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Abstract 

Musculoskeletal models are commonly used to quantify joint motions and loads during human 
motion. Constraining joint kinematics simplifies these models but the implications of the number 
of markers used during data acquisition remains unclear. The purpose of this study was to 
establish the effects of marker placement and quantity on kinematic fidelity when using a 
constrained-kinematic model. We hypothesized that a constrained-kinematic model would 
faithfully reproduce lower extremity kinematics regardless of the number of tracking markers 
removed from the thigh and shank. Healthy-young adults (N = 10) walked on a treadmill at slow, 
moderate, and fast speeds while skin-mounted markers were tracked using motion capture. 
Lower extremity kinematics were calculated for 256 combinations of leg and shank markers to 
establish the implications of marker placement and quantity on joint kinematics. Sagittal joint and 
hip coronal kinematics errors were smaller than documented errors caused by soft-tissue artifact, 
which tends to be approximately 5 degrees, when excluding thigh and shank markers. Joint angle 
and center kinematic errors negatively correlated with the number of markers included in the 
analyses (R2 > 0.97) and typically showed the greatest error reductions when two markers were 
included. Further, we demonstrated that a simplified marker set that included markers on the 
pelvis, lateral knee condyle, lateral malleolus, and shoes produced kinematics that strongly 
agreed with the traditional marker set. In conclusion, constrained-kinematic models are resilient 
to marker placement and quantity, which has implications on study design and post-processing 
workflows. 
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Introduction 

Musculoskeletal modeling relies on accurate experimental data to calculate the motions and loads 
generated during human motion. Despite recent advances in motion capture technology that have 
improved marker tracking to sub-millimeter precision, soft-tissue artifact continues to be a major 
limiter of the clinical efficacy of motion capture data [1]. A recent special edition of the Journal of 
Biomechanics proposed new and innovative techniques to mitigate some of the effects of soft-
tissue artifact [2]. While these techniques improve the overall fidelity of motion capture data, they 
introduce new challenges to both the collection and processing workflows [3–7]. This study takes 
a different approach to the problem; instead, seeking to understand how currently implemented 
techniques can be streamlined to preserve tolerable fidelity compared to unconstrained-kinematic 
models while reducing the burdens placed on subjects and researchers.  

Unconstrained-kinematic models – often referred to as ‘six degree-of-freedom’ – are commonly 
utilized to quantify joint motion using skin-based motion capture [8,9]; however, their accuracy 
has been challenged by recent fluoroscopy and bone-pin studies [10,11]. For example, knee 
valgus and internal rotation errors of 117 and 192%, respectively, have been reported despite 
utilizing techniques that are aimed at minimizing soft tissue artifact [12]. In addition, unconstrained 
joints increase the complexities of musculoskeletal models, making simulation of human motion 
challenging. 

Constrained-kinematic models leverage well-known characteristics of joint function [13,14] to 
compensate for soft-tissue artifact while minimizing the number of markers needed to quantify 
motion [15]. These models also make possible advanced analyses of neuromuscular function and 
forward dynamic simulations [16] without the need of simulating joint contact, which is impractical 
to implement on large data sets. Despite these inherent strengths of constrained-kinematic 
models, experimental considerations of marker placement and quantity have not yet been 
associated with kinematic fidelity. 

The purpose of this study was to rigorously characterize the implications of marker placement 
and quantity on kinematic fidelity using a constrained-kinematic model. To do this, we tested 256 
combinations of marker number and placement and characterized their effects on lower extremity 
kinematics and joint centers – a surrogate measure of joint kinetics [17]. We hypothesized that 
(1) joint kinematics calculated using constrained and unconstrained paradigms would not differ 
and (2) lower extremity kinematic errors would positively correlate with the number of markers 
excluded from the analyses. The secondary aim of this study was to identify a ‘simplified’ marker 
set that provides kinematic fidelity while minimizing the number of markers needed for model 
definition and kinematic tracking. 

Methods 

Motion analysis was performed on 10 healthy-young adults (24 ± 4 years, 6 females, BMI 24.2 ± 
3.4) who provided written consent in this IRB approved study. Retro-reflective markers (9.5 mm, 
B&L Engineering, Santa Ana, CA) were placed on the lower-extremities of each subject and 
tracked using a 12-camera motion capture system (Raptor Series, Motion Analysis Corp, Santa 
Rosa, CA) while subjects walked on a treadmill (TMX428, Trackmaster, Newton, KS). Markers 
were placed over anatomic landmarks (Figure 1) of the pelvis: anterior and posterior superior iliac 
spines; legs: lateral knee condyle and lateral ankle malleolus; and feet: calcaneus, first and fifth 
metatarsal heads, and the great toe that were placed on the shoes. Additional tracking markers 
were placed on the proximal-lateral, distal-lateral, and middle-anterior regions of the thigh and 
shank [18]. Marker positions were acquired while subjects stood in a neutrally-aligned position, 
which were used to scale a generic musculoskeletal model. Next, subjects walked on a treadmill 
at a slow (0.9 m/s), moderate (1.2 m/s), and fast (1.5 m/s) pace. Each trial lasted 2 minutes and 
generated approximately 100 strides for each leg. 
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Constrained-kinematic model 

Lower extremity kinematics were calculated for 256 different combinations of thigh asd shank 
markers using a constrained-kinematic model implemented in open-source musculoskeletal 
modeling software (Opensim v3.3; [19]). This lower extremity model [18] – defined the hip as a 
ball joint, the knee as a mobile-hinge joint, the foot and ankle as an oblique universal joint, and 
the forefoot as a hinge joint – was scaled based on anatomic landmarks captured in the neutrally-
aligned position (Supplemental Material). We used this single degree-of-freedom knee joint that 
prescribed non-sagittal motions [13] for two reasons: 1 – soft-tissue artifacts cause errors greater 
in magnitude than the actual joint motion in the coronal and transverse planes [10,20,21] and 2 – 
the muscles that cross the knee joint do have limited leverage outside of the sagittal plane. Marker 
trajectories were interpolated using a cubic-spline and low-pass filtered at 6 Hz [8]. Hip, knee, and 
ankle kinematics were calculated using an inverse kinematics paradigm and all markers received 
equal weighting [19]. Markers on the thigh and shank segments were systematically excluded 
from the analysis (Figure 1), resulting in 256 marker combinations tested to characterize the 
effects of marker location and inclusion on joint kinematics.  

Subject-specific musculoskeletal models were scaled using a previously reported generic model 
[18] and marker positions captured while subjects stood in the anatomic position. The pelvis, 
thighs, shanks, and feet were scaled based on markers placed on anatomic landmarks: pelvis – 
right and left anterior superior iliac spines; thigh – anterior superior iliac spine and lateral condyle; 
shank – lateral condyle and lateral malleolus; and foot – lateral malleolus and toe. The scaled 
model was then moved to the anatomic position by fitting the model to the anatomic marker 
positions and recorded joint angles. The anterior superior iliac spines, lateral condyles and 
malleoli, heel, 1st and 5th metatarsal heads, and toe markers were all given equal weighting. 
Similarly, the hips, knees, ankles, and toe joints were all weighted towards neutral sagittal 
alignments. Since hip adduction and rotation varied amongst subjects during the anatomic pose, 
those coordinates received no weighting. Finally, scaled models were confirmed by 
superimposing the marker positions over the model.  

During the pilot testing for this study (N = 3), we calculated the functional hip joint centers [22] 
and compared these locations to the hip joint centers from the scaled models [18]. We found that 
the functional hip joint centers were 30% wider than the generic model, which agrees with prior 
reports of pelvic morphology [23]. Therefore, we increased the hip joint center width in the 
unscaled generic model and scaled this modified model for all research subjects based on pelvis 
anatomy. This had appreciable effects on the initialization of models during pilot testing, where 
the model positioning agreed more strongly with the marker positions when the wider hip joint 
center locations were implemented. In order to show the robustness of the constrained-kinematic 
model, we chose not to modify the hip joint center locations based on subject-specific functional 
hip joint locations. However, hip kinetics are sensitive to joint center location and employing more 
rigorous scaling techniques should be considered when high-fidelity hip kinetics are required. 

Unconstrained-kinematic model 

Unconstrained joint kinematics were calculated to confirm if the unconstrained and constrained 
calculations yielded similar results. Anatomic coordinate systems were assigned to each segment 
using established definitions [24,25] that mirrored the coordinate systems defined in the 
constrained-kinematic model. Four markers on each segment were used to track and define joint 
motions and a least squares approach was implemented to minimize the effects of soft-tissue 
artifact [26]. Euler rotations were calculated in a flexion-adduction-rotation sequence, and joint 
angles during the anatomic pose trial were matched with the joint angles calculated in the 
constrained-kinematic model in order to perform a true one-to-one comparison.  
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Joint kinematics analysis 

Joint angles and centers during each of the 100 measured strides were averaged over each 
walking speed and marker combination then compared to the kinematics calculated from the 
complete marker set. Heel strike events were identified using a kinematic-based algorithm [27]. 
Maximal and minimal joint rotations as well as joint range of motion were calculated for hip flexion 
and adduction as well as knee flexion and ankle plantarflexion. Cross-correlation coefficients [28] 
and root mean square (RMS) errors were calculated for joint kinematics. Ninety-five percent 
confidence intervals were calculated using a bootstrap approach [29] to demonstrate the amount 
of certainty in the joint kinematics and visualized in plots. Two primary analyses were performed: 
1 – joint angles calculated using the unconstrained and constrained models that included all 
tracking markers and 2 – joint angles and centers for each marker combination using the 
constrained-kinematic model were compared to the constrained model that included all tracking 
markers. Joint center displacements in the anterior-posterior, superior-inferior, and medial-lateral 
directions were calculated with respect to joint center positions from the complete marker set. 
Prior to data analysis, we defined a ‘substantially different’ cross correlation coefficient (rxy) to be 
less than 0.9. Hip internal rotations were also calculated as part of a secondary analysis. 

Joint kinematics calculated at three walking speeds were compared to determine if a ‘simplified’ 
marker set – consisting of markers on the pelvis, lateral condyles, lateral malleoli, and shoes – 
detects speed-dependent changes in joint excursions similarly to a traditional marker set. This 
simplified marker set was selected because it is easily implemented and the markers placed on 
the lateral knee and ankle joints are needed to initialize the musculoskeletal model. Group means 
were compared using paired t-tests and corrections of multiple comparisons were not performed 
to decrease the likelihood of type II errors, thus making these analyses less conservative and 
more likely to reject the null hypothesis (no difference between marker sets) when a difference 
exists. 

Accounting for uncertainty associated with soft-tissue artifact 

Lower extremity kinematics derived from skin-mounted markers vary approximately 5 degrees 
from bony motion [1,20]. Thus, differences in peak joint rotations and range of motions less than 
this 5 degrees threshold were considered to be within the uncertainty threshold and were not 
considered for statistical testing [20,30]. Paired t-tests were performed on instances in which this 
5 degree thresholds were exceeded to test for statistically significant differences (p < 0.05). These 
bootstrapped confidence intervals calculated from the complete marker set data were expanded 
by 5 degrees to demonstrate the uncertainty associated with skin mounted markers compared to 
more direct techniques [1,20].  

Results 

Constrained and unconstrained-kinematic paradigms showed strong agreement for sagittal joint 
motions but moderate agreement for hip adduction (RMS errors: 1.6 – 3.2°; Figure 2). Hip and 
knee flexion patterns were strongly correlated (rxy ≥ 0.90), ankle sagittal motions fell just below 
the cutoff value for ‘substantially different’ (0.85 < rxy < 0.90). Hip adduction patterns were 
moderately correlated (0.65 < rxy < 0.71). Despite any detected differences in kinematic patterns, 
joint excursions varied by less than five degrees between unconstrained and constrained 
paradigms. 

Lower extremity sagittal kinematics were not strongly affected by removing thigh and shank 
markers from the kinematic analysis (Figure 3). Specifically, including markers on the lateral knee 
condyles and malleoli generated high-fidelity sagittal kinematics compared to the constrained-
kinematic model that utilized all tracking markers (rxy ≥ 0.94; RMS errors < 2.3°). Regardless of 
the number of markers included in the kinematic analyses, adduction patterns were similar (0.85 
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< rxy < 0.90) and joint range of motion as well as flexion and extension peaks did not deviate 
beyond the 5° uncertainty threshold. Hip adduction was accurately measured by all but two 
marker sets – when all markers proximal of the lateral malleoli were removed. 

Joint angle and center kinematic errors were negatively correlated with the number of markers 
included in the constrained-kinematic analysis (Figure 4). Joint angle errors decayed at a rate that 
was strongly non-linear (R2 > 0.97, Figure 4), where most of the errors were reduced by including 
two markers placed on either the thigh or shank in the kinematic analyses. Knee joint center errors 
were 2-4 fold greater than hip and ankle joint center errors, respectively. Including additional 
markers in the kinematic analyses had a strong-linear effect (R2 > 0.97, Figure 4) on hip and ankle 
joint center errors, while knee joint center errors decayed at a cubic rate (R2 = 0.99, Fig 3B) with 
diminishing improvements after two markers were included. Hip and ankle joint center positions 
were less affected by reduced markers (RMS error < 6 mm) than the knee joint (RMS error < 19 
mm). 

Stereotypical increases in joint excursions were identified with both the complete and simplified 
marker sets (Table 1; Figure 2). The complete and simplified marker sets demonstrated similar 
fidelity in detected increases in sagittal joint excursion. Similarly, hip adduction increased with 
walking speed; however, subtle increases of less than 2° between moderate and fast walking 
speeds were only detected with the complete marker set. 

Hip internal rotation patterns were weakly correlated (0.10 < rxy < 0.21) with calculations using an 
unconstrained-kinematic model and demonstrated differences that exceed five degrees (RMS 
errors: 3.9 – 5.4°). The effects of removing thigh and shank markers from the constrained-
kinematic model had moderate effects (0.55 < rxy < 0.90). However, hip internal rotation 
excursions were within five degrees of the complete marker set in 95% of the marker 
combinations. 

Discussion 

We demonstrated that constrained-kinematic models accurately reproduce lower extremity 
kinematics when numerous markers are excluded from the analyses. The effects of reducing 
markers on sagittal kinematics and hip adduction are smaller than kinematic uncertainty caused 
by soft tissue artifact [1,20,21]. Joint center trajectories, which govern the joint moment arm of the 
ground reaction force – and thus joint kinetics (Myers, 2015) – appear to also be resilient to 
decreased markers. Since marker placement minimally affects joint kinematics, researchers can 
tailor marker sets based on experimental constraints. For example, a ‘simplified’ marker set 
(Figure 1), that excludes the traditional tracking markers adhered to the thigh and shank, can be 
utilized without compromising kinematic fidelity to increase motion capture workflow and provide 
more flexibility for the placement of other sensors and wearable devices. 

Lower extremity kinematics quantified in this study compared favorably with prior reports. Similar 
to prior work [31,32], we found that sagittal hip, knee, and ankle excursion increased with walking 
speed (Table 1). Hip coronal kinematics measured in this study demonstrated stereotypical 
patterns that are well described in the literature [33,34]. Since much of the literature implements 
six degree-of-freedom marker sets, we calculated the unconstrained motion of the lower extremity 
and implemented a least squares approach [26] to minimize the effects of soft tissue artifact on 
resulting joint kinematics. Sagittal joint and hip coronal motions were similar between the 
unconstrained and constrained-kinematic results (Figure 2). Hip internal rotation differed between 
the unconstrained and constrained model, which may be explained by well documented soft 
tissue artifact of the thigh segment [35]. However, these differences were less pronounced 
between constrained marker sets, likely due to the lack of knee rotation in the musculoskeletal 
model.  
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Our findings demonstrate that constrained-kinematic models are resilient to marker placement 
and dropout. Although we did not directly track skeletal motion in this study, we approximated 
the uncertainty introduced by soft-tissue artifact by calculating the difference between 
experimentally-measured marker and model-fixed marker trajectories. We found that the 
markers placed on the thigh, lateral knee, and shank had average RMS values of 12.5, 14.1, 
and 7.1 mm, respectively; compared to direct measurements of soft-tissue artifact in the 
literature of 13.8, 13.9, and 10.8 mm, respectively [20]. Despite the lateral knee being prone to 
soft-tissue artifact, its inclusion improved kinematic tracking when fewer than five leg markers 
were included in the kinematic analyses (Figure 5). Increasing the number of markers used for 
gait analysis has diminishing returns with regard to lower extremity kinematics (Figure 4).  

Excluding all of the markers attached to the thigh and shank generated sagittal joint kinematics 
that were in strong agreement with the complete marker set but adversely affected knee joint 
center kinematics, which impacts joint loads [17]. Adding markers to the lateral condyles and 
malleoli – which were used to scale the musculoskeletal model – mitigated the majority of 
kinematic errors (rxy ≥ 0.94; RMS errors < 2.3°). To improve experimental consistency and 
workflow, markers can be permanently fixed to lab shoes, which reduces the number of markers 
applied to the subject to eight: four on the pelvis and two on each leg. Thus, a ‘simplified’ 
marker set accurately characterizes joint kinematics and joint center motions by providing 
essential inputs to constrained-kinematic models. 

Minimizing the tracking markers reduces experimental setup time, prevents errors from poorly 
placed and inherently noisy markers, provides fewer obstructions for other experimental 
equipment, and allows for more comfortable attire to be worn during data collection. While 
unconstrained-kinematic models require at least three markers on each segment at all times, our 
results demonstrate that constrained-kinematic models can perform well with no markers on 
certain segments; for example, the thigh and shank. Hierarchical marker sets track segment 
kinematics by assuming the location of a joint center based on a nearby segment. However, this 
approach is susceptible to soft-tissue artifact [36] and does not provide the necessary joint 
constraints for advanced musculoskeletal analyses [37]. Our findings also benefit researchers 
utilizing wearable-assistive devices [38,39], ultrasonography during human motion [40], and high-
density electromyography sensors [41] – all techniques that require unobstructed access to the 
lower extremities.  

Processing and analyzing motion capture data can be streamlined into a turn-key routine utilizing 
open-source musculoskeletal modeling software [19] and batched scripts. In addition to 
calculating joint kinematics, constrained-kinematic models are well-suited for performing both 
inverse and forward dynamic simulations. Integrating gait analysis into a single musculoskeletal 
modeling environment provides investigators with a standardized workflow while maintaining the 
flexibility needed to perform specific analyses [42,43]. Further, many analyses are not possible to 
perform without imposing joint constraints or contact [44,45]. Therefore, migrating kinematic 
analyses into a constrained-kinematic paradigm may minimize workflow complexity without 
compromising kinematic fidelity (Figure 2).  

Several limitations should be considered when interpreting these findings. We did not directly 
measure skeletal motion but did show similarities in joint kinematics with prior studies that utilized 
intracortical bone pins and fluoroscopy [20,46]. Subjects in the present study were healthy-young 
adults that were generally fit with a healthy body mass index (BMI 24.2 ± 3.4), which may not be 
representative of clinical populations. While it is expected that soft-tissue artifact increases with 
excess tissue [47] and high-impact activities, constrained-kinematic models appear to be well 
suited to minimize such effects. Joint kinematics are sensitive to joint-axis location and orientation 
[48,49], which may be affected when scaling generic musculoskeletal models to subject-specific 
anthropometry. To mitigate these potential errors, we visually confirmed that each subject-specific 
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model closely matched the neutrally-aligned position. Further, we confirmed joint kinematics using 
unconstrained-kinematic models that shared the same joint axis definitions as the constrained-
kinematic models (Figure 2). Due to knee valgus and internal rotation errors as high as twice that 
of skeletal motion [12], we limited knee joint kinematics to a single degree-of-freedom and 
prescribed other rotations and translations based on flexion angle [13]. Walking trials were 
acquired on a commercial treadmill that did not have an integrated force plate, so we were unable 
to calculate joint reaction moments. We instead decided to quantify the changes in the joint center 
trajectories, which governs the ground reaction force moment arm and thus joint moments. 

In conclusion, constrained-kinematic models are resilient to errors caused by marker placement 
and quantity. Experiments can be designed to attain the kinematic fidelity necessary to answer 
specific research questions while adjusting marker placement and quantity to suit the constraints 
of the experimental setup. In addition, integrating constrained-kinematic models into a gait 
analysis workflow offers several advantages that can improve post-processing efficiency while 
providing access to unique analysis tools to test specific questions. However, investigators should 
weigh the strengths and weaknesses of both constrained and unconstrained-kinematic paradigms 
to determine which approach is best suited for the specific research question.  
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Tables 

 

Table 1. 95% confidence intervals for lower extremity ranges of motion – calculated using the 

full and simplified marker sets – during walking at increasing speeds. 

 

 slow (0.9 m/s) moderate (1.2 m/s) fast (1.5 m/s) 

hip flexion (37.2 – 40.4) | (38.6 – 43.1) (41.2 – 44.2)s | (42.8 – 47.0)s (44.7 – 49.7)sm | (46.7 – 53.2)sm 

knee flexion  (58.7– 67.5) | (56.8 – 66.2) (61.3 – 69.8)s | (59.4 – 68.4)s (61.7 – 68.5) | (60.7 – 67.4)s 

ankle dorsiflexion (20.3 – 24.5) | (20.9 – 25.5) (23.3 – 28.8)s | (24.2 – 29.5)s (26.3 – 32.0)sm | (26.7 – 32.5)sm 

hip adduction (15.2 – 18.7) | (14.6 – 18.2) (16.5 – 21.0)s | (15.6 – 20.0)s (18.0 – 22.7)sm | (16.3 – 21.2)s 

hip rotation   (7.9 – 12.0) | (11.1 – 16.0) (10.5 – 14.1)s | (13.5 – 18.7)s (11.4 – 16.2)sm | (14.9 – 20.1)s 

 

95% confidence intervals for joint range of motion for the full and simplified marker sets are 

reported for each joint coordinate and walking speed (full | simplified). s increased range of 

motion compared to slow speed. m increased range of motion compared to medium speed. p < 

0.05. 
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Figures Captions 

 

Figure 1. Subject-specific models 
(left leg hidden for clarity) were 
scaled based on subject anatomy 
and positioning. Inverse kinematics 
were then performed for walking 
trials under 256 marker 
combinations to test the effects of 
all possible marker positions and 
quantities attached on the thigh and 
shank.  

 

Figure 2. Joint kinematics strongly 
agreed (rxy ≥ 0.90) between the 
complete marker set (gold band) 
and all 255 other marker 
combinations (gray band). The 5° 
uncertainty threshold (dashed 
lines) was not exceeded by any 
marker combination. Specifically, 
the ‘simplified’ marker set (red 
band) produced similar joint 
motions at all three walking speeds. 
95% confidence intervals were 
calculated using a bootstrapping 
technique to characterize the 
variability within our study cohort (N 
= 10). 
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Figure 3. Lower extremity 

kinematics strongly agreed (rxy ≥ 

0.90) between the complete marker 

set (gold band) and all 255 other 

marker combinations (gray band). 

The 5° uncertainty threshold 

(dashed lines) was not exceeded by 

any marker combination – including 

the ‘simplified’ marker set (red 

band) – in the sagittal plane and 

only 2 marker sets resulted in 

differences in hip adduction 

excursion greater than 5°. 95% 

confidence intervals were 

calculated using a bootstrapping 

technique to characterize the 

variability within our study cohort (N 

= 10). 
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Figure 4. Lower extremity RMS 
errors negatively correlated with the 
number of leg markers included in 
the kinematic analyses. Joint 
kinematics (angles; left column) 
errors were best described by a 3rd 
order polynomial (R2 > 0.98). Knee 
center errors were also best 
characterized by a 3rd polynomial 
(R2 = 0.99; right column), while hip 
and ankle center errors linearly 
correlated with the number of leg 
markers included in the analyses 
(R2 > 0.98; right column). Walking 
speed did not affect kinematic 
errors. 

Figure 5. Including the lateral knee 
condyle marker (shaded part of 
box) in the constrained-kinematic 
model effectively decreased the 
kinematic errors compared to 
marker sets that excluded the knee 
marker (unshaded part of box). 
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