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Abstract

Understanding the evolution of cancer is important for the development of appropriate cancer
therapies. The task is challenging because tumors evolve as heterogeneous cell populations
with an unknown number of genetically distinct subclones of varying frequencies. Conventional
approaches based on bulk sequencing are limited in addressing this challenge as clones cannot
be observed directly. Single-cell sequencing holds the promise of resolving the heterogeneity
of tumors; however, it has its own challenges including elevated error rates, allelic dropout,
and uneven coverage. Here, we develop a new approach to mutation detection in individual
tumor cells by leveraging the evolutionary relationship among cells. Our method, called SCIΦ,
jointly calls mutations in individual cells and estimates the tumor phylogeny among these cells.
Employing a Markov Chain Monte Carlo scheme we robustly account for the various sources of
noise in single-cell sequencing data. Our approach enables us to reliably call mutations in each
single cell even in experiments with high dropout rates and missing data. We show that SCIΦ
outperforms existing methods on simulated data and applied it to different real-world datasets,
namely a whole exome breast cancer as well as a panel acute lymphoblastic leukemia dataset.
Availability: https://github.com/cbg-ethz/SCIPhI

1 Introduction

Due to recent technological advances it is now possible to sequence the genome of individual cells [20].
This allows, for the first time, to directly study genetic cell-to-cell variability and gives unprecedented
insights into somatic cell evolution in development and disease.

Having single-cell resolution is especially useful for the analysis of intra-tumor heterogeneity [19].
This is due to the central role that mutational heterogeneity and subclonal tumor composition play
in the failure of targeted cancer therapies, where resistant subclones can initiate tumor recurrence
[2, 8]. Presently, genetic analyses of tumors are mostly based on sequencing bulk samples which
only provides admixed variant allele frequency profiles of many thousands to millions of cells. These
aggregate measurements are, however, only of limited use for the inference of subclonal genotypes
and and their phylogenetic relationships [10, 12]. The two main issues are that mutational signals
of small subclones can not be distinguished from noise and that the deconvolution of the aggregate
measurements into clones is, in general, an underdetermined problem.
∗These authors contributed equally.
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In contrast, single-cell sequencing data provides direct measurements of cellular genotypes thus
bypassing the deconvolution problem of bulk measurements. However, this advantage comes at
the cost of elevated noise due to the limited amount of DNA material present in a cell and the
extensive DNA amplification required prior to sequencing. The most common approach for this
initial amplification of single-cell DNA is Multiple Displacement Amplification (MDA) [14]. While
this process is very efficient at amplifying the overall DNA material, high rates of allelic drop-
out, i.e., the random non-amplification of one allele of a heterozygous genotupe site, are observed.
Starting with the DNA of a single cell, all evidence of a heterozygous genotype mutation is lost
when the mutated allele drops out, which happens at a rate of about 10% to 20%. Also, false
positive artifacts can arise in the MDA amplification when random errors introduced early in the
process end up with high frequencies due to allelic amplification biases. Further challenges arise
from uneven amplification across the genome which results in non-uniform coverage that will leave
some sites with insufficient coverage depth for reliable base calling.

These technical issues result in single-cell-specific noise profiles for which regular variant callers
developed for next-generation sequencing data, such as the Genome Analysis Toolkit (GATK) Hap-
lotypeCaller [18] or SAMtools [17], are ill-suited. Two single-cell specific mutation callers, namely
Monovar [25] and SCcaller [4], have therefore been recently developed. Both methods take raw
sequencing data (BAM files) and output the inferred genotypes of the cells. Monovar specifically
addresses the problem of low and uneven coverage in mutation calling by pooling sequencing infor-
mation across cells, while assuming that no dependencies exist across sites. In contrast, SCcaller
detects variants independently for each cell and accounts for local allelic amplification biases. How-
ever, the identification of such biases is based on germline single-nucleotide polymorphisms (SNPs),
which might not be available, for example, for panel sequencing data. Further, it cannot recover
mutations from dropout events or loss of heterozygosity.

Here, we present SCIΦ, a new single-cell-specific variant caller that combines single-cell genotyp-
ing with reconstruction of the cell lineage tree. SCIΦ leverages the fact that the somatic cells of an
organism are related via a phylogenetic tree where mutations are propagated along tree branches.
SCIΦ can reliably identify single-nucleotide variants (SNVs) in single cells with very low or even
no variant allele support. We show that SCIΦ outperforms Monovar, the only other tool able to
transfers information between cells, on simulated and real data.

2 Methods

Our inference scheme starts with an initial identification of possible mutation loci and then performs
joint phylogenetic inference and variant calling via posterior sampling. After introducing the general
model for nucleotide frequencies, we describe these steps in more detail.

2.1 Nucleotide frequency model

We model the nucleotide counts s at a locus with total coverage c using the beta-binomial distri-
bution [e.g., 7, 23] as

P (s | c, α, β) =

(
c

s

)
B(s+ α, c− s+ β)

B(α, β)
, (1)

with parameters α and β and where B is the beta function. For our implementation we will employ
an alternative parametrization of the beta binomial distribution with f = α

α+β being the frequency
of a nucleotide and ω = α+ β an overdispersion term which decreases with increasing variance.
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For locus i and cell j with coverage cij , the probability of the observed count (support) sij for
a specific nucleotide in the absence of a mutation is

Pwt(Dij) = P (sij | cij , fwt, ωwt) , (2)

where Dij = (sij , cij) and fwt is the expected frequency of the observed nucleotide, which, for
example, could have arisen from sequencing error. Large values of ωwt lead to a binomial distribu-
tion representing independent sequencing errors. In the presence of a heterozygous mutation, the
probability of the counts is

Pa(Dij) = P (sij | cij ,
1

2
− 2

3
fwt, ωa) . (3)

The underlying allele frequency of 1
2 is corrected by sequencing errors producing any of the other

two bases. Low values of the overdispersion term ωa reflect a small number of initial genomic
fragments and any additional feedback in the amplification. SCIΦ assumes copy number neutrality,
but learning ωa allows for compensating for shifts in the mean variant allele frequency away from
1
2 .

2.2 Identification of candidate mutated loci

Likely mutated loci are identified using the posterior probability of observing at least one mutated
cell at a specific locus. The probability of observing no mutation at locus i across all cells is

P (K = 0 | Di) =
P (Di | K = 0)(1− λ)

P (Di)
, (4)

where K is a random variable indicating the number of mutated cells and λ is the prior probability
of a mutation occuring at the locus. The probability of observing the mutation in k cells is

P (K = k | Di) =
P (Di | K = k)P (K = k)λ

P (Di)
. (5)

We do not need to compute P (Di) as it cancels out when computing the likelihood ratio or posterior
odds.

The likelihood of the data given that exactly k of the m cells possess the mutation, is given by

P (Di | K = k) =
1(
m
k

) ∑
{x1,...,xm∈{0,1}|

∑
xj=k}

∏
{j|xj=1}

Pa(Dij)
∏

{j|xj=0}

Pwt(Dij) , (6)

where xi indicates whether cell i is mutated or not. P (Di | K = k) can be computed efficiently
using a dynamic programming approach [as in 25, 15].

The prior probability of a mutation in a phylogeny affecting k descendant cells is determined by
placing mutations uniformly among the edges of the tree (Section A.1) leading to

P (K = k) =

(
m
k

)2
(2k − 1)

(
2m
2k

) . (7)
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2.3 Allelic dropout

Along with the uncertainty in the supporting read counts due to the amplifications in each cell when
a mutation is present, an additional artifact is dropout whereby one allele is not amplified at all.
To account for allelic dropout occuring with probability µ, we introduce the following mixture for
the likelihood of the observations for each cell:

Pa(Dij) =
µ

2
P (sij | cij , fwt, ωwt) +

µ

2
P (cij − sij | cij , fwt, ωwt) (8)

+ (1− µ)P (sij | cij ,
1

2
− 2

3
fwt, ωa) ,

where the first term describes the loss of the mutant allele, the second the loss of the wild-type
allele and the third term describes a heterozygous mutation. The case µ = 0 reduces to Equation
(3).

2.4 Tree likelihood

Our model to infer tumor phylogeny consists of three parts [akin to 11]: the tree structure T , the
mutation attachments to edges σ, and the parameters of the model θ (the parameters fwt, ωwt, and
ωa previously introduced, the dropout mixture coefficient µ as well as a homozygosity coefficient
which we will introduce later). We represent the phylogeny of a tumor using a genealogical tree.
Here the m sampled tumor cells are represented by leaves in a binary tree and the mutations are
placed along the edges. There are (2m−3)!! different tree structures, while each of the n mutations
can be attached to the (2m − 1) edges leading to (2m − 3)!!(2m − 1)n possible configurations for
the discrete component (T , σ) of our model. As a result, it is infeasible to enumerate all solutions.
Instead we employ a Markov Chain Monte Carlo approach to search and sample from the tree space.

In order to do so, we employ the likelihood of a specific tree realization with the mutation
attachment parameter σ and the parameters θ to be

P (D | T, σ, θ) =
n∏
i=1

m∏
j=1

P (Dij | T )
N∏

i=n+1

m∏
j=1

Pwt(Dij) , (9)

where P (Dij | T ) = Pa(Dij) if the cell j is below mutation i (on the path from leaf j to the root)
and P (Dij | T ) = Pwt(Dij) otherwise. The first set of products describes the loci identified to be
likely mutated (Section 2.2) which are placed on the tree and used to infer its phylogenetic structure.
The second half represents all loci where no mutation is present which inform the inference of the
sequencing error parameters.

Analogously to [11] we marginalize out the attachment points of the mutations. Assuming each
mutation is equally likely to attach to any edge in the tree and the attachment probability to be
independent between mutations we have P (σ | T, θ) = 1

(2m−1)n so that

P (D | T, θ) ∝
∑
σ

n∏
i=1

m∏
j=1

P (Dij | T ) =

n∏
i=1

∑
σi

m∏
j=1

P (Dij | T ) , (10)

For each locus, the sum can be written explicitly as

Sa(Di | T ) =
1

2m− 1

∑
σi

m∏
j=1

P (Dij | T ) =
1

2m− 1

∑
σi

m∏
j=1

[I(i ≺ j)Pa(Dij) + I(i ⊀ j)Pwt(Dij)] ,

(11)

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/290908doi: bioRxiv preprint 

https://doi.org/10.1101/290908


where I is the indicator function and (i ≺ j) indicates that cell j sits below the attachment point
σi of mutation i in the tree T . The sum can be computed in O(m) time using the binary tree
structure. Employing T we propagate the probability of attaching a mutation to a specific node
from the leaves towards the root. This can be implemented using the depth first search (DFS)
algorithm, combining in each node the probabilities from two previously computed subtrees.

Computing Equation (10) is therefore in O(mn) while the marginalisation has the further benefit
of reducing the search space by a factor of (2m − 1)n. In addition we employ the marginalisation
to focus on the tree structure of the cell lineage rather than the annotation with mutations.

Making use of the factorization of the beta-binomial density function into Gamma functions,
the term

∏N
i=n+1

∏m
j=1 Pwt(Dij) in Equation (9) can be computed in time linear in the number of

different coverages of the sequencing experiment (Section A.2). Since that number is typically much
smaller than mn for sequencing projects, the overall runtime is dominated by O(mn).

2.5 Accounting for zygosity

Because tumor cells show chromosomal abnormalities, mutations can be observed as homozygous
variants even without dropout events. In order to also account for loss of heterozygosity, we adapt
the scheme introduced in Section 2.4. Instead of computing the likelihood of the data when attaching
a mutation to a node in the lineage tree in the heterozygous state only, we additionally compute
the likelihood when attaching each mutation in the homozygous state, and define the sum

Sh(Di | T ) =
1

m− 1

∑
σi

m∏
j=1

P (Dij | T ) =
1

m− 1

∑
σi

m∏
j=1

[I(i ≺ j)Ph(Dij) + I(i ⊀ j)Pwt(Dij)] ,

(12)

involving the nucleotide model when only alternative alleles are present

Ph(Dij) = P (cij − sij | cij , fwt, ωwt) . (13)

Note that homozygous mutations are only attached to inner nodes as the probability of observing
a dropout event in a single cell is assumed to be higher than a single homozygous mutation.

Utilising the tree structure, the sum can again be computed in O(m) time for each mutation on
the tree. The overall likelihood for each mutation is a weighted sum of the two possibilities leading
to

P (D | T, θ) ∝
n∏
i=1

[(1− ν)Sa(Di | T ) + νSh(Di | T )] , (14)

with homozygosity coefficient ν. Thus, we allow certain violations of the infinite sites assumption
[13] by capturing homozygous mutations which are not due to dropout events.

2.6 Markov Chain Monte Carlo sampling

Using the tree likelihood we employ an MCMC scheme to sample from the posterior distribution of
mutation assignments as well as tree structures given the data (for simplicity with uniform priors).
In order to do so, we propose a new state (T ′, θ′) from the current state (T, θ) making use of
properly defined moves such that the chain is ergodic. We change one parameter at a time with
transition probability q(T ′, θ′ | T, θ) and accept the new configuration with probability

min

{
1,
q(T, θ | T ′, θ′)P (T ′, θ′ | D)

q(T ′, θ′ | T, θ)P (T, θ | D)

}
. (15)
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The tree structure can be changed using the prune and reattach move. Here we randomly draw
a node from the tree and re-attach it to a random node not contained in the pruned subtree. This
move is reversible, irreducible, and aperiodic. Additionally we include a move which swaps two
leaf nodes. For the parameters of the beta-binomial distribution, the dropout coefficient µ (and
the homozygosity coefficient ν) we perform independent random Gaussian walks. The standard
deviations of the steps are adjusted using adaptive MCMC [1] to track an acceptance rate of 50%.

We sample proportional to P (T, θ | D) from the posterior distribution after a burn-in phase.
Convergence is achieved after x iterations, with heuristic arguments suggesting x ∝ m2 log(m) [11].
The overall runtime complexity is O(x×max(mn, c)) with c being the number of unique coverage
values of the experiment. From the sample of trees and parameters we could also conditionally
sample the placement of the mutations for the full joint posterior sample. Instead, utilising the
full weights of attaching each mutation to different edges we record the probability of each cell
possessing each mutation. Averaging over the MCMC chain provides the posterior genotype matrix
and hence our single-cell variant calls.

2.7 Simulation of ground truth datasets

In order to benchmark the performance of SCIΦ we simulated tumor evolution by introducing a
cell lineage tree and simulated read counts by mimicking the noisy MDA process. For m cells, we
created a random binary genealogical cell linage tree with 100 mutations attached to the edges.
The placement of the mutations defines which cells possess each mutation and was chosen such
that each mutation is shared by least two cells. Further among all the mutations present in cells a
specified fraction µ was randomly selected as dropouts, i.e. µ

2 of the mutations became wild type
and µ

2 became homozygous.
Then we generated an artificial reference chromosome of 1 million base pairs (bp) and divided it

into segments of approximately 1000bp for each cell individually. For these segments, we generated
a coverage distribution following a negative binomial distribution with a mean of 25 nucleotides and
a variance of 50. Additionally, 10% of the segments were assigned 0 coverage to include missing
information. The coverage of specific positions was additionally randomized following a discretized
Gaussian distribution with the segment coverage as mean and a standard deviation of 10% of that
mean in order to simulate the uneven coverage profiles of real single-cell sequencing experiments.

For simulating nucleotides under the MDA process, we drew them from a Pólya urn model.
While heterozygous positions contain two chromosomes, one with two wild type strands and one
with two mutant strands (α = 2, β = 2), dropout positions only retain the two strands of one of
the two chromosomes (α = 2, β = 0; α = 0, β = 2,). A strand is then randomly chosen, copied, and
returned to the urn together with the copy. With a probability of 5×10−7 the copy will be mutated
and an allele different from the original one is returned, corresponding to the error rate of the MDA
polymerase (10−6− 10−7 [3]). This process is repeated c times and the copies are retained. Finally,
with probability of 5 × 10−4, a nucleotide is mutated to account for sequencing errors, and the
resulting simulated data was embedded into a multi-pileup file. Additional simulations are reported
in Section A.4.

3 Results and Discussion

In order to investigate the performance of SCIΦ we conducted several experiments on simulated data
and additionally on several real datasets. We compared SCIΦ to Monovar [25], the only published
single-cell mutation caller sharing information across cells. We start by analyzing the results of the
simulated data.
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3.1 Benchmarks for simulated data

We first investigated how the performance depends on the number of cells sequenced in the experi-
ment. SCIΦ is more sensitive in calling mutations than Monovar while showing comparable precision
in all settings analyzed (Figure 1). The reason for this is twofold: First, due to the tree inference
SCIΦ can assign a mutation to a particular cell with very low or even missing variant support at a
specific locus. Second, making use of a beta-binomial model to represent the nucleotide counts and
learning its parameters accurately reflects the underlying process generating nucleotide counts.
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Figure 1: Summary statistics of the different performance measures from SCIΦ and Monovar on
simulated data with different number of cells.

Due to the observed large range of dropout rates, ranging from 10% to more than 40% [12], a
second experiment was conducted to explore the dependence of the methods on the dropout rate
of the experiment. Here we concentrated on dropout rates of 10, 20, and 30%. Since the exact
dropout rate of a dataset is often not known, we used the default values of the callers, namely 20%
for Monovar and 10% for SCIΦ (Figure 2a). Note that SCIΦ learns the dropout rate and uses 10%
only as a starting condition.
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Figure 2: Summary statistics of the F1 performance measure from SCIΦ and Monovar on simulated
data with different levels of dropout events (a) and homozygosity rates (b).

We found SCIΦ to be more robust to increasing dropout rates in comparison to Monovar (Fig-
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ure 2a). In addition to using the phylogentic tree structure, SCIΦ also learns the dropout rate of
the experiment during the MCMC scheme.

An additional experiment was conducted to investigate the effects of loss of heterozygosity.
Monovar as well as SCIΦ perform better with increasing levels of homozygous mutations present in
the experiment (Figure 2b). Especially Monovar benefits from homozygous mutations as these are
very unlikely to be classified as wild type. SCIΦ experiences a more modest benefit from homozygous
mutations since it already starts with high performance due to the usage of the phylogenetic tree
structure to accurately call mutations.

3.2 Application to real data

We applied SCIΦ to two human tumor sequencing datasets. The first dataset is described in [24]
(Sequence Read Archive (SRA) accession numbers SRA05319), where the authors performed exome
sequencing on single and bulk cells of a breast cancer patient. Here we identified somatic mutations
in 16 single cells using bulk sequenced normal control dataset to distinguish somatic from germline
mutations (see Section A.3 for details). This dataset is particularly challenging because cells are
aneuploid.

We identified around 50% of the mutations to be shared across all cells and therefore placed them
into the root of the inferred phylogenetic tree (Figure 3a). The assignment of different mutations to
different subclones is depicted in Figure 3a. For example, 263 mutations distinguish cell h1 from the
other cells and 200 mutations separate the lineage of cells a1, a4, and a6 from the remaining tree.
The posterior probabilities of each cell possessing each mutation show the grouping into subclones
(Figure 3b). Using the tree inferred by SCIΦ to order the mutation calls of Monovar (Figure 3c)
allows a more direct comparison. The assignment of mutations to cells is very homogeneous for
the subclones using SCIΦ (Figure 3b). In contrast, the mutation assignment based on Monovar’s
inferred probabilities is much more noisy (Figure 3c).

It is interesting to observe that Monovar identifies additional mutations for cell h1 above mu-
tation index 1000 (Figure 3c). Investigating these mutations more closely shows that they all have
very low coverage (1–4 reads) and in most cases no alternative nucleotide support. Further, some of
these mutations with coverage 1 and no alternative support were labeled homozygous alternative,
which is unlikely as this would require a back mutation or sequencing errors to the reference allele
for several mutations.

Without using the tree inferred by SCIΦ to order the mutation calls from Monovar, hierarchal
clustering (Figure 3d) leads to a similar subclonal structure to SCIΦ (Figure 3b). However, there
are some differences. For example, h2 is hierarchally clustered with h5, h8, h3 and a8, rather than
with h4, h6, h7 and h8. The hierarchal clustering does not enforce a phylogenetic tree and weights
false negative and false positive signals equally. However, from SCIΦ (Figure 3a) we can see that
cell h2 is only missing mutations which are in common in cells h4, h6, h7. Therefore, its placement
earlier in the tree above those cells is much more evolutionarily plausible.

The second dataset consists of 255 cells from a patient (number 3) with acute lymphoblastic
leukemia sequenced using a panel sequencing approach [6] (SRA accession number SRP044380).
The results (Figure 4) highlight similar aspects to those mentioned for the previous breast cancer
dataset, especially the much less noisy mutation assignment. It is interesting to observe that SCIΦ
not only recovered dropouts, but also assigned much lower mutation probabilities to likely wild type
positions compared to Monovar (Figure 4).
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Figure 3: Summary of the mutation calls obtained with Monovar and SCIΦ on a breast cancer
patient dataset [24] consisting of 16 single tumor cells and a control normal bulk sequencing dataset.
(a) Cell lineage tree with mutation attachment identified by SCIΦ. The area of a node is proportional
to its number of assigned mutations. (b) Posterior probability of SCIΦ mutation calls clustered
according to the tree in a). (c) Probability of Monovar mutation calls for loci identified as mutated
by SCIΦ and clustered according to the tree in a). (d) Probability of Monovar mutation calls for
loci identified as mutated by SCIΦ and clustered hierarchically.

4 Conclusions

Single-cell sequencing allows us to directly study genetic cell-to-cell variability and gives unprece-
dented insights into somatic cell evolution. This is of particular interest in cancer genomics because
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Figure 4: Summary of the mutation calls from SCIΦ and Monovar on a dataset consisting of 255
cells from a patient (number 3) with acute lymphoblastic leukemia [6]. (a) Monovar mutation calls
for loci identified as mutated by SCIΦ clustered hierarchically. (b) Monovar mutation calls clustered
according to the tree inferred by SCIΦ. (c) SCIΦ mutation calls clustered according to its inferred
tree.

tumors show heterogeneous cell compositions often resulting in the failure of targeted cancer ther-
apies. Here, we introduced SCIΦ, the first single-cell mutation caller that simultaneously infers
the mutational landscape and the phylogenetic history of a tumor sample. SCIΦ accounts for the
elevated noise levels of single cell data by appropriately modeling the genomic amplification pro-
cess and the high fraction of dropout events. In combination with a Markov Chain Monte Carlo
phylogenetic tree inference scheme, mutations are reliably assigned to individual cells.

We have compared SCIΦ to Monovar [25] on both simulated and real datasets. For the sim-
ulated data, SCIΦ has comparable precision and significantly better recall and F1 score. For the
real datasets, we showed that SCIΦ achieves a much cleaner assignment of mutations to cells within
subclones. In particular, SCIΦ recovered mutations from dropout events using the inferred phy-
logenetic tree structure of the sample to share information across cells, whereas Monovar missed
these events. Furthermore, the phylogenetic tree inferred by SCIΦ reflects the evolutionary history
more accurately than a hierarchical clustering from Monovar. Mutation calling and lineage tree
building are two interdependent tasks and addressing them in a single statistical model provides
both improved mutation calls as well as a better estimate of the underlying cell lineage tree, and
hence a better understanding of tumor heterogeneity.
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A Appendix

A.1 Probability of a mutation in k cells in a random binary tree

To compute the number of cells below a mutation in a binary genealogical tree, we work recursively.
We record in Pm(k) the probability of a mutation being placed uniformly among the edges of trees
with m cells affecting exactly k of them. Moving from trees with m cells, which possess (2m − 1)
edges, to trees with (m + 1) cells we can create a new internal node along any of the edges. This
adds a further two edges. When doing so, the mutation may be above or below the new cell added,
or placed along the two new edges leading to the recursion

Pm+1(k) =
(2m− 2k + 1)

(2m+ 1)
Pm(k) +

(2k − 3)

(2m+ 1)
Pm(k − 1) +

δ1,k
(2m+ 1)

, (16)

with initial condition of P1(1) = 1 and boundary conditions of Pm(0) = 0. The solution to the
recursion in Equation (16) is

Pm(k) =

(
2k
k

)(
2m−2k
m−k

)
(2k − 1)

(
2m
m

) =

(
m
k

)2
(2k − 1)

(
2m
2k

) , (17)

which can easily be shown by induction. We start with k = 1

Pm+1(1) =
(2m− 1)

(2m+ 1)

2m2

2m(2m− 1)
+

1

(2m+ 1)

=
1

(2m+ 1)
[m+ 1] =

2(m+ 1)2

(2m+ 2)(2m+ 1)
=

(
m+1
1

)2(
2m+2

2

) . (18)

For 1 < k ≤ m we have

Pm+1(k) =
(2m− 2k + 1)

(2m+ 1)

(
m
k

)2
(2k − 1)

(
2m
2k

) +
(2k − 3)

(2m+ 1)

(
m
k−1
)2

(2k − 3)
(

2m
2k−2

)
=

1

(2k − 1)

m!m!(2k)!(2m− 2k + 1)!

k!k!(m− k)!(m− k)!(2m+ 1)!

+
m!m!(2k − 2)!(2m− 2k + 2)!

(k − 1)!(k − 1)!(m− k + 1)!(m− k + 1)!(2m+ 1)!
. (19)

Taking out a common factor, this reduces to

Pm+1(k) =
2m!m!(2k − 2)!(2m− 2k + 1)!

(k − 1)!(k − 1)!(m− k)!(m− k)!(2m+ 1)!

[
1

k
+

1

m− k + 1

]
=

2m!(m+ 1)!(2k − 2)!(2m− 2k + 1)!

(k − 1)!k!(m− k)!(m− k + 1)!(2m+ 1)!

=
(m+ 1)!(m+ 1)!(2k)!(2m− 2k + 2)!

(2k − 1)!k!k!(m− k + 1)!(m− k + 1)!(2m+ 2)!
=

(
m+1
k

)2
(2k − 1)

(
2m+2
2k

) . (20)

A.2 Efficient likelihood computation for wild type loci

The beta-binomial density function of Equation (1) can be expressed using Gamma functions as:

P (s | c, α, β) =
Γ(c+ 1)

Γ(s+ 1)Γ(c− s+ 1)

Γ(s+ α)Γ(c− s+ β)

Γ(c+ α+ β)

Γ(α+ β)

Γ(α)Γ(β)
(21)
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For numerical accuracy we compute log probabilities such that the factors become summands. These
can be treated individually, leading to nine terms per locus. However, summands only involving s
and c depend solely on the data and not on the tree or parameters. As they do not change between
iterations of the algorithm, they can be ignored. The summands involving only α and β do not
depend on the locus and can be computed in O(1) for all loci. This leaves us with three summands
that need to be recomputed whenever one of the parameters of the model changes. For efficiency, we
store an array with occurrences of unique values of s, c− s and c. This reduces the time complexity
from O(Nm) to O(c) for the computation of the probability of all (N − n) wild type loci.

A.3 Variant calling pipeline

In order to reliably call mutations, we applied several mapping and purification steps using NGS-
pipe [22]. We first mapped the downloaded FASTQ files using BWA-mem [16] version 0.7.15 to the
human reference genome hg19. The resulting files were merged, sorted and duplicates removed (for
exome data) using Picard tools (http://broadinstitute.github.io/picard/) version 2.8.3. Afterwards
we realigned the reads around indels using the GATK [18] version 3.5. SAMtools mpileup [17]
version 1.3.1 was used with parameters -A -B -d 1000 -q 40 for the exome dataset and -A -B -d
100000 -q 40 for the panel dataset. Monovar (commit 7b47571) was then run according to the
authors’ recommendation (https://bitbucket.org/hamimzafar/monovar). In order to compare the
results, the normalized and Phred-scaled likelihoods for the genotypes reported by Monovar were
back-transformed and the fraction of heterozygous plus homozygous genotype likelihoods reported
as the probability of the mutation. Further, hierarchal clustering of Monovar mutation calls was
performed in R [21] version 3.4.0 using ComplexHeatmaps [9]. SCIΦ was run with default values
with an additional filter of requiring at least two cells to show an alternative nucleotide count of at
least three and a prior mutation rate of 0.001.

Further, variants with low VAFs across all cells for a given locus where filtered out by SCIΦ using
a likelihood ratio test. In order to do so, we first fitted a beta-binomial distribution with free mean
and overdispersion to maximise the likelihood of that locus across all cells with non-zero variant
reads and computed the likelihood L1. For the same set of cells, a second beta-binomial distribution
with a mean fixed to 0.25 (to allow for copy number changes) and free overdispersion was fitted
to compute the maximum likelihood L0 of the constrained model. The test statistic −2 log L1

L0
is

asymptotically χ2
1 distributed and loci with a p-value > 0.05 or estimated mean > 0.25 were kept.

For the exome data, loci with coverage less than six in the control bulk sequencing dataset were
excluded as not reliably distinguishable from germline variants. Further, loci showing an alternative
nucleotide count of 2 or more in the bulk control were excluded as germline variants.

A.4 Influence of prior parameters

In an additional experiment we investigated the influence of changing the prior parameters for SCIΦ
and Monovar (Figure 6). For SCIΦ we changed the prior probability λ of a locus to be mutated,
where the default is 0.0001. For Monovar we investigated the influence of the prior probability of a
false-positive error.

The F1 score does not change dramatically over five orders of magnitude (except with a very
high prior for Monovar).

A.5 Results for alternative simulation

As can be observed in Figure 7 the nucleotide frequency distribution after the MDA does not nec-
essary follow a beta binomial distribution with α and β of the beta distribution equal to 2. Instead,
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Figure 5: F1 score

Figure 6: Summary statistics of F1 performance from SCIΦ and Monovar on simulated data as their
prior parameters are varied.
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Figure 7: Variant allele frequencies (VAFs) of the single cells for positions containing somatic
mutations identified by SCIΦ (a) and positions with differences to the reference genome identified
by Monovar (b) in the data described in [24].

here the distribution is uniform with the exception of frequencies of 0 and 1, which correspond to
no mutation observed or the mutation being present in homozygous state. This scenario can be
simulated with a beta binomial distribution where α and β are set to 1. Therefore, we provide
additional benchmarks on simulated data following the same scheme as in 2.7 with α and β set to
1 for a heterozygous genotype and α set to 1 and β set to 0 (or vice versa) for the homozygous
reference or homozygous alternative genotype. The results are similar to the previous simulation
and summarized in Figure 8.
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(d)

Figure 8: Summary statistics of the F1 performance from Monovar and SCIΦ on simulated data
with α and β set to 1 for the Pólya urn MDA process. (a) F1 score depending on the number of
cells. (b) F1 score depending on the drop-out rate. (c) F1 score depending on the homozygosity
rate. (d) F1 score depending on the false positive prior for Monovar and the mutation prior for
SCIΦ.
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