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Abstract. 21 

Biogeochemical hotspots are pervasive at terrestrial-aquatic interfaces, particularly within 22 

groundwater-surface water mixing zones (hyporheic zones), and they are critical to 23 

understanding spatiotemporal variation in biogeochemical cycling. Here, we use multi ‘omic 24 

comparisons of hotspots to low-activity sediments to gain mechanistic insight into hyporheic 25 

zone organic matter processing. We hypothesized that microbiome structure and function, as 26 

described by metagenomics and metaproteomics, would distinguish hotspots from low-activity 27 

sediments through a shift towards carbohydrate-utilizing metabolic pathways and elucidate 28 

discrete mechanisms governing organic matter processing in each location. We also expected 29 

these differences to be reflected in the metabolome, whereby hotspot carbon (C) pools and 30 

metabolite transformations therein would be enriched in sugar-associated compounds. In contrast 31 

to expectations, we found pronounced phenotypic plasticity in the hyporheic zone microbiome 32 

that was denoted by similar microbiome structure, functional potential, and expression across 33 

sediments with dissimilar metabolic rates. Instead, diverse nitrogenous metabolites and 34 

biochemical transformations characterized hotspots. Metabolomes also corresponded more 35 

strongly to aerobic metabolism than bulk C content only (explaining 67% vs. 42% of variation), 36 

and bulk C did not improve statistical models based on metabolome composition alone. These 37 

results point to organic nitrogen as a significant regulatory factor influencing hyporheic zone 38 

organic matter processing. Based on our findings, we propose incorporating knowledge of 39 

metabolic pathways associated with different chemical fractions of C pools into ecosystem 40 

models will enhance prediction accuracy.   41 
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1. Introduction. 42 

Soils and nearshore sediments contain a vast reservoir of stored carbon. Uncertainty in 43 

the fate of these stores is central to constraining future atmospheric CO2 concentrations (Burd et 44 

al., 2016; Luo et al., 2016; Todd-Brown et al., 2013). Advances in molecular technology has 45 

given researchers new ability to characterize mechanisms governing carbon (C) bioavailability, 46 

and ultimately the conversion of belowground C pools to CO2. These advances are central to 47 

ongoing efforts to improve process-based ecosystem models by incorporating microbial and 48 

biochemical complexity in biogeochemical processes (Buchkowski et al., 2017; Luo et al., 2016; 49 

Wieder et al., 2013; Wieder et al., 2017). Still, there is little consensus on the roles of diverse 50 

environmental and microbial factors in enhancing belowground CO2 flux predictions (Graham et 51 

al., 2016b; Graham et al., 2014; Luo et al., 2016; Rocca et al., 2015; Wieder et al., 2017), and 52 

understanding the mechanisms regulating biogeochemistry in natural environments is paramount 53 

to conceptualizing the structure and parameterization of models (Luo et al., 2016; Todd-Brown 54 

et al., 2013; Wieder et al., 2013). 55 

 Recent research has vastly improved both molecular methodologies (Aebersold and 56 

Mann, 2003; Gabor et al., 2014; Tfaily et al., 2017; Tringe and Rubin, 2005; Viant, 2008; Wang 57 

et al., 2009) and biogeochemical mechanisms represented in ecosystem models (Allison et al., 58 

2010; Wieder et al., 2015a; Wieder et al., 2013; Xu et al., 2014). For instance, parallel advances 59 

in environmental chemistry and microbiology now allow for detailed characterization of 60 

belowground C pools (e.g., fluorescent methods (Gabor et al., 2014), high-resolution mass 61 

spectroscopy (Tfaily et al., 2017), and nuclear magnetic resonance (NMR) (Markley et al., 62 

2017)) as well as the structure and function of environmental microbiomes (Aebersold and 63 

Mann, 2003; Tringe and Rubin, 2005; Wang et al., 2009). Newly improved process models 64 
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account for chemical attributes of C (Liski et al., 2005; Wang et al., 2017), microbial biomass 65 

and physiology (Wieder et al., 2014; Wieder et al., 2015a), and nutrient limitations (Wieder et 66 

al., 2015b) in their representations of biogeochemistry, among other factors (Verheijen et al., 67 

2015; Wang et al., 2017). Despite these advances, cross-system experimental evidence has 68 

revealed many inconsistencies in the importance of different biogeochemical and microbial 69 

properties explaining respiration rates (Graham et al., 2016b; Graham et al., 2017b; Hartman et 70 

al., 2017), suggesting a need for greater spatially-explicit understanding of mechanisms involved 71 

in organic matter processing (Graham et al., 2017b; Krause et al., 2017). 72 

 Terrestrial-aquatic interfaces are recognized active regions of C metabolism, and areas of 73 

subsurface groundwater-surface water mixing (hyporheic zones) in particular are critical in 74 

determining the fate of organic matter globally (Battin et al., 2009; Boulton et al., 1998; Cole et 75 

al., 2007; Marín-Spiotta et al., 2014; Regnier et al., 2013). Hyporheic zones contribute 76 

disproportionately to stream and river metabolism (Gomez-Velez et al., 2015; Huizenga et al., 77 

2017; Stegen et al., 2016; Stern et al., 2017), with up to 96% of ecosystem metabolism occurring 78 

in this zone in some headwater systems (Naegeli and Uehlinger, 1997). Hotspots and hot 79 

moments of enhanced biogeochemical activity at confined locations or time points are common 80 

within the hyporheic zone (Boulton et al., 1998; Krause et al., 2017; McClain et al., 2003). These 81 

hotspots often correspond to vegetation patterns (Harms and Grimm, 2008; McClain et al., 2003; 82 

Schade et al., 2001) and understanding their drivers is critical to accurately representing organic 83 

matter decomposition within ecosystem models. 84 

 Our objective is to determine molecular mechanisms associated with hotspots of aerobic 85 

metabolism in the hyporheic zone. Previous work in this system has shown differences in (1) 86 

aerobic metabolism across variable mixing of water bodies with distinct C chemistries (Stegen et 87 
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al., 2016; Stegen et al., 2018) and (2) metabolic processes associated with C oxidation in the 88 

presence or absence of vegetation (Graham et al., 2017b). Recent work has also shown that 89 

elevated rates of metabolism globally correspond to carbohydrate metabolism in soil 90 

metagenomes (Hartman et al., 2017). Based on this research, we hypothesize that microbiome 91 

structure and function support elevated carbohydrate metabolism in hyporheic zone hotspots, 92 

resulting in higher rates of aerobic metabolism. We expect this dynamic to be reflected in 93 

sediment metagenomes, metaproteomes, and metabolomes, whereby hotspot microbiome 94 

composition, protein expression, and metabolites are enriched in sugar-associated pathways and 95 

compounds, relative to low-activity sediments. 96 

 97 

2. Materials and Methods. 98 

2.1. Site Description 99 

This study was conducted along the Columbia River shoreline within the Hanford 300 100 

Area (approximately 46o 22’ 15.80”N, 119o 16’ 31.52”W) in eastern Washington State (Graham 101 

et al., 2016a; Graham et al., 2017a; Graham et al., 2017b; Slater et al., 2010; Zachara et al., 102 

2013). The Columbia River experiences shoreline geographic variation in vegetation patterns, 103 

substrate geochemistry, microbiome composition, and rates of biogeochemical activity (Arntzen 104 

et al., 2006; Graham et al., 2017b; Lin et al., 2012; Peterson and Connelly, 2004; Slater et al., 105 

2010; Stegen et al., 2016; Stegen et al., 2012; Zachara et al., 2013); constituting an ideal system 106 

for examining mechanisms associated with biogeochemical hotspots.  107 

Liquid N2-frozen sediment profiles (0-60 cm) were collected along two shoreline 108 

transects perpendicular to the Columbia River in March 2015, separated by a distance of ~170m. 109 

We collected profiles at three locations in each transect with 5m spacing within a spatial domain 110 
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of ~175 x 10m. In each transect, the lower bank profile was located at ~0.5m (vertical distance) 111 

below the water line and the upper bank profile was located ~0.5m (vertical distance) above the 112 

water line (approximately 10m horizontal distance), with the third profile situated at the 113 

midpoint. Each profile was sectioned into 10-cm intervals from 0-60cm. To capture a range of 114 

biogeochemical activities, one transect had dense vegetation, consisting of a closed canopy of 115 

woody perennials Morus rubra (Red Mulberry) and Ulmus rubra (Slippery Elm), and one 116 

transect was characterized by a cobbled armor layer with virtually no vegetation.  117 

 118 

2.2. Sample Collection 119 

Liquid N2-frozen sediment profiles were collected as outlined in Moser et al. (2003) 120 

using a method modified from Lotspeich and Reed (1980) and Rood and Church (1994). A 121 

pointed stainless steel tube (152 cm length, 3.3 cm outside diameter, 2.4 cm inside diameter) was 122 

driven into the river bed to a depth of ~60cm. Liquid N2 was poured down the tube for ~15 123 

minutes, until a sufficient quantity of material had frozen to the outside of the tube. The tube and 124 

attached material were removed from the riverbed with a chain hoist suspended beneath a tripod. 125 

Profiles were placed over an aluminum foil lined cooler containing dry ice. Frozen material was 126 

removed with a mallet. The material was then wrapped in the foil and transported on dry ice to 127 

storage at -80°C. In the lab, profiles were sectioned into 10cm depth intervals from 0-60 cm (n = 128 

6 per profile, except for the unvegetated upper bank profile which was sectioned only from 30-129 

60cm; total n = 33) 130 

 131 

2.3. Physicochemistry 132 
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 Details concerning physicochemical assays are provided in the Supporting Information. 133 

Briefly, we determined the particle distribution of sediments by separating size fractions via 134 

sieving; total nitrogen, sulfur, and carbon content were determined using an Elementar vario EL 135 

cube (Elementar Co.Germany); NH4
+ was extracted with KCl and measured with Hach Kit 136 

2604545 (Hach, Loveland, Co); iron content was measured with a ferrozine assay; and all other 137 

ion concentrations were measured by inductively coupled plasma mass spectrometry (ICP-MS) 138 

on HCl extractions. Aerobic metabolism was determined with a resazurin reduction assay, 139 

modified from Haggerty et al.(2009). Data are provided in Fig. S1-S3. 140 

 141 

2.4. FT-ICR-MS solvent extraction and data acquisition 142 

We leverage state of science chemical extraction protocols combined with Electrospray 143 

ionization (ESI) and Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry 144 

(MS) to infer differences in metabolites among our samples. ESI FT-ICR-MS introduces intact 145 

organic molecules into the MS without fragmentation and allows for the detection of a wide 146 

range of chemical compounds (Tfaily et al., 2015; Tfaily et al., 2017). The use of 12 Tesla (T) 147 

FT-ICR-MS offers high mass resolving power (>1M) and mass measurement accuracy (<1 ppm), 148 

and while nascent in its application within complex environmental systems, it has emerged as a 149 

robust method for determining the chemistry of natural organic compounds (Kim et al., 2003; 150 

Koch et al., 2005; Tfaily et al., 2011; Tremblay et al., 2007). Additionally, Tfaily et al. (2015; 151 

2017) have optimized metabolite characterization from soils and sediments by sequential 152 

extraction with polar and non-polar solvents tailored to the sample set of interest. Tfaily’s 153 

extraction procedures have been coupled to ESI FT-ICR-MS to distinguish metabolites among 154 

ecosystems and soil types (Tfaily et al., 2015; Tfaily et al., 2017) as well as to provide 155 
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information on the utilization of distinct metabolites among samples within a single environment 156 

(Bailey et al., 2017; Graham et al., 2017b; Stegen et al., 2018).  157 

Here, we used three solvents with different polarities ––water (H2O), methanol (CH3OH, 158 

‘MeOH’) and chloroform (CHCl3)––to sequentially extract a large diversity of organic 159 

compounds from samples, according to Tfaily et al. (2015; 2017). Water extractions were 160 

performed first, followed by MeOH and then CHCl3. Previous work has shown that each solvent 161 

is selective towards specific types of compounds (Tfaily et al., 2015) and that combining peaks 162 

from all extractions provides a more comprehensive description of metabolite composition than 163 

any single extraction procedure independently (Tfaily et al., 2017). Water is a polar solvent with 164 

a selection bias for carbohydrates with high O/C ratios, amino-sugars, and other labile polar 165 

compounds (Tfaily et al., 2015). Conversely, CHCl3 is selective for non-polar lipids associated 166 

with mineral interactions and cellular membranes (Tfaily et al., 2015). Methanol has a polarity in 167 

between that of water and CHCl3 and extracts a mixture of compounds that water and CHCl3 168 

extract (Tfaily et al., 2015). Ultra-high resolution mass spectrometry of the three different 169 

extracts from each sample was carried out using a 12 Tesla Bruker SolariX FT-ICR-MS located 170 

at the Environmental Molecular Sciences Laboratory (EMSL) in Richland, WA, USA. An 171 

expanded description of extraction procedures; instrument calibration and maintenance; and 172 

sample injection is presented in the Supplemental Material. 173 

 174 

2.5. FT-ICR-MS data processing 175 

One hundred forty-four individual scans were averaged for each sample and internally 176 

calibrated using an organic matter homologous series separated by 14 Da (–CH2 groups). The 177 

mass measurement accuracy was less than 1 ppm for singly charged ions across a broad m/z 178 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/291096doi: bioRxiv preprint 

https://doi.org/10.1101/291096
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9

range (100-1200 m/z). The mass resolution was ~ 350K at 339 m/z. Data Analysis software 179 

(BrukerDaltonik version 4.2) was used to convert raw spectra to a list of m/z values applying 180 

FTMS peak picker module with a signal-to-noise ratio (S/N) threshold set to 7 and absolute 181 

intensity threshold to the default value of 100.  182 

For each sample, we combined peaks detected in all three extractions to yield metabolite 183 

composition. Peak data were treated as presents/absence data, where a peak was considered to be 184 

present in a sample if it was present in at least one of H2O-, MeOH-, or CHCl3-extracted 185 

samples. Presence/absence data were used because peak intensity differences are reflective of 186 

ionization efficiency as well as relative abundance (Kujawinski and Behn, 2006; Minor et al., 187 

2012; Tfaily et al., 2015; Tfaily et al., 2017). 188 

Putative chemical formulae were then assigned using in-house software following the 189 

Compound Identification Algorithm (CIA), proposed by Kujawinski and Behn (2006), modified 190 

by Minor et al. (2012), and previously described in Tfaily et al. (2017). Chemical formulae were 191 

assigned based on the following criteria: S/N >7, and mass measurement error <1 ppm, taking 192 

into consideration the presence of C, H, O, N, S and P and excluding other elements.  To ensure 193 

consistent formula assignment, we aligned all sample peak lists for the entire dataset to each 194 

other in order to facilitate consistent peak assignments and eliminate possible mass shifts that 195 

would impact formula assignment. We implemented the following rules to further ensure 196 

consistent formula assignment: (1) we consistently picked the formula with the lowest error and 197 

with the lowest number of heteroatoms and (2) the assignment of one phosphorus atom requires 198 

the presence of at least four oxygen atoms. 199 

The chemical character of thousands of peaks in each sample’s ESI FT-ICR-MS 200 

spectrum was evaluated on van Krevelen diagrams. Compounds were plotted on the van 201 
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Krevelen diagram on the basis of their molar H:C ratios (y-axis) and molar O:C ratios (x-axis) 202 

(Kim et al., 2003). Van Krevelen diagrams provide a means to visualize and compare the average 203 

properties of organic compounds and assign compounds to the major biochemical classes (e.g., 204 

lipid-, protein-, lignin-, carbohydrate-, and condensed aromatic-like).  205 

 206 

2.6. Identification of putative biochemical transformations using FT-ICR-MS 207 

To identify potential biochemical transformations, we followed the procedure detailed by 208 

Breitling et al. (2006) and employed by Bailey et al. (2017), Graham et al. (2017b), and Stegen 209 

et al. (2018). The mass difference between m/z peaks extracted from each spectrum with S/N>7 210 

were compared to commonly observed mass differences associated with biochemical 211 

transformations. All possible pairwise mass differences were calculated within each extraction 212 

type for each sample, and differences (within 1ppm) were matched to a list of 92 common 213 

biochemical transformations (e.g., gain or loss of amino groups or sugars, Table S1). For 214 

example, a mass difference of 99.07 corresponds to a gain or loss of the amino acid valine, while 215 

a difference of 179.06 corresponds to the gain or loss of a glucose molecule. Pairs of peaks with 216 

a mass difference within 1 ppm of our transformation list were considered to be related by the 217 

corresponding compound. This approach is feasible with FT-ICR-MS data because the set of 218 

peaks in each sample are related by measureable and clearly defined mass differences 219 

corresponding to gains and losses of compounds.  220 

 221 

2.7. Metagenome sequencing and annotation 222 

 To release biomass from sediment particles, thawed samples were suspended in 20mL of 223 

chilled PBS/0.1% Na-pyrophosphate solution and vortexed for 1 min. The suspended fraction 224 
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was decanted to a fresh tube and centrifuged for 15’ at 7000 x g at 10oC. DNA was extracted 225 

from the resulting pellets using the MoBio PowerSoil kit in plate format (MoBio Laboratories, 226 

Inc., Carlsbad, CA) following manufacturer’s instructions, with the addition of a 2-hour 227 

proteinase-K incubation at 55oC prior to bead-beating to facilitate cell lysis. 228 

 Purified genomic DNA was submitted to the Joint Genome Institute under JGI/EMSL 229 

proposal 1781 for paired-end sequencing on an Illumina HiSeq 2500 sequencer (Table S2). 230 

Reads were processed by BBDuk to remove adapters (ktrim=r, minlen=40, minlenfraction=0.6, 231 

mink=11, tbo, tpe, k=23, hdist=1, hdist2=1, ftm=5) and trim for quality <12 (maq=8, maxns=1, 232 

minlen=40, minlenfraction=0.6, k=27, hdist=1, trimq=12, qtrim=rl) and screened for 233 

contaminants against a masked version of human HG19 using BBMap (fast local minratio=0.84 234 

maxindel=6 tipsearch=4 bw=18 bwr=0.18 usemodulo printunmappedcount idtag minhits=1). 235 

(BBDuk and BBMap are available at https://sourceforge.net/projects/bbmap) Remaining reads 236 

were assembled with megahit (Li et al., 2016) using default parameters and k-list=23,43,63, 237 

83,103,123. Gene calling and functional and taxonomic annotation was performed by MGAP 238 

v4.11.4 (Huntemann et al., 2015). Data sets are available through the JGI Genome Portal 239 

(http://genome.jgi.doe.gov). Project identifiers are listed in Table S2. 240 

 241 

2.8. Metaproteomics. 242 

 243 

Sediment samples were prepared for proteome analysis as per Nicora et al. (in press) and 244 

detailed below. Additional details are provided in the Supplemental Material. 245 

 Proteins were extracted from 30 g of lyophilized sediment using MPLex direct SDS 246 

buffer extraction. Sediment was weighed into 50 mL screw-cap self-standing tubes (Next 247 
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Advance, Averill Park, NY) along with 0.9-2.0 mm stainless steel beads, 0.1 mm zirconia beads 248 

and 0.1 mm garnet beads and 8 mL of 60% MeOH in nanopure water. The samples were all bead 249 

beat in a 50mL Bullet Blender (Next Advance, Averill Park, NY) at speed 12 for 15 minutes at 250 

4°C and transferred into chemical compatible polypropylene 50 mL tubes (Olympus Plastics, 251 

Waltham, MA). The dirty tube was rinsed with 2 mL of 60% MeOH and combined with the 252 

sample along with 12 mL of ice-cold chloroform and probe sonicated at 60% amplitude for 30 253 

seconds on ice, allowed to cool on ice and sonicated again. Samples were incubated for 5 min at-254 

80°C, vortexed for 1 min and centrifuged at 4,500x g for 10 min at 4°C. The upper aqueous 255 

phase was collected into a large glass vial, being careful not to touch the protein interphase. The 256 

interphase was collected using a large flat spatula into a separate tube and 5mL of ice cold 100% 257 

methanol was added to the protein, vortexed and centrifuged at 4,500x g for 5 mins at 4°C to 258 

pellet the protein. The supernatant was decanted off and the protein allowed to dry upside down 259 

on a Kim-wipe. Meanwhile, the bottom organic phase was collected into a separate large glass 260 

vial and 5mL of nanopure water was added to the large soil particulates along with 25mL of cold 261 

(-20 °C) chloroform:methanol (2:1, v:v) solution and probe sonicated for 30 seconds as 262 

described previously. The sample was allowed to cool at -20°C and centrifuged at 4,500x g for 263 

10 min at 4°C. The upper aqueous phase metabolites and bottom organic phase lipids were 264 

collected together with the supernatant metabolites and lipids then dried down completely in a 265 

vacuum concentrator (Labconco, Kansas City, MO) and stored at -20 °C for analysis. The dirty 266 

protein interphase had 20 mL of an SDS-Tris buffer (4% SDS, 100mM DTT in 100 mM Tris-267 

HCl, pH 8.0) added and probe sonicated at 20% amplitude to bring into solution and incubated at 268 

95°C for 5 minutes to solubilize the protein and allowed to cool for 20 mins at 4°C. The samples 269 

were centrifuged at 4,500x g for 10 mins and the supernatants were decanted into chemical 270 
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compatible polypropylene 50 mL tubes. The proteins were precipitated by adding up to 20% 271 

trichloroacetic acid (TCA), vortexed and placed in a -20°C freezer for 1.5 hrs.  The samples were 272 

thawed and centrifuged at 4,500x g at 4°C for 10 mins to collect the precipitated protein. The 273 

supernatant was gently decanted into waste and 2 mL of ice cold acetone was added to the pellet 274 

and re-suspend by vortexing. The sample was placed at -80°C for ~5 mins to ensure the samples 275 

were cold and centrifuged for 10 mins at 4,500x g at 4°C. The acetone was removed by gently 276 

pouring into waste. The pellets were allowed to dry inverted on a Kim Wipe for ~15 mins. The 277 

protein interphases from the supernatants and the protein interphases from the particulates were 278 

combined using 100-200ul of SDS-Tris buffer and FASP digested (described in the 279 

Supplemental Material).  280 

Extractions were analyzed on a Q-Exactive Plus mass spectrometer (Thermo Electron, 281 

Waltham, MA) coupled to a Waters NanoAcquity high performance liquid chromatography 282 

systems (Waters Corporation, Milford, MA) through 75 um x 70 cm columns packed with 283 

Phenomenex Jupiter C-18 derivatized 3 um silica beads (Phenomenex, Torrance, CA). Samples 284 

were loaded onto columns with 0.05% formic acid in water and eluted with 0.05% formic acid in 285 

Acetonitrile over 100 minutes. Ten data-dependent MS/MS scans (17.5K resolution, centroided) 286 

were recorded for each survey MS scan (35K resolution) using normalized collision energy of 287 

30, isolation width of 2.00, and rolling exclusion window of +/- 1 Th lasting 30 seconds before 288 

previously fragmented signals are eligible for re-analysis. 289 

For protein identification, a single reference protein file was developed from the 290 

combination of 33 metagenome files (‘assembled.faa’ and ‘product_names’ files) available from 291 

the Joint Genome Institute (JGI Project IDs and related download links in Supplemental 292 

Material). Exact sequence duplicates were removed, and 16 commonly observed contaminants 293 
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(e.g. tryptic fragments, human keratins, and serum albumin precursors) were included. Final file 294 

contained 10,063,272 protein entries from 1,299,102,456 amino acids, 2.04GB in size. 295 

The MS/MS spectra from all LC-MS/MS datasets were converted to ASCII text (.dta 296 

format) using MSConvert (http://proteowizard.sourceforge.net/tools/msconvert.html) which 297 

more precisely assigns the charge and parent mass values to an MS/MS spectrum. The data files 298 

were then interrogated via target-decoy approach 299 

(http://www.ncbi.nlm.nih.gov/pubmed/20013364) using MSGFPlus 300 

(http://www.ncbi.nlm.nih.gov/pubmed/25358478) using a +/- 20 ppm parent mass tolerance, 301 

partially tryptic digestion enzyme settings, and a variable posttranslational modification of 302 

oxidized Methionine. All MS/MS search results for each dataset were collated into tab separated 303 

ASCII text files listing the best scoring identification for each spectrum. 304 

Collated search results were further combined into a single result file. These results were 305 

imported into a Microsoft SQL Server database. Results were filtered to >1% FDR using an 306 

MSGF+ supplied Q-Value that assesses reversed sequence decoy identifications for a given 307 

MSGF score across each dataset. Using the protein references as a grouping term, unique 308 

peptides belonging to each protein were counted, as were all peptide spectrum matches (PSMs) 309 

belonging to all peptides for that protein (i.e. a protein level observation count value). PSM 310 

observation counts reported for each sample that was analyzed. Cross-tabulation tables were 311 

created to enumerate protein level PSM observations for each sample, allowing low-precision 312 

quantitative comparisons to be made. Identified proteins were searched against dbCAN v5 (Yin 313 

et al., 2012) using hmmer v3.1 (Finn et al., 2011). CAZy families were assigned based on cutoff 314 

suggestions of the maintainers of dbCAN. We removed singletons and proteins not present in at 315 
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least 25% of samples prior to statistical analysis. Samples with less than 10 total protein counts 316 

(n = 4) were removed from our dataset to yield 29 samples.  317 

 318 

2.9. Statistical analyses. 319 

 After removing samples with low protein detection, we retained 29 samples for statistical 320 

analyses. To identify hotspots vs. low-activity sediments, we examined the distribution of 321 

aerobic metabolism rates in all 29 samples (Fig. S4). The distribution was approximately normal 322 

with a minimum of 361.83, a mean of 810.49, and a maximum of 1472.86. We defined low-323 

activity sediments as those falling in the bottom quartile of the distribution (maximum rate of 324 

aerobic metabolism: 619.45) and high activity samples as those falling in the top quartile of the 325 

distribution (minimum rate of aerobic metabolism: 1033.66), yielding a sample size of 7 for each 326 

set of samples. All statistical analyses were conducted using R software (https://www.r-327 

project.org/) and graphics were generated with either base packages or ‘ggplot2.’ 328 

 We used two approaches to determine differences in the composition of metabolites, 329 

microbial phylogenies, metagenomic functional potential (i.e., all annotated genes), and 330 

metaproteomes between hotspots and low-activity sediments. Metabolomes were analyzed as 331 

present/absence data, and all other data types were analyzed as relative abundances. First, we 332 

examined differences in full compositional profiles across groups using permutational 333 

multivariate analysis of variance (PERMANOVA, 999 permutations, ‘vegan’ package) and 334 

accounting for potential non-independence between samples within the same core by stratifiying 335 

this analysis by depth (as per Graham et al., 2017b). Because metabolite data were in 336 

presence/absence form, a Sorenson dissimilarity distance was constructed and used to compare 337 
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metabolite data. All other datasets were analyzed using Bray-Curtis dissimilarity to account for 338 

differences in relative abundance.  339 

Secondly, we used linear mixed effect models to investigate variation in specific 340 

microbial attributes between hotspots and low-activity sediments. Following the convention of 341 

Graham et al. (2017b), we included depth as a random effect in these models to account for 342 

possible non-independence among sediments. A given microbial attribute was the dependent 343 

variable and sediment type was the independent variable. Mixed models were compared to null 344 

expectations (i.e., a model including only random effects) with analysis of variance (ANOVA) to 345 

determine significance. For significant models (P < 0.05), R2 values for microbial attributes 346 

independently and for the entire mixed model (i.e., the effects of the attribute plus depth) were 347 

determined with the ‘r.squaredGLMM’ function in the ‘MuMIn’ package (Barton, 2009). 348 

Because few compounds differed across activity levels, P-values were not adjusted for multiple 349 

comparisons in order to maximize the likelihood of detecting differences.  350 

We selected specific attributes for analysis as follows: For metabolomic data, we grouped 351 

peaks by their Van Krevlen assignment and compared the relative abundance of each Van 352 

Krevlen class across activity groups (e.g., the relative abundance of amino sugars in hotspots vs. 353 

low-activity sediments). To identify specific microbial phylogenic and functional groups of 354 

interest, we employed the following procedure: (1) we ranked the relative abundance of each 355 

assigned phylogeny (class level) or functional annotation (pfam, COG, and KEGG) within each 356 

sample; (2) we compiled a master list containing the 25 most abundant phylogenies or functional 357 

annotations in every sample; and (3) we determined the relative abundance of every unique 358 

phylogeny or functional annotation in the master list within each sample. In this way, we 359 

examined every taxon or metabolic pathway that was present in high abundance in at least one 360 
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sample. For metaproteomic data, we employed a similar pipeline but because the proteomic 361 

dataset was smaller, we comprised our master list from any protein in the top 5% of relative 362 

abundance in a given sample (equivalent to more than 10 proteins per sample).  363 

Because (1) metagenomes did not vary strongly between hotspots and low-activity 364 

sediments, (2) proteins are tightly coupled to function conceptually (i.e., they are proximate 365 

catalysts of reactions), and (3) metabolites were dramatically different across activity levels; we 366 

focused subsequent analyses only on metaproteomic and metabolomics data. We first 367 

investigated the extent to which metaproteome structure corresponded to metabolome structure 368 

in the full dataset (n = 29) by comparing dissimilarity in metabolite composition (Sorenson 369 

dissimilarity) to differences in proteomic composition (Bray-Curtis dissimilarity, Mantel test 370 

using Spearman correlation and stratifying by depth). We also examined the extent to which each 371 

data type corresponded to changes in aerobic metabolism by fitting linear and quadratic mixed 372 

effects models across the full dataset. As above, depth was included as a random effect in each 373 

model. To reduce multidimensional metaproteomic and metabolomic data into vectors for model 374 

construction, we extracted the first two principle components of variation within data type (PCA 375 

analysis, ‘prcomp’). PC1 and PC2 were predictors in the mixed effects models, and aerobic 376 

metabolism was the response variable. Mixed models were compared to null expectations (i.e., 377 

models including only random effects) with ANOVA to determine significance. R2 values were 378 

determined with the ‘r.squaredGLMM’ function in the ‘MuMIn’ package. Since both PC1 and 379 

PC2 from metabolomes were significantly related to aerobic metabolism, we also constructed a 380 

model that included both PC1 and PC2 as predictors. Lastly, to examine additional explanatory 381 

power that could be gained by incorporating bulk C as predictors along with metabolite 382 

chemistry, we constructed a final model with PC1, PC2, and percent C. This model was 383 
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compared to the model with PC1 and PC2 only using ANOVA to determine if percent C 384 

significantly improved explanatory power of aerobic metabolism.  385 

Finally, because metabolomes were most distinguishing between hotspots and low-386 

activity sediments and corresponded to rates of aerobic metabolism, we concluded with set of 387 

analyses with metabolomic data only. We deciphered specific metabolites that distinguished 388 

hotspots from low-activity sediments using ‘random forest’ machine learning algorithm (Liaw 389 

and Wiener, 2002, 'randomForest' package). Forests were constructed using metabolite peaks 390 

that were assigned chemical formulae, removing singletons for computational limitations. For 391 

each forest, 1000 trees were constructed with replacement, and error rates converged near zero 392 

(Fig. S5). Peak importance and partial dependence in distinguishing high vs. low activity 393 

samples were calculated with the ‘imp’ and ‘PartialPlot’ functions, respectively. Peaks that were 394 

assigned a ‘Mean Decrease in Accuracy’ of greater than zero were considered to be 395 

distinguishing metabolites. This approach yielded 55 peaks distinguishing low activity samples 396 

and 272 peaks distinguishing high activity samples. 397 

 We also used metabolite transformations to infer biochemical processes associated with 398 

aerobic metabolism in hotspots. We identified transformations of interest using the following 399 

procedure: (1) we summed the relative abundance of each transformation across all samples (n = 400 

29) and (2) we chose the transformations whose abundance was in the top 20% of all 401 

transformations (18 out of 92, mean relative abundance: 1.6% to 14.5%). By doing so, we 402 

analyzed transformations that occurred most frequently in our dataset, irrespective of their 403 

occurrence within individual samples.  404 

We then compared the relative abundance of specific transformations between hotspots 405 

and low-activity sediments using linear mixed effect models using the same procedure as for 406 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/291096doi: bioRxiv preprint 

https://doi.org/10.1101/291096
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19

abundant microbial phyologenies, metabolic pathways, expressed proteins, and metabolites 407 

(described above). Because many abundant transformations in hotspots seemed to contain 408 

nitrogen (N) while transformations in low-activity sediments did not, we also examined the role 409 

in nitrogenous compounds in biochemical transformations in hotspots. We separated 410 

transformations into those containing N and N-free transformations (Table S3 and S4) and 411 

determined the relative abundance of transformations in each sample that were either nitrogenous 412 

or N-free. We then compared the relative abundance of nitrogenous and N-free compounds 413 

between hotspots and low-activity sediments using mixed effects models. Because the 414 

distribution of transformations within nitrogenous and N-free categories was highly non-415 

Gaussian, we applied a Box-Cox transformation to each data type ('boxCox' function in 'car' 416 

package, Sakia, 1992), and subsequently constructed linear mixed effects models. We further 417 

separated amino-acid nitrogenous transformations from non-amino acid nitrogenous 418 

transformations (hereafter ‘complex N’, Table S5 and S6), applied a Box-Cox transformation, 419 

and constructed linear mixed effects models with these data. 420 

 421 

3. Results. 422 

3.1. Multi ‘Omic Differences across Rates of Aerobic Metabolism 423 

 Microbiome structure, functional potential, and protein expression showed limited 424 

differences between hotspots vs. low-activity sediments. No significant difference was observed 425 

in the composition of microbiome phylogenies (P = 0.57, Fig. 1a), metagenomic annotations (P = 426 

0.69, Fig. 1b), and metaproteomes (P = 0.91, Fig. 1c) between hotspots and low-activity 427 

sediments (PERMANOVA). As well, major clades, pathways, and proteins were similar among 428 

sediments (Fig. 1). 429 
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 Metabolome composition, however, differed between hotspots and low-activity samples 430 

(P = 0.01, R2 = 0.28, Fig. 1d, PERMANOVA). When grouped into major compound classes, 431 

hotspots contained more amino sugar- and protein-like metabolites (P < 0.05, Fig. 1d, mixed 432 

effects). Metabolite pool composition was uncorrelated to proteome structure (P = 0.62, Fig. S6, 433 

Mantel test across all samples). 434 

 Finally, when considering aerobic metabolism as a continuous variable, metabolome 435 

composition was tightly correlated to aerobic metabolism. The first two principle coordinates of 436 

metabolite pool composition had significant independent relationships with aerobic metabolism 437 

and together explained 67% of variation in aerobic metabolism (mixed effects, P (PC1, quad.) = 438 

0.0006 & P (PC2, linear) = 0.01, P (combined, linear) << 0.0001, Fig. 2a, Fig. S7). Statistical 439 

models including both bulk C and metabolite composition were not significantly different from 440 

models including metabolite composition alone (R2 0.73 vs. 0.67, P = 1). Metaproteome 441 

composition was uncorrelated to aerobic metabolism despite representing the proximal catalysts 442 

of metabolic processes (mixed effects, P (PC1) = 0.29 & P (PC2) = 0.53, Fig. 2b). 443 

 444 

3.2. Distinguishing Metabolite Chemistry and Transformations 445 

 Because hotspots were discriminated from low-activity sediments only in the 446 

metabolome, we examined metabolite pools to identify compounds and infer processes that 447 

distinguished hotspots from low-activity sediments. Hotspots were characterized by high 448 

molecular weight (P < 0.0001, Fig. 3a), chemically diverse (Fig. 3b) compounds. In particular, 449 

nitrogenous classes of compounds (i.e., amino sugars and proteins) were present in metabolites 450 

that described hotpots and absent from metabolites characterizing low activity sediments (Fig. 451 

3b). 452 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/291096doi: bioRxiv preprint 

https://doi.org/10.1101/291096
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21

 Hotspots also exhibited a more even distribution of abundant biochemical 453 

transformations, indicating greater diversity of biogeochemical processes in these sediments 454 

relative to low-activity sediments (Fig. 4a). These transformations were inferred by comparing 455 

differences between peaks in FT-ICR-MS data to a database of known biochemical 456 

transformations (see section 2.6). Further, transformations involving nitrogenous compounds (P 457 

= 0.03 R2 = 0.26, Table S3), particularly those involving complex N (P = 0.04 R2 = 0.20, Fig. 4b, 458 

Table S6)), were more prevalent in hotspots. 459 

 460 

4. Discussion. 461 

 Our multi ‘omics investigation of microbiome structure and function in hyporheic zone 462 

hotspots highlights the importance of vegetation in driving local-scale (<200m2) aerobic 463 

metabolism in the subsurface. Pronounced spatial heterogeneity in metabolism across our 464 

relatively small spatial domain (~175 x 10m) is inconsistent with representations of 465 

biogeochemical processes within ecosystem models that often aggregate environmental 466 

properties across similarly sized domains, and suggests a need for finer scale representation of 467 

processes in these models. Our research supports previous observations of relationships between 468 

riparian vegetation and hyporheic zone hotspots due to associated carbon and nutrient inputs 469 

(Harms and Grimm, 2008; McClain et al., 2003; Schade et al., 2001). For example, Kuglerova et 470 

al. (2014) demonstrated that increased vegetation growth corresponded to enhanced 471 

biogeochemical cycling in areas of the hyporheic zone experiencing maximal groundwater-472 

surface water mixing. In our system, hotspots were disproportionately distributed within 473 

sediments underlying vegetation and exhibited up to 4 times the rate of aerobic metabolism in 474 

low-activity sediments despite a small sampling domain (Fig. S4). 475 
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 Contrary to our hypothesis that microbiome composition (metagenomics) and expression 476 

(metaproteomics) would be shifted towards carbohydrate metabolism in hotspots, our results 477 

support a predominant role for phenotypic plasticity within sediment microbiomes. Phenotypic 478 

plasticity, whereby an organism encodes multiple metabolic pathways and adjusts the expression 479 

of each depending on environmental conditions, is common in  free-living microbes and 480 

manifests as different metabolisms occurring in samples with the same genomic composition. 481 

Microbiome phylogeny and functional potential did not vary with the level of aerobic respiration 482 

in our sediments. While Hartman et al. (2017) demonstrated a consistent metagenomic shift from 483 

aromatic to carbohydrate metabolism with increased carbon turnover in global soils, we observed 484 

no such relationship in our sediments. A key difference between Hartman et al. (2017) and the 485 

present study is that Hartman et al. demonstrated decreased nutrient uptake with increased 486 

activity. In the present study, decreased nutrient uptake would correspond to fewer nitrogenous 487 

biochemical transformations, whereas we observed increasing activity of biochemical pathways 488 

involving nitrogen in hotspots vs. low-activity sediments. The lack of microbiome change in our 489 

study may therefore be constrained by N-limitation. For instance, if microbiomes in our 490 

sediments are always under strong selection for N-harvesting metabolisms, they would be 491 

structured to contain organisms with the ability to metabolize organic N (Craine et al., 2007; 492 

Moorhead and Sinsabaugh, 2006), regardless of the magnitude of available N.  493 

Interestingly, while one would expect protein expression to correlate with changes in 494 

activity, we saw no such effect in our metaproteomic data. The long residence time of enzymes 495 

compared to hydrologic mixing may decouple expression from function in dynamic 496 

environments such as the hyporheic zone. Hydrologic exchange in the hyporheic zone occurs on 497 

relatively short time scales (commonly minutes to days), as well as longer seasonal exchanges, 498 
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and creates fleeting periods of nutrient availability (Cardenas et al., 2008; Fritz and Arntzen, 499 

2007; Sawyer and Cardenas, 2009; Zarnetske et al., 2011). Recent work in soils has shown that 500 

protein decay rates vary widely across enzymes and that some enzymes can persist more than 12 501 

weeks in soils (Schimel et al., 2017). Assuming a similar magnitude of decay in hyporheic zone 502 

sediments would generate a disconnect between protein expression and resource availability that 503 

may ultimately disassociate enzyme pool composition from respiration rates, leading to the lack 504 

of relationship between metaproteome composition and aerobic metabolism observed here. 505 

 Our results indicate that improved resolution into sediment metabolomes provides greater 506 

insight into sediment function than bulk C content at a given point in time. While there is a long 507 

history of constraining biogeochemical rates with standing resource pools, our work indicates 508 

that bulk C alone was an insufficient predictor of aerobic respiration (Fig. S8). Metabolite 509 

chemistry explained 67% of variation in aerobic metabolism (in comparison to 42% by bulk C 510 

pools, Fig. S8), and including bulk C content as a predictor in addition to metabolome 511 

composition did not improve the explanatory power of our statistical models. In particular, 512 

nitrogenous metabolites were associated with enhanced metabolism. We therefore suggest that 513 

metabolome composition can explain aerobic metabolism better than bulk C stocks in some 514 

systems and subsequently that new process-based model structures need to account for multiple 515 

C pools with various organic N content. For instance, current generation models incorporate 516 

mechanisms reflecting that certain C molecules (e.g., glucose) can enter microbial cells by 517 

passing directly through their cellular membranes, while larger molecules require secreted 518 

extracellular enzymes to break them down prior to microbial uptake (Wang et al., 2013; Wieder 519 

et al., 2014). Extending these new frameworks to further parse C chemistry by organic N content 520 

and associated metabolic pathways could advance the performance of these models. 521 
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 Microbiomes associated with hyporheic zone hotspots metabolized a broader range of 522 

resources compared to microbiomes in low-activity sediments. Enhanced biogeochemical 523 

cycling can be achieved through microorganisms using different portions of resource pools 524 

(termed ‘resource partitioning’ or ‘niche complementarity’) in which diverse microorganisms use 525 

different portions of resource pools (Cardinale, 2011; Loreau and Hector, 2001; Schoener, 1974). 526 

Consistent with this mechanism, we show a divergence in active metabolic pathways (inferred 527 

from biochemical transformations) in hotspots compared to low-activity sediments. Thus, despite 528 

similar microbiome genomic content, hotspots seem to result from the expansion of realized 529 

niches of extant microbiomes. In this case, increased biogeochemical function arises through 530 

phenotypic plasticity. 531 

Hotspots contained diverse metabolites, were distinguished from low-activity sediments 532 

by protein- and amino sugar- like metabolites, and exhibited higher instances of biochemical 533 

transformations involving organic N. It has been widely demonstrated that N availability can 534 

limit microbial activity (Treseder, 2008), resulting in slower decomposition and ecosystem 535 

organic matter processing (Averill and Waring, 2017; Weintraub and Schimel, 2003; Zhang et 536 

al., 2008); and previous work in this system has suggested a coupling of C and N cycles (Stegen 537 

et al., 2018). An excess of inorganic N relative to other N sources has also been demonstrated to 538 

shift microbial metabolism by suppressing oxidative enzyme synthesis (Edwards et al., 2011; 539 

Jian et al., 2016) and by changing the ratios of synthesized enzymes that degrade recalcitrant vs. 540 

labile organic matter (Moorhead and Sinsabaugh, 2006). Similarly our analysis of metabolite 541 

transformations supports different metabolic strategies among hotspot vs. low-activity 542 

microbiomes as well as a role for organic N in particular as a driver of aerobic metabolism in 543 

hotspots.  544 
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While C:N ratios do not reflect obvious N limitation in our system (means: 6.55 (hotspot) 545 

and 6.19 (low-activity)), these ratios can misrepresent chemical conditions experienced by 546 

microbiomes due to N absorption to soil matrices and by aggregation processes that physically 547 

separate N from microorganisms (Lützow et al., 2006; Sollins et al., 1996). For instance, 548 

Darrouzet-Nardi and Weintraub (2014) demonstrated that bulk methods of C and N 549 

determination such as those used here may overestimate N availability by 5-fold. As such, 550 

organic N may play a critical role in our system despite ratios of C:N in bulk sediments. 551 

Moorhead and Sinsabaugh (2006) proposed a concept known as ‘microbial nitrogen 552 

mining’ in which microorganisms in environments with limited availability of labile N 553 

metabolize C to access organic N (Craine et al., 2007; Moorhead and Sinsabaugh, 2006). 554 

Microbial N mining should result in the preferential decomposition of organic N, and our results 555 

indicate that this process may contribute to high respiration rates in hyporheic zone hotspots. 556 

Consistent with N mining, we observed biochemical pathways involving nitrogenous 557 

compounds, and complex N in particular within hotspots, supporting previous observations that 558 

organic N increases the decomposition of organic matter (reviewed in Averill and Waring, 2017; 559 

Hu et al., 2001; Zhang et al., 2008). The metabolism of complex nitrogenous organic compounds 560 

specifically suggests that the breakdown of more chemically-complex organic material may be 561 

stimulated to facilitate microbial access to nitrogen and that more available labile C in vegetated 562 

sediments provides additional energy necessary to metabolize more chemically-complex 563 

nitrogenous molecules.  564 

 Based on our results, we propose a new conceptualization of hyporheic zone organic 565 

matter transformations in which greater resolution into C metabolites and associated metabolic 566 

pathways––beyond bulk C stocks and/or microbiome structure––is critical for predictive 567 
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hydrobiogeochemical models (Fig. 5). Phenotypic plasticity suggests (1) an ability for 568 

microbiomes to rapidly acclimate to environmental conditions, regardless of their underlying 569 

genomic content, and (2) that there may be limited contributions of metagenomic information to 570 

functional predictions in dynamic systems. Because compositional shifts in microbiomes are 571 

often on the order of days to months or longer (Balser and Firestone, 2005; Graham et al., 2016a; 572 

Poretsky et al., 2014; Waldrop and Firestone, 2006), the ability of microorganisms to adjust 573 

metabolic function to suit prevailing conditions without associated species turnover denotes that 574 

the timescale of microbiome response is not limited to these longer timescales and instead that 575 

microbial responses in some systems may be more tightly constrained by RNA transcription and 576 

translation (~minutes or less, Moran et al., 2013).  577 

Further, we suggest that broader metabolic activity in biogeochemical hotspots stimulates 578 

the production and consumption of diverse metabolites which alter the composition of future 579 

resource pools, and therefore that understanding subsequent feedbacks between metabolite 580 

consumption and production is vital for predictive biogeochemical models. For example, as 581 

metabolism proceeds through time, future metabolic rates are dependent on the resources (i.e., 582 

metabolites) generated by these pathways. Metabolism of an expanded suite of resources through 583 

broader realized niche space within biogeochemical hotspots may therefore fundamentally 584 

change the subsequent metabolite and resource profiles (Fig. 5). As hotspots and hot moments 585 

occur through time and space, resource pools progressively change in ways that are dependent on 586 

microbial transformations of prior resource pools, and knowledge about the specific metabolic 587 

pathways that generate propagating changes as well as their rates and limitations is imperative 588 

for improving biogeochemical predictions. Our results also demonstrate organic N in particular 589 

may be involved these alternative pathways, and thus, that nutrient limitations are important 590 
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considerations in constraining rates within predictive models, as has been recently explored by 591 

Wieder et al (2015b). We further extended this conceptualization to propose that organic N 592 

specifically should be considered as a possible regulatory factor in process-based ecosystem 593 

models. 594 

 The fate of organic carbon stored in soils and sediments, particularly at terrestrial-aquatic 595 

interfaces (Battin et al., 2009; Boulton et al., 1998; Cole et al., 2007; Marín-Spiotta et al., 2014; 596 

Regnier et al., 2013), is responsible for large amounts of uncertainty in predictions of future 597 

global biogeochemistry (Luo et al., 2016; Todd-Brown et al., 2013). Here, we provide insight 598 

into the molecular mechanisms generating hotspots of elevated aerobic metabolism in the 599 

hyporheic zone. While microbiome structure and protein expression did not vary across levels of 600 

aerobic metabolism, we found that metabolite chemistry and diverse, N-related biochemical 601 

pathways were associated with hyporheic zone hotspots. We posit that microbiome phenotypic 602 

plasticity can enable microbiomes with similar structure to expand their realized niche in 603 

response to changing environments and rapidly increase function in favorable environments. 604 

Because of fleeting environmental changes within hyporheic zones, we hypothesize that 605 

hyporheic zone microbiomes may exhibit more phenotypic plasticity than more stable 606 

ecosystems, meriting further investigation as we explore spatiotemporal dynamics across 607 

multiple systems (Fodelianakis et al., 2017). As we search for consensus on the importance of 608 

various environmental factors in predicting future biogeochemical rates (Graham et al., 2016b; 609 

Graham et al., 2014; Luo et al., 2016; Wieder et al., 2017), a spatially-explicit understanding of 610 

the mechanisms regulating organic matter transformations in areas with elevated biogeochemical 611 

rates is essential for improving the conceptualization and parameterization of ecosystem models. 612 

We propose that understanding and constraining the rates of specific metabolic pathways that 613 
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utilize discrete portions of resource pools is a critical consideration when advancing carbon cycle 614 

complexity in these models. 615 
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Fig. 1. Multi ‘Omic Differences in Hotspots vs. Low-activity Sediments. (a-d) show the most 628 

abundant classifications only for visual simplicity, but P-values in the upper left-hand corner of 629 

each panel are derived from all data. P-values are derived from PERMANOVA with 630 

stratification by depth. R2 values are provided for significant P-values. (a) shows abundant 631 

microorganisms (grouped at the class level), (b) shows abundant metagenomics annotations, (c) 632 

shows abundant metaproteomic identifications, and (d) shows metabolomics data grouped by 633 

compound class. Asterisks denote significant differences between hotspots and low-activity 634 

sediments, via mixed models with depth as a random effect (P < 0.05). 635 
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 638 

Fig. 2. Relationships of Metabolomes and Metaproteomes with Aerobic Metabolism. The 639 

first two principle components were extracted from metabolomics and metaproteome data. 640 

Correlations between each component and aerobic metabolism were determined using linear and 641 

quadratic mixed models that included depth as a random effects. Regression lines are shown for 642 

the best model; only significant models are shown. (a) Metabolomic data were strongly 643 

correlated with aerobic metabolism, while (b) metaproteomic data were uncorrelated. 644 

 645 
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 647 

Fig. 3. Metabolites Distinguishing Hotspots from Low-Activity Sediments. (a) The molecular 648 

weight of distinguishing metabolites was significantly higher in hotspots than low-activity 649 

sediments. A boxplot of molecular weights are shown, with the center line indicating the mean 650 

and the hinges of each box representing the values at the 25th and 75th percentiles. The whiskers 651 

represent the range of the data, calculated using default settings in R. P-value is derived from a 652 

one-sided Mann-Whitney U test. (b) shows the distribution of distinguishing metabolites in 653 

hotspots vs. low-activity sediments. Compounds are grouped by molecular class and displayed as 654 

a percent of distinguishing metabolites in each class.  655 

 656 
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 658 

Fig. 4. Differences in Biochemical Transformations between Hotspots and Low-activity 659 

Sediments. (a) shows the most abundant transformations only for visual simplicity, but the P-660 

value in the upper left-hand corner is derived from all data. Asterisks denote significant 661 

differences between hotspots and low-activity sediments, via mixed models with depth as a 662 

random effect (P < 0.05). (b) shows a boxplot of the percent of transformations involving N 663 

across hotspots and low-activity sediments. The inset shows the same analysis using only 664 

transformations involving ‘complex N’. Lists of the specific transformations included in each 665 

analysis are shown in Tables S3-S6. For each boxplot, with the center line indicating the mean 666 

and the hinges of each box representing the values at the 25th and 75th percentiles. The whiskers 667 

represent the range of the data, calculated using default settings in R. P-values and R2 are 668 

calculated using mixed models with depth as a random effect. Due to non-normality in the 669 
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distribution of transformations, a Box-Cox transformation was applied prior to model 670 

construction. 671 
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 673 

Fig. 5. Conceptualization of a Role for Metabolic Pathways in CO2 Flux Predictions. We 674 

propose that greater resolution into C metabolites and associated metabolic pathways––beyond 675 

sediment bulk C and/or microbiome structure––is vital for predictive hydrobiogeochemical 676 

models. Broader metabolic activity in biogeochemical hotspots stimulates the production and 677 

consumption of diverse metabolites, in particular nitrogenous compounds. Therefore, there is a 678 

need to incorporate subsequent feedbacks between metabolite consumption and production into 679 

predictive biogeochemical models. Orange bull’s eyes represent the occurrence of a hotspot or 680 

hot moment. Basal rate is the baseline aerobic metabolism of sediments. Surplus metabolism 681 

indicates the increase in aerobic metabolism associated with hotspots and includes stimulated 682 

organic N respiration. Arrows denote CO2 flux, where the number and thickness of arrow 683 

denotes the relative size of the flux. Blue boxes indicate the initial condition of sediments and the684 

first occurrence of a hotspot or hot moment. Green boxes show an ongoing feedback loop in 685 

which the basal rate of a microbiome is continuously influenced by metabolite production and 686 

consumption.  687 
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