer discretization ensures that scores will have integer values, which is required for165

the subsequent dynamic programming.166

The theoretical spectrum corresponding to a candidate peptide is very simple. For each possible prefix167

sequence of the peptide a tuple is created, consisting of two elements: the identity of the prefix’s C-terminal168

amino acid and an integer formed by discretizing the prefix mass with bin width W = 1.0005079. For a can-169

didate peptide P of length n, the full representation B then consists of n−1 such tuples: {(ak,mk)}k=1...n−1.170

Finally, assume that candidate peptide P of length n has a minimal binary representation B as described171

above. Then the residue evidence score Ψ between P and spectrum S is the sum of elements selected from172

the residue evidence matrix R (derived from S) according to the tuples in B:173

Ψ(P, S) =
∑

k=1→n−1

Rakmk
(4)

2.3 Calibrating the residue evidence score via dynamic programming174

The following assumes a spectrum S with precursor mass is mS is being scored.175

Let P (1→n) be a peptide of length n, with mass m(1→n) = mS and amino acid sequence a1, a2, . . . , an.176

Because Ψ(P, S) is additive, the score for matching S with P (1→n) can be obtained by first calculating the177

score for the prefix sequence P (1→n−1) = a1, a2, ..., an−1, then adding the evidence r = RanmS
from the178

residue evidence matrix R. Note that this process is equally valid for any subsequence P (1→k) = a1, a2, ..., ak179

with mass m(1→k),180

Ψ(P (1→k)) = Ψ(P (1→k−1)) +Rakm(1→k) (5)

Let Cs,m be the count of peptides with mass m that produce a discretized score s. If (hypothetically) all181

the peptides have the same terminal amino acid a with mass ma, then we would have182

Cs,m = Cs−Ram,m−ma
(6)
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Allowing for all naturally occurring amino acids ai ∈ A, with masses mai , the count becomes183

Cs,m =
∑
ai∈A

Cs−Raim
,m−mai

(7)

Since Ψ(P, S) is additive, Eq. 7 is valid for all masses 1 ≤ m ≤ mS . Eq. 7 defines the basic recursion of the184

DP.185

The DP computation of C is conducted in a two-dimensional array, where the rows are indexed by s and186

the columns by m. The number of rows is determined by an estimate of the largest possible score for S:187

smax =
n∑

i=n−q+1

Z(i) (8)

where Z(i) refers to the sorted column maxima from R and q = dmS/min{mai∈A}e.188

We initially set:189

• C0,TN
← 1, where TN is the mass of the N-terminal group.190

• Cs,m ← 0 for all s 6= 0 or m 6= 1. This includes a range of indices s < 1 and m < 1 that are accessed191

during the DP.192

The elements of the array are then computed sequentially:193

for m = TN to mS − TC do194

for s = s0 to smax do195

Cs,m =
∑
ai∈A Cs−Raim

,m−mai
196

end for197

end for198

Above, the values TN and TC represent the masses of the N-terminal and C-terminal groups, respectively.199

Hence, the last column of the matrix C typically represents mass mS − 17, since the C-terminal group is200

usually a hydroxyl. This column holds the desired distribution of XR over all possible peptides consistent201

with mS .202

By using Eq. 7 in the DP, we make the assumption that all peptides are a priori equally likely. This203

is not biologically plausible, and, in fact, leads to distributions of Ψ(P, S) that lack appropriate statistical204

properties. This problem can be solved by considering the relative abundances of amino acids in the recursive205

counting:206

Cs,m =
∑
ai∈A

Cs−Raim
,m−mai

· pai (9)

where pai is the probability of finding amino acid ai in a large collection of naturally occurring peptides,207

with
∑
ai∈A pai = 1. Note that it may be important to use different estimates of pai for the N-terminus,208

C-terminus, and non-terminal positions, depending on the specificity of the enzyme used for digestion.209

Assume we have calculated, using DP, the distribution of scores Cs,mS
over all possible peptides for210

spectrum S, where 0 ≤ s ≤ smax. Then the p-value relative to this distribution for a specific peptide P ,211

matched to S with residue evidence score ψ = Ψ(P, S), is212

p(ψ,Cs,mS
) =

∑
s≥ψ Cs,mS∑

0≤s≤smax
Cs,mS

. (10)

These p-values can be used in place of raw residue evidence scores during a standard database search.213

2.4 Combining correlated p-values214

The res-ev p-value and the XCorr p-value provide complementary yet not fully independent estimates of the215

quality of a given peptide-spectrum match (PSM). Accordingly, we employ a previously described method216

for assigning a p-value to the product of n correlated p-values (11), using the following equation:217

Pr(Zn ≤ p) ≈ py
bmc−1∑
i=0

(− ln py)i

i!
+ py(m− bmc) (− ln py)bmc

bmc!
(11)
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Species instrument spectra precursor (ppm) proteins peptides
Plasmodium LTQ Velos-Orbitrap 12,748 50 11,737 746,911
E. coli Q-Exactive 53,083 50 3,895 2,094,174
Human LTQ Orbitrap Elite 5,796 10 110,829 2,062,622
Ocean Q-Exactive HF 98,137 10 N/A 35,546,224

Table 1: Mass spectometry datasets. The database used for the ocean data set is comprised of individual
peptides derived from high-throughput sequencing reads, rather than full-length proteins.

where n is the number of p-values being multiplied (in our case, n = 2), Zn is the product of the p-values, m218

is a parameter that can range from 1 to n, and y = m/n. The value of m indicates the degree of correlation219

among the n p-values, where total correlation (i.e., identical p-values) corresponds to m = 1, and total220

independence corresponds to m = n. In this setting, we used decoy p-values to empirically estimate m = 1.2221

(Supplementary Figure 1) by minimizing the previously described error function:222

E(m) =

√√√√ n∑
i=1

[log(pi(m))− log(i/(n+ 1))]2 (12)

where pi(m) is the ith largest p-value (of the product of p-values) in a set of n decoy p-values. Intuitively,223

this error function attempts to minimize the difference between the observed p-value distribution and an224

ideal, uniform distribution.225

2.5 Data sets226

We used four previously described tandem mass spectrometry data sets to validate our methods (Table 1).227

The data sets were selected to represent a diversity of both sample types and instrument types.228

Plasmodium falciparum fraction (13): P. falciparum 3D7 was grown at 37◦ Celsius in RPMI-1640 culture229

medium. Following synchronization, infected cells were lysed using saponin. An 8 M urea lysis buffer was230

used to create parasite extracts, which were then reduced and alkylated. Proteins were digested using Lys-231

C, and the resulting peptides were labeled with TMT. Following TMT labeling, strong cation exchange232

chromatography (SCX) was use to fractionate the sample into 20 fractions. Fractions were analyzed on233

a LTQ Velos-Orbitrap mass spectrometer (Thermo Scientific). All MS1 and MS2 scans were acquired at234

high resolution. The data from fraction 13 was used in this study and contained 12,748 scans. The protein235

database used in the database search was downloaded from NCBI in October 2013 (Plasmodium falciparum236

3D7).237

Ocean metaproteome (14): Water samples from the northern Chukchi Sea bottom waters were collected238

in the summer of 2013. To remove larger eukaryotes, each 15 L water sample was prefiltered through a 10 µm239

and then a 1 µm filter. The remaining liquid was collected onto a glass fiber filter and frozen. Cells were lysed240

using bead beating in 6 M urea. A total of 100 µg of total protein were used for digestion. Prior to digestion,241

300 ηg of human ApoA1 protein was added and then the sample reduced and alkylated. Proteins were di-242

gested with trpysin and then desalted. Peptide separation was conducted using a NanoAquity HPLC with a243

4 cm precolumn and a 30 cm analytical column. Peptides were eluted at a rate of 300 ηL/min for 2 hours using244

a nonlinear gradient. Data was collected on a Q-Exactive HF (Thermo Scientific). The mass spectrometer245

was operated in a Top 20 data-dependent acquisition mode with a 5 second dynamic exclusion window. Ions246

only between 400-1600m/z were collected. This resulted in a dataset with 98,137 scans. The database used in247

the database search consists of a metapeptide database that was derived from shotgun metagenomic sequenc-248

ing of the same ocean sample (https://noble.gs.washington.edu/proj/metapeptide/metapeptides CS.fasta).249

Briefly, a metapeptide database is a peptide database whose sequences are derived from raw read sequences250

that have been translated into peptides in all six reading frames (14).251

Human fraction (15): Histologically normal adrenal gland tissue from three deceased individuals were252

pooled together using equal amonts of protein from each donor. Samples were lysed using SDS. The pro-253

tein sample was fractionated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Then the protein254
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bands were destained, reduced, and alkylated. Protein digestion was peformed using an in-gel trypsin di-255

gestion. Following digestion, the peptides were desalted. The resulting peptide sample was separated with256

a 60 min linear gradient using reversed-phase liquid chromatography on an Easy-nLC II nanoflow liquid257

chromatography system (Thermo Scientific). Data was acquired using a LTQ-Orbitrap Elite (Thermo Sci-258

entific). The mass spectrometer was operated in a Top 20 data-dependent acquisition mode with a 30259

second dynamic exclusion window. MS1 scans were acquired at a mass resolution of 120,000 at 400 m/z.260

MS2 scans were acquired at a mass resolution of 30,000 at 400 m/z. This study used data from the261

first fraction, which contained 5,796 scans. Each chromosome’s “protein.faa” was downloaded from RefSeq262

(ftp://ftp.ncbi.nlm.nih.gov/refseq/H sapiens/mRNA Prot) in September 2016 and concatenated to form the263

human protein database.264

E. coli fraction (16): A yfgM knockout strain and WT strain of E. coli MC4100 was cultured at 37◦ Celsius265

in LB broth (Difco, Sparks, MD). Cells were harvested using centrifugation once the OD600nm reached ∼.08.266

Cellular pellets were suspended in a lysis buffer and then lysed by rapidly passaging the cells through a267

hypodermic syringe needle and by sonication. Proteins were then reduced, alkylated, and then reduced268

a second time. A 4 hour digestion step with Lys-C was followed by an overnight trypsin digestion. The269

resulting peptides were chemically labeled using stable isotope dimethyl labeling. The yfgM knockout lysate270

was labeled with the “Medium” isotope and the the WT sample was labeled with the “Heavy” isotope.271

These lysates were mixed together in a 1:1 ratio and then fractionated into 45 fractions using strong cation272

exchange. Samples were analyzed on a Q-Exactive (Thermo Scientific) coupled to a Easy UHPLC (Thermo273

Scientific) system. Peptides were eluted during a 3 hour gradient with a flow rate of 100 ηL/min. The Q-274

Exactive instrument was operated in a Top 20 data-dependent acquisition mode. MS1 scans were acquired275

at a mass resolution of 35,000. MS2 scans were acquired at a mass resolution of 17,500. The 21st fraction276

was used for this study and contained 53,083 scans. The protein database used in the database search was277

downloaded from Uniprot in December 2017 (Escherichia coli str. K-12 substr. MC4100).278

2.6 Target-decoy evaluation279

For this work, we used the following publicly available database search engines.280

• Crux version 3.1 (http://crux.ms; linux version) was used to generate combined p-value, res-ev p-value,281

XCorr p-value, and high-resolution XCorr (7, 17, 18)282

• MS-GF+ version v2016.12.12 (https://omics.pnl.gov/software/ms-gf) (19)283

• MS Amanda version 1.0.0.7504 (http://ms.imp.ac.at/?goto=msamanda; linux version) (20)284

• Morpheus version 272 (http://cwenger.github.io/Morpheus/; linux version) (4)285

We took great care to ensure a fair comparison of results across all database search engines. One of286

the more important ways we accomplished this goal was to try to guarantee that all the database search287

engines considered a common set of target and decoy peptides. To this end, we took several non-standard288

steps in our analysis. First, we predigested our protein fasta files in silico using the tide-index tool in Crux.289

This predigestion did not include suppression of cleavage by proline, because not all search engines use this290

rule. Decoy peptides were generated by tide-index by shuffling the amino acid sequence of each peptide,291

leaving the N-terminal and C-terminal amino acids in place. For this digestion, no missed cleavages were292

allowed, and N-terminal peptides with a leading methionine were included in two copies, with and without293

the methionine. Peptides shorter than six amino acids and peptides with one or more non-enzymatic termini294

were not considered. The resulting target and decoy peptides were placed into a new .fasta file. The words295

’target’ and ’decoy’ were appended to the peptide headers of the peptides in their respective .fasta files.296

Then the target and decoy .fasta file were concatenated to create a target-decoy database for MS Amanda.297

Because it is not possible to turn off N-terminal methionine clipping in MS Amanda, in order to ensure298

that the other three database search tools were exposed to the same peptides as MS Amanda, we then299

subjected the predigested .fasta files to a second round of “digestion”. In this second round, no missed300

cleavages were allowed, N-terminal methionines were allowed to be clipped, and peptides shorter than five301

amino acids were removed. Since the .fasta files that went through the second round were pre-digested,302

this next step only performed clipping of N-terminal methionines. The resulting target and decoy peptide303
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files were then concatenated to create a target-decoy database for MS-GF+, Morpheus, and Crux. This304

predigestion strategy ensured that all search engines considered the same set of candidates. Note that,305

subsequent to the searches, we also checked that each detected peptide was indeed present in the .fasta306

database.307

In addition to ensuring the database search engines considered the same set of targets and decoys, we308

tried to match the experimental parameters in each database search as exactly as possible. We removed309

any MS2 scans that had fewer than 10 peaks in it. All searches were run with full digestion (i.e. no missed310

cleavages). No non-enzymatic termini and no isotope errors were allowed. The maximum precursor charge311

was set to 25 (E. coli), seven (human and ocean), or nine (Plasmodium). The E. coli, human, and ocean312

sample were run with trypsin as the digestion enzyme, while the Plasmodium sample was run with Lys-C313

as the digestion enzyme. The proline rule was ignored for all runs. The precursor mass tolerance was set314

to 50 ppm for the E. coli and Plasmodium runs and 10 ppm for the human and ocean runs. We set the315

fragment mass tolerance at 0.02 Da for combined p-value, res-ev p-value, MS Amanda, and Morpheus for316

all four datasets; however, we were unable to set the fragment mass tolerance for MS-GF+ as it is not317

a user-level parameter. For MSGF+, we can somewhat control the fragment mass tolerance by correctly318

setting the user-level parameters of ’inst’ and ’m’. For the human and Plasmodium dataset, we set ’inst’ to319

1 and ’m’ to 3. These settings correspond to high-resolution MS2 scans that were generated by HCD. For320

the ocean and E. coli sample, we set ’inst’ to 3 and ’m’ to 3. These settings correspond to high-resolution321

MS2 scans that were generated by a Q-Exactive. For all four datasets, we allowed a fixed carbamidomethyl322

modification to cysteine and a variable methionine oxidation modification. In addition we allowed a variable323

light, intermediate, and heavy dimethyl label (28.0313, 32.0564 and 36.0757 Da, respectively) on lysines324

and the N-terminus for the E. coli run. For the Plasmodium run, we included a fixed TMT modification325

(229.16293 Da) on lysines and the N-terminus. Methionine clipping was turned off for Crux, Morpheus, and326

MS-GF+ since the input .fasta file already contained clipped peptides. All search engines runs were done327

in target-only mode since the peptide headers in the concatenated target-decoy .fasta file already denoted328

whether it was a target or decoy peptide. The exact commands used to run the database searches can be329

found in Supplementary File 5.330

A custom R script (Supplemental File 3) was used to combine the results of the various search engines331

together into a single table. Each row represents the PSM that each database search detected for a particular332

scan. For each row (scan) the combined p-value, res-ev p-value, XCorr p-value, SpecEvalue (MS-GF+),333

weighted probability (MS Amanda), and Morpheus scores are listed in Supplemental File 2. In addition,334

the peptide that each score function detected, and whether that peptide is a target or decoy, is also listed.335

The value ’NA’ is placed into empty cells that result from one score function scoring a scan and another336

score function not scoring that particular scan. This phenomenon is due to each program having a different337

threshold for the minimum number of peaks required to score a scan. A second R script used the PSM table338

as input to calculate false discovery rates and generated the plots for this publication (Supplemental File 4).339

We used the following false discovery rate equation: FDR = (number of decoys + 1) / number of targets340

(21).341

2.7 Percolator analysis342

For the Percolator analysis, the Tide search was performed as described previously, except that during index343

creation, the “digestion” option was set to “partial-digest” and one missed cleavage was allowed (“missed-344

cleavages=1”). This setting allows Percolator to more effectively re-rank various types of PSMs, while taking345

into account their digestion conditions. We then applied the Crux implementation of Percolator directly to346

the Tide search results. The resulting feature vector contains, in addition to the standard Percolator features,347

three separate scores for each PSM: the negative logarithms of the combined p-value, res-ev p-value, and348

XCorr p-value. All default Percolator parameters were used except that ”only-psms” was set to true. Note349

that PSM-level FDR is estimated by Percolator using target-decoy competition (including the +1 correction350

to the number of decoys).351
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Figure 2: Calibration of the residue evidence score via dynamic programming. (A) The figure
plots the p-value, as calculated via dynamic programming, versus the rank p-value, for decoy PSMs from a
Plasmodium dataset. The lines y = x (solid line), y = 2x (dotted line) and y = 0.5x (dotted line) are included
for reference. (B) The figure plots, for the Plasmodium dataset, the number of PSMs accepted as a function
of q-value threshold, for four different database search methods: XCorr calibrated via dynamic programming
using low-resolution m/z bins, uncalibrated XCorr using high-resolution m/z bins, uncalibrated res-ev, and
res-ev calibrated via dynamic programming.

3 Results352

3.1 Statistical validation of residue-evidence p-value353

For any observed spectrum, we can use dynamic programming to determine the exact distribution of residue-354

evidence scores that result from each possible peptide sequences whose discretized mass matches the dis-355

cretized precursor mass. We can then compare the score from a particular PSM to this distribution and356

calculate a p-value, i.e., we compute the probability of observing a residue-evidence score greater than or357

equal to the score of a particular PSM.358

To test the validity of the resulting p-values, we searched real data against a decoy database. Specifically,359

we searched the Plasmodium data set against a shuffled Plasmodium database (see Methods for details) using360

a wide precursor mass tolerance of 3 Da. Because the decoy peptides have been shuffled, we expect all of361

the resulting PSMs to be incorrect. Hence, in this setting, our p-values should be uniformly distributed; i.e.,362

the probability of observing a p-value less than or equal to, say, 0.05 should be 5%. A quantile-quantile plot363

(Figure 2A) of the calculated p-values against the rank of the p-values confirms that the residue-evidence p-364

values are generally uniform. However, we noticed a trend away from y = x among large p-values (horizontal365

line in the upper right hand corner of Figure 2A), as well as an overall upward shift of the p-value distribution366

shown in the figure. These two phenomena arise because of the discrete nature of the res-ev score. In practice,367

many PSMs result in a residue-evidence score of 0, leading to an inflation of p-values of 1.0 and a consequent368

decrease in the remaining p-values. Overall, the near uniformity of the empirical res-ev p-values indicates369

that they provide an accurate assessment of the statistical confidence associated with a given PSM.370

3.2 Residue-evidence works well for high-resolution data371

Having established the validity of the res-ev p-value, we next sought to measure the statistical power of372

the score function in the context of a real database search. For this test, we again used the Plasmodium373
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Figure 3: Disagreements between the XCorr score and the residue-evidence score. (A) An
annotated Plasmodium spectrum (scan 5468) that received a low (i.e., good) p-value from the residue-
evidence score. Colored horizontal lines indicate the locations of peak-pairs that contribute to the residue-
evidence score. (B) Same as (A), but annotated using XCorr. This scan received a high XCorr p-value. (C)
Plasmodium scan 11156, annotated with res-ev, with a high p-value. (D) Same as (C), but annotated using
XCorr, with a low p-value. In each panel, peaks colored in blue, dark blue, red, and dark red represent b+1,
b+2, y+1, y+2 ions, respectively.
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data set, but we searched against a concatenated database of both real (“target”) and shuffled (“decoy”)374

peptide sequences. From the resulting ranked list of PSMs, we used target-decoy analysis to estimate the375

false discovery rate (FDR) associated with each observed PSM score (22). We measured FDR out to a376

maximum of 10%, reasoning that higher FDR thresholds are not likely to be of much practical value. For377

comparison, we repeated our search with three other score functions: the uncalibrated res-ev score function,378

the uncalibrated high-res XCorr score function, and the XCorr p-value. Note that the latter necessarily379

discards the high resolution of the fragment m/z axis, because the XCorr dynamic programming procedure380

requires ∼1 Da bins.381

The results (Figure 2B) clearly show that the res-ev p-value score function outperforms the three compet-382

ing methods. Focusing on the commonly used FDR threshold of 0.01, we see that the res-ev p-value detected383

3,217 PSMs. This corresponds to an increase of 1178 (57.78%) PSMs relative to the raw residue-evidence384

score, 1,047 (48.25%) PSMs relative to the XCorr p-value and 609 (23.35%) PSMs relative to high-resolution385

XCorr. Thus, this experiment suggests that taking simultaneous advantage of statistical calibration and386

high-resolution data improves preformance.387

A complementary measure of the quality of a PSM score function is the “target match percentage”388

(TMP), which is defined as the fraction of spectra for which the top-scoring match involves a target peptide389

(23). For a perfectly random score function, we expect the TMP to be ∼50%. The best possible TMP is390

100%; however, in practice any real data set will contain spectra that cannot be identified, either because391

the corresponding generating peptide is not in the given peptide database or because the spectrum was392

generated by a non-peptide contaminant. TMP provides a measure of the quality of a score function that is393

independent of a score function’s calibration. This is because the TMP never involves comparing scores for394

PSMs involving different spectra. Hence, the distribution of PSM scores for spectrum A can be dramatically395

different from the distribution of PSM scores for spectrum B, but the TMP achieved by the score function396

can still be high.397

In the Plasmodium TMP analysis, the res-ev p-value (and, by definition, also the raw res-ev score)398

achieved the best TMP of 65.08% (8,172 PSMs). High-resolution XCorr yielded the second best TMP of399

64.20% (8,061 PSMs). Not surprisingly, XCorr p-value, which discards high-resolution m/z information, had400

the worst TMP (63.94%, or 8,029 PSMs).401

In order to better understand the differences in scoring between XCorr and residue-evidence, we looked402

at several spectra where XCorr p-value and res-ev p-value greatly disagreed on the significance of their best403

PSMs. Figure 3 shows two such spectra (scans 5468 and 11156) from the Plasmodium dataset that have404

been annotated by both XCorr and residue-evidence.405

Scan 5468 (Figure 3A–B) corresponds to a case where the PSM is given a small residue-evidence p-value406

and a large XCorr p-value. Specifically, although this scan was assigned the same peptide (LRYMVEK) by407

both score functions, the resulting PSM received a p-value of 5.13×10−4 (0.32% FDR) from residue-evidence408

and a p-value of 7.20 × 10−1 (48.50% FDR) from XCorr. The source of this difference is not immediately409

obvious, because the numbers of peaks annotated by the two score functions are similar. The only additional410

ions that XCorr identifies over residue-evidence are the doubly charged b2, b5, and b6 ions and the singly411

charged b6 ion. This PSM scores well according to the res-ev score function because the spectrum contains412

two long “ladders” of consecutive peaks (y1 to y5, and b0 to b2). These ladders are particularly unlikely413

according to a null model in which each peak is treated independently. Conversely, the poor score from414

XCorr may arise because most of the annotated peaks have low intensities. Note that the res-ev score did415

not annotate the doubly charged b5 and b6 ions because the mass difference between these two peaks was416

too different from the mass of glutamate. This speaks to the power of using high resolution on the MS2 m/z417

axis.418

In contrast, scan 11156 (Figure 3C–D) illustrates why some PSMs score well using XCorr and poorly419

using residue-evidence. This scan was assigned the same peptide (ELERSGEVAPDIHEHIK) by both score420

functions, but the resulting PSM received a high p-value (8.45 × 10−1, 47.4% FDR) from residue-evidence421

and a low p-value (1.11 × 10−2, 3.4% FDR) from XCorr. The disparity between the two score functions422

arises because, using residue-evidence, only three pairs of peaks contribute to the score. In contrast, the423

XCorr score includes individual components corresponding to sixteen different fragment ions (b2, b3, b4,424

b7, b9, b11, b12, b16, y1, y2, y5, y10, y12, y14, y15, and y16). In Figure 3D, there are only fourteen425

colored fragment ions because the b3 and b9 ion correspond to the same peak and the b7 and the y16 ion426

also correspond to the same peak. The lack of a long “ladder” of successive b- or y-ion peaks keeps the427
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Figure 4: Combining XCorr and res-ev. (Top row) Each panel plots, for a specified dataset, a density
plot of p-values from XCorr (y-axis) versus res-ev (x-axis). The points are binned into hexagons, and the
color of each hexagon represents the number of points within each bin. The red line represents y = x.
(Bottom row) Each panel plots the number of PSMs accepted as a function of FDR threshold, for three
different database search methods: XCorr p-value, res-ev p-value, and combined p-value.

residue-evidence score low, relative to XCorr.428

3.3 Combining the two scores yields improved power429

The two scans in Figure 3 clearly suggest the need for a score function that can combine the res-ev p-value430

and the XCorr p-value, thereby potentially correctly identifying both scans 3667 and 11156. Estimating431

the p-value for the product of a pair of independent p-values is relatively straightforward; however, in our432

case, the res-ev and XCorr p-values are clearly not independent since they are derived from the same PSM.433

To verify this lack of independence, we computed the res-ev p-value and XCorr p-value for four different434

data sets. These data sets were selected for diversity: they represent different proteome sizes, digestion435

enzymes (trypsin and Lys-C), instruments (LTQ Orbitrap Velos, Q-Exactive, and LTQ-Orbitrap Elite), and436

instrument resolutions. The strong y = x component in each of the resulting density plots (Figure 4, top437

row) indicates a strong lack of independence. We also note that, in general, res-ev shows an enrichment of438

very small p-values compared to XCorr.439

To combine these two scores, we applied a previously described method for estimating the statistical440

significance of the product of correlated p-values (24) (see Methods for details). We hypothesized that the441

resulting combined p-value would perform better than res-ev or XCorr because these two score functions442

take advantage of different types of evidence in the spectrum: the res-ev p-value focuses on adjacent pairs443

of peaks, whereas the XCorr p-value focuses on single peaks.444

To test this hypothesis, we compared the performance of res-ev p-value, XCorr p-value and the combined445

p-value on four data sets. The results (Figure 4, bottom row) show that the combined p-value is generally446

the best-performing method. Notably, however, in three out of the four cases, the performance of combined447

p-value is comparable to res-ev p-value. In two out of the three cases, combined p-value identified only 35448

(0.67%, E. coli) and 51 (2.24%, human) more PSMs than res-ev p-value at a 1% FDR threshold. In the third449

case, combined p-value did marginally worse than res-ev p-value: at a 1% FDR, combined p-value detected450

29 (0.94%) fewer PSMs than res-ev p-value for the Plasmodium dataset. Only in the ocean dataset did the451

combined p-value yield a large increase in performance (817 PSMs, or 11.01%). Conversely, XCorr p-value452
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Figure 5: Comparison with existing methods. (A) The panel plots, for four datasets, the number
of PSMs accepted as a function of FDR threshold for four different database search methods: MS-GF+,
combined p-value, MS-Amanda, and Morpheus. (B) Similar to (A), but the two series correspond to the
combined p-value with and without post-processing via Percolator.

tends to perform poorly in all cases. Overall, these results suggest that combining res-ev with XCorr does453

not lead to decreased performance and occasionally yields a performance increase relative to using the res-ev454

p-value alone.455

3.4 Comparison with existing methods456

Finally, we compared the combined p-value with three existing methods that take advantage of high-457

resolution tandem mass spectra: MS Amanda, Morpheus, and MS-GF+. MS Amanda and Morpheus are458

designed to take advantage of high-resolution tandem mass sectra but are not statistically calibrated. MS-459

GF+, like res-ev p-value and combined p-value, takes simultaneous advantage of statistical calibration and460

high-resolution MS2.461

We found that, in general, combined p-value and MS-GF+ outperformed MS Amanda and Morpheus462

over the entire 0–10% FDR range (Figure 5A). For example, combined p-value detected 1781 (135.33%),463

711 (44.02%), and 2414 (37.33%) more PSMs than MS Amanda at a 1% FDR for the Plasmodium, human,464

and ocean samples, respectively. Similar respective improvements of 1479 (91.41%), 404 (21.02%), and 3074465

(52.95%) were observed for the combined p-value relative to Morpheus, as well as for MS-GF+ relative to466

MS Amanda and Morpheus. The one exception was the E. coli dataset, where MS Amanda performed467

comparably to MS-GF+ and slightly better than the combined p-value. Nonetheless, we interpret the468

performance improvement that the combined p-value and MS-GF+ offer over MS Amanda and Morpheus469

as evidence of the value of having a statistically calibrated score.470

When we focus on the comparison between the combined p-value and MS-GF+, no clear winner emerges.471

For three datasets, E. coli, human, and ocean, MS-GF+ marginally outperformed combined p-value at a 1%472

FDR threshold. Qualitatively, we observe on the E. coli dataset that the difference between MS-GF+ and473

the combined p-value is relatively small for low FDR thresholds—e.g., at a 1% FDR, MS-GF+ yields only474

42 (0.78%) more PSMs than the combined p-value—but increases for larger FDR thresholds. Conversely, for475

the human dataset the difference between MS-GF+ and the combined p-value is largest (24 PSMs or 1.03%)476

at around 1% FDR, but then this difference all but disappears for large FDR thresholds. In contrast to the477

prior two datasets, for the ocean dataset MS-GF+ identfied 8 (0.09%) more PSMs relative to combined p-478
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combined p-value MS-GF+ Morpheus MS Amanda
Plasmodium 65.03% 63.96% 66.86% 60.80%
human 72.57% 71.23% 73.20% 72.19%
E. coli 56.47% 56.72% 58.64% 57.21%
ocean 55.71% 55.46% 57.44% 56.06%

Table 2: Target match percentages. The TMPs of four score functions (rows) for four datasets (columns).
The TMP is defined as the percentage of spectra that match a target peptide.

value at a 1% FDR threshold. However, at larger FDR thresholds, combined p-value consistently performed479

better then MS-GF+. Finally, for the Plasmodium dataset, we observed that combined p-value performed480

dramatically better than MS-GF+ across the entire FDR range, with an improvement of 899 PSMs (40.90%)481

at a 1% FDR.482

Comparing the target match percentages of combined p-value, MS-GF+, Morpheus, and MS Amanda483

yielded unexpected results. In contrast to the comparison shown in Figure 5, where Morpheus consistently484

performed worse than the other score functions, in the TMP comparison Morpheus performed better than485

the other score functions. Morpheus’s TMP was higher than the second-best TMP by 1.83%, 0.63%, 1.43%,486

and 1.38% for the Plasmodium, human, E. coli, and ocean datasets, respectively. Among the remaining three487

methods, the TMP values for most of the data sets were remarkably similar to each other, spanning ranges488

of 71.23–72.57% (human), 56.47–57.21% (E. coli), and 55.46–56.06% (ocean), respectively. The TMP values489

were slightly more variable for the Plasmodium dataset, but even in this case, Morpheus was a clear winner.490

These results suggest that Morpheus is doing a very good job of identifying the correct candidate peptide491

for each spectrum, and perhaps suffers in the calibration of its scores from one spectrum to the next.492

3.5 Using Percolator in conjunction with combined p-value improves power493

In practice, in most proteomics experiments a post-processor such as Percolator (25) or PeptideProphet (26)494

is used to reanalyze the database search results to improve performance. Therefore, we tested whether the495

performance of combined p-value can be improved by post-processing via Percolator. We ran the combined496

p-value database search for all four datasets, as previously described, except that we allowed the peptide497

database to contain semi-tryptic peptides and peptides with one missed cleavage. This approach provides498

Percolator the opportunity to re-rank PSMs while taking into account their digestion conditions. Following499

the database search, we reanalyzed the database results with Percolator. We found that combined p-value500

with Percolator performed better than combined p-value by itself for all four datasets over the entire 0–10%501

FDR range (Figure 5B). At a 1% FDR, Percolator identifies an additional 778 (22.8%), 844 (9.30%), 182502

(6.69%), and 1180 (10.89%) PSMs for the Plasmodium, E. coli, human, and ocean datasets, respectively.503

4 Discussion504

The residue-evidence p-value is reminiscent of the original XCorr score employed by SEQUEST but is505

designed to take simultaneous advantage of statistical calibration and high-resolution tandem mass spectra.506

By combining residue-evidence p-values with XCorr p-values, we obtain state-of-the-art performance in507

identifying tandem mass spectra. The resulting search engine is freely available in the open source Crux508

mass spectrometry toolkit (http://crux.ms).509

The number of search engines available to process shotgun proteomics mass spectrometry data is large and510

growing (reviewed in (3)). Given this diversity of approaches and the different results produced by each search511

engine, it is only natural to attempt to search the same data with multiple methods and combine the results512

in a post-processing stage. Indeed, a wide variety of methods have been developed that adopt this approach,513

including methods that aggregate PSMs and then re-estimate FDRs on the aggregated results (27–29),514

combine statistical confidence measures (30), compute probabilities for each method and then combine these515

probabilities (31–34), or run a machine learning post-processor on the combined results (35). Our empirical516

results suggest that the res-ev score function and its combined p-value provide yet another complementary517

view of peptide-spectrum matching, which will likely add value in the context of such aggregation schemes.518
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One potential explanation for the relatively poor performance of MS-GF+ on the Plasmodium dataset519

is due to the unusual nature of the data itself. MS-GF+ uses a supervised machine learning algorithm to520

learn a scoring model. To perform well on the Plasmodium data might require a model that was trained on521

data with TMT labeling and digestion with Lys-C. In contrast, the combined p-value approach is invariant522

to properties of the data, such as digestion and labeling schemes.523

A potential area for future work lies in the method for combining XCorr and res-ev p-values. We524

empirically set the parameter m, which represents the degree of dependency between the two types of p-525

values, to be 1.2. However, in principle this value could be re-estimated for each new data set, using a526

strategy similar to that shown in Supplementary Figure 1. However, our empirical results (not shown)527

suggest that the behavior of the method is not strongly dependent upon the choice of m.528

The strong performance of the Morpheus search engine as measured by TMP suggests that this score529

does a good job of identifying the generating peptide for a given spectrum. On the other hand, the poor530

overall performance of Morpheus suggests that the score function is poorly calibrated. This is not surprising,531

because the score is simply the sum of two terms: the number of matched product ions, and the fraction of the532

observed peak intensities that can be assigned to matched products. Thus, longer peptides or spectra with533

more peaks will tend to achieve higher Morpheus scores on average. Our results suggest that a calibrated534

version of this score function should be able to achieve very good empirical performance.535

In addition to proposing a new score function, we have provided a new benchmark for use in evaluating536

novel score functions. On the surface, it seems deceptively easy to compare results across score functions:537

run the score functions on the set same of input spectra and peptides and then compare the results. However,538

in reality, it is much harder to fairly compare score functions because search engines differ in many ancillary539

ways: digestion rules, decoy generation, etc. By merging all of the PSMs from different search engines, for a540

given dataset, into a single table indexed by scan number (Supplementary Tables 1-4), and by ensuring that541

all the reported peptides appear in a shared peptide list, we ensure that the performance evaluation focuses542

on properties of the score function, rather than less interesting properties of the digestion rules or candidate543

peptide selection procedure.544

Supplemental files545

The following supplemental files can be found in PRIDE under accession PXD009265.546

1. E. coli peptide database (ecoliPSMDb.txt.gz). The tab-delimited file contains the following547

columns: peptide sequence, peptide mass, an indication of whether the peptide is a target or decoy,548

and a comma-separated list of the IDs of proteins containing this peptide. Dynamic modifications are549

indicated using bracket notation. Static modifications are not indicated. Decoy peptides do not have550

protein IDs associated with them.551

2. Human peptide database (humanPSMDb.txt.gz). The tab-delimited file contains the following552

columns: peptide sequence, peptide mass, an indication of whether the peptide is a target or decoy,553

and a comma-separated list of the IDs of proteins containing this peptide. Dynamic modifications are554

indicated using bracket notation. Static modifications are not indicated. Decoy peptides do not have555

protein IDs associated with them.556

3. Ocean metaproteome peptide database (oceanPSMdb.txt.gz). The tab-delimited file contains557

the following columns: peptide sequence, peptide mass, an indication of whether the peptide is a558

target or decoy, and a comma-separated list of the IDs of proteins containing this peptide. Dynamic559

modifications are indicated using bracket notation. Static modifications are not indicated. Note that560

none of the peptides have protein IDs associated with them, because the peptides came from shotgun561

sequencing data. Therefore, instead of the protein IDs, we subsitute the entire sequence from which562

the peptide was derived.563

4. Plasmodium peptide database (plasmodiumPSMDb.txt.gz). The tab-delimited file contains564

the following columns: peptide sequence, peptide mass, an indication of whether the peptide is a565

target or decoy, and a comma-separated list of the IDs of proteins containing this peptide. Dynamic566

modifications are indicated using bracket notation. Static modifications are not indicated. Decoy567

peptides do not have protein IDs associated with them.568
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5. PSMs (psmFile.txt.gz). The tab-delimited file contains the following columns: name of the file that569

the spectrum resides in, scan number, charge, precursor m/z, and then for each search method the570

score and peptide sequence.571

6. R script 1 (createFinalFile.R). This file contains the R script for creating the PSMs file (Supple-572

mental File 2). The figures from this publication were generated from this file.573

7. R script 2 (rankingCurveFromFinalFile.R). This file contains the R script for generating the574

figures in this publication.575

8. Commands (commands.txt). Text file containing the database search commands, for various search576

engines, used to search the E. coli sample against the E. coli peptide database.577
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