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ABSTRACT 16	

Bacteriophages shape microbial communities by predating on them and by accelerating their 17	

adaptation through horizontal gene transfer. The former is the basis of phage therapy, whereas 18	

the latter drives the evolution of numerous bacterial pathogens. We present a novel computational 19	

approach (eVIVALDI – eco-eVolutionary mIcrobial indiViduAL-baseD sImulations) to study phage-20	

bacteria ecological interactions that integrates a large number of processes, including population 21	

dynamics, environmental structure, genome evolution, and phage-mediated horizontal transfer. 22	

We validate and illustrate the relevance of the model by focusing on three specific questions: the 23	

ecological interactions between bacteria and virulent phage during phage and antibiotic therapy, 24	

the role of prophages as competitive weapons, and how autotransduction facilitates bacterial 25	

acquisition of antibiotic resistance genes upon lysis of antibiotic resistant competitors. Our model 26	

recapitulates experimental and theoretical observations and provides novel insights. In particular, 27	

we find that environmental structure has a strong effect on community dynamics and evolutionary 28	

outcomes in all three case studies. Strong environmental structure, relative to well-mixed 29	

environments and especially if antibiotics are heterogeneously distributed, enhances the rate of 30	

acquisition of resistance to both phages and antibiotics, and leads to more accurate predictions of 31	

the dynamics of lysogen invasion in the gastrointestinal tract. We predicted the co-existence of 32	

invaders and resident lysogens in autotransduction under a range of parameters, and validated 33	

this key prediction experimentally. By linking ecological and evolutionary dynamics, our modelling 34	

approach sheds light on the factors that influence the dynamics of phage-bacteria interactions. It 35	

can also be expanded to put forward novel hypotheses, facilitating the design of phage therapy 36	

treatments and the assessment of the role of phages in the spread of antibiotic resistance.  37	

 38	

 39	
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AUTHOR SUMMARY 40	

In the face of a growing threat of antibiotic resistant bacteria, bacteriophages have re-emerged as 41	

a potential alternative to clinical treatments of infections, as they are efficient bacterial predators. 42	

However, bacteriophages can also promote, through a mechanism called transduction, the 43	

dissemination of adaptive traits between bacteria, including antibiotic resistance genes. 44	

Importantly, these two types of interactions (predation and transduction) can co-occur, which 45	

creates difficulties in predicting their outcome. We have developed eVIVALDI (eco-eVolutionary 46	

mIcrobial indiViduAL-baseD sImulations), a computational model that allows the simulation of 47	

microbial communities with a focus on the mechanisms involved in phage-bacteria interactions, 48	

across time and in different types of environments. eVIVALDI can be used to understand the 49	

conditions where phages are more likely to be successfully used to eliminate bacteria or, in the 50	

other hand, the conditions where they increase the probability of dissemination of adaptive traits. 51	

Our research highlights the importance of considering the diverse ways that phage and bacteria 52	

interact, and the relevant ecological conditions where these interactions take place, to understand 53	

how bacteriophages shape microbial communities and how they can be used as a clinical tool.   54	

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2018. ; https://doi.org/10.1101/291328doi: bioRxiv preprint 

https://doi.org/10.1101/291328
http://creativecommons.org/licenses/by-nd/4.0/


	 4	

Introduction	55	

Microbial organisms are pervasive across all natural environments, including the human body. 56	

Their adaptation and organization in communities may lead to disease [1], drive host evolution [2], 57	

and produce major changes in ecosystems [3,4]. Ecological interactions in microbial communities 58	

influence, and are influenced by, the rapid pace with which microbes acquire adaptive changes 59	

[5,6]. A striking example is the relationship between bacteria and bacteriophages (from here on 60	

referred to as phages), because the latter predate on the former whilst also driving their adaptation 61	

[4]. Phages are the most abundant entities in nature [7,8] and very efficient bacterial predators; it 62	

has been estimated that they promote the turnover of ~20% of bacterial mass every single day in 63	

certain environments [9,10]. In the context of widespread antibiotic resistance, this has led to a 64	

rekindled interest in phage therapy as an adjuvant or a replacement of antibiotic therapy against 65	

multi-resistant bacteria [11]. 66	

Virulent phages follow a strictly lytic cycle within their hosts, but they often exist in diverse 67	

communities with other virulent and temperate phages. Infection by the latter can lead to either 68	

the lytic cycle or their integration in bacterial genomes, as prophages (lysogenic cycle). Temperate 69	

phages are not used for phage therapy because lysogeny prevents them from extinguishing 70	

bacterial populations and confers resistance to closely, and sometimes distantly related phages – 71	

a mechanisms known as superinfection exclusion [12-14]. However, half of all bacterial genomes 72	

contain at least one, and up to 20, prophages, with these being more frequently found in bacterial 73	

pathogens [15], which means that they cannot be ignored in phage therapy. The expression of 74	

prophage genes may provide novel traits to the host (lysogenic conversion), and many cases have 75	

been described where prophages carry adaptive traits implicated in virulence or resistance to 76	

stress [16]. Virions arising from prophage induction can infect closely related competitor bacteria 77	

that are non-lysogenic for the phage, decreasing bacterial competition, increasing prophage 78	
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frequency, and liberating resources that can be used for the growth of the remaining lysogenic 79	

population [17]. In this case, prophages have been regarded as weapons against bacterial 80	

competitors [13,18].  81	

Phages can drive horizontal gene transfer between bacteria by transduction [19]. This can be a 82	

hazard in the case of phage therapy if the transferred traits are virulence factors or antibiotic 83	

resistance genes. Specialized transduction occurs in temperate phages when prophage excision 84	

leads to the transfer of neighboring chromosomal genes. Generalized transduction occurs when 85	

bacterial DNA is delivered to other cells after being encapsulated in virions, due to the specificities 86	

of the pac DNA packaging system [20]. Although these mechanisms are commonly used as 87	

genetic engineering tools [21], they have been considered inevitable consequences of errors in 88	

phage replication machineries and their rates in nature are poorly known. In the lab, they vary 89	

across several orders of magnitude (between 10-11 and 10-3 [22,23]), depending on the phage, the 90	

environment, and the type of culture media [19]. Importantly, phage driven transmission of 91	

bacterial DNA can have particularly nefarious consequences for humans. Transducing phages are 92	

responsible for the transmission of virulence factors in Staphylococcus aureus [24], and may 93	

accelerate the spread of antibiotic resistance genes [25,26]. Transduction can also have an impact 94	

at very short time scales: prophage induction facilitates the capture of adaptive traits (e.g., an 95	

antibiotic resistance gene) from a second bacterial strain that is infected by the phage and, through 96	

generalized transduction, transfers the gene back to the lysogenic strain. This process has been 97	

called autotransduction [27]. Hence, phages drive the evolution of bacterial gene repertoires and 98	

may spread virulence or antibiotic resistance factors during phage therapy.  99	

The diversity of interactions between phages and bacteria may obscure the effects of each of 100	

them. Experimental approaches have described and clarified the mechanisms underlying these 101	

interactions, but usually focused on simplified environments [8,28]. In vivo studies of these 102	

interactions (e.g., in mammalian hosts [29]) tackle more natural environments, but have limited 103	
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resolution in tracking temporal dynamics or the effects of individual mechanisms. Mathematical 104	

modelling provides a complementary approach to the study of phage-bacteria interactions, 105	

providing important insights on their co-evolutionary processes [30] or the dynamics of particular 106	

bacterial defense mechanisms [31,32]. Previous models have focused on individual mechanisms 107	

of interaction in simple environments (e.g., how the evolution of resistance to phage can affect 108	

clinical treatments [33]), because tackling multiple mechanisms and spatial heterogeneity hinders 109	

the development of analytical solutions. Yet, natural communities, and particularly those relevant 110	

for phage therapy, include complex interactions and spatial structure [34-38]. This may explain 111	

why models sometimes fail to fully reproduce in vivo dynamics of phage infection [28], and why 112	

there is paucity of models on the impact of phage-mediated horizontal gene transfer in the 113	

adaptation of bacterial communities (but see the work of Volkova et al. [39] for a theoretical 114	

comparison between the relative efficacy of transduction versus conjugation in transmitting an 115	

adaptive trait).  116	

Individual-based models (IBMs) are an alternative to population-based mathematical approaches 117	

for studying complex microbial systems [40]. They have been useful to understand, for instance, 118	

the effect of spatial structure in microbial social evolution [41] or the interactions between bacteria 119	

and virulent phages in biofilms [36]. Although computationally intensive, IBMs provide a framework 120	

to study biological systems through the incorporation of different (and potentially interacting) 121	

mechanisms at the level of the individual. Population-level dynamics can then emerge from the 122	

collective individual behaviors. This makes IBMs particularly appealing to investigate phage-123	

bacteria interactions, because these involve both ecological (e.g., predation) and evolutionary 124	

(e.g., transduction of adaptive traits) scales, with antagonistic mechanisms defined at the 125	

individual level (e.g., the lysis-lysogeny decision of temperate phage). To study these multiple 126	

roles of phages in microbial communities, we developed an IBM approach that is able to simulate 127	

diverse mechanisms and eco-evolutionary contexts: eVIVALDI – eco-eVolutionary mIcrobial 128	
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indiViduAL-baseD sImulations. We focus on three questions, of gradually increasing complexity, 129	

that are relevant for bacterial evolution and phage therapy, and that cover a range of possible eco-130	

evolutionary interactions between bacteria and phage. First, we introduce the basic scheme of the 131	

simulation with the study of ecological interactions between co-evolving virulent phages and 132	

bacteria under phage and antibiotic pressure in structured environments. Then we introduce 133	

lysogeny and super-infection exclusion in the model to study the role of prophages as competitive 134	

weapons. We show that our model provides better fit to previous experimental results than earlier 135	

models. Finally, we introduce transduction and the way we encode individual genomes in the 136	

model to elucidate how bacteria may obtain novel adaptive genes from sensitive bacteria by 137	

autotransduction. We use eVIVALDI to explore and quantify the different mechanisms of phage-138	

bacteria interactions and to gain insights on how the structure of the environment can affect these 139	

interactions and the community dynamics. We tackle each question by demonstrating the ability 140	

of the model to capture previous results and then show how its complexity highlights new relevant 141	

features. 142	
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Methods	143	

Concept	and	basic	implementation	144	

The eVIVALDI model was developed in Python (version 2.7.3), using an object-oriented approach, 145	

with a focus on the flexibility and extensibility of mechanisms and parameters simulated. The 146	

complete ODD (Overview, Design concepts, and Details) protocol [42] of the developed model is 147	

available as supplementary text (Text S1, Table S1 has the parameters modelled and their 148	

possible values), but below is a brief overview of the model. The source of the software can be 149	

obtained in the following link: https://gitlab.pasteur.fr/jsousa/eVIVALDI. The simulations can be run 150	

on a typical desktop computer. In a 3GHz 8-core Mac Pro, with 32GB of RAM, a replicate of a 151	

simulation (100 iterations), takes from ~5 to 30 minutes, depending on the parameters. 152	

Computations can also be performed in a cluster, allowing the parallel simulation of multiple 153	

parameters.  154	

Entities	and	their	ecological	setup	155	

Both bacterial cells and phage particles are represented as independent individuals on an 156	

environment represented as a two-dimensional grid with Moore neighbourhood (the 8 connected 157	

grid spaces of each location, for a Moore distance of one) (Fig 1A). Bacteria can be of different 158	

species. Each individual bacterium has a genome with core, accessory and, eventually, prophage 159	

genes. Bacteria have individual phenotypes, such as growth rate or the ability to survive antibiotic 160	

exposure. Phages can be from different species, have different lifestyles (temperate, virulent or 161	

defective), and possess individual phenotypes (e.g., attachment receptors and burst sizes). The 162	

host range of phage hosts is defined by a matrix (Fig 1B), and the superinfection exclusion rules 163	

amongst phages is defined in a similar way (Fig 1C). 164	
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Environmental	and	bacterial	updates	165	

The environment and the individuals are updated and behave according to biologically inspired 166	

rules. The environment can be completely structured, semi-structured or not structured at all (i.e., 167	

well-mixed), and it can be set as bounded or have a toroidal space. The type of structure influences 168	

the diffusion of the different bacterial cells and environmental particles (phage and antibiotics). 169	

Each location can hold a single bacterial cell and several phage cells. Free space is the bacterial 170	

resource to be consumed, and it is freed whenever bacteria die. Bacterial death can be 171	

intrinsic (e.g., of old age) or explicit (e.g., exposure to antibiotics or predation by phage) (Fig 1D). 172	

When a free space is available, the neighboring bacteria compete for reproduction. The outcome 173	

of the competition is chosen through a roulette wheel method that accounts for the fitness of each 174	

bacterium. The successful bacterium generates an offspring into the free space (Fig 1E). Bacteria 175	

can be infected by phage in the environment. The outcome of the infection depends on the phage 176	

lifestyle and, for temperate phage, the lysis-lysogeny decision. This decision is stochastic but 177	

influenced by the number of surrounding phages. For temperate phage, integration in the host 178	

genome means vertical inheritance with host replication, until the phage excises from the genome, 179	

according to a probability that can be low but non-null throughout the simulation (stochastic 180	

prophage induction) and that can also be influenced by the level of antibiotic stress to which the 181	

host is exposed. Phage can transduce bacterial genes to other bacteria by generalized or 182	

specialized transduction (depending on phages' characteristics, Fig 1F). 183	

Input,	output	and	documentation	of	the	model	184	

The inputs of each simulation are two text files that define the general parameters and also the 185	

ecological setup of the environment (types and numbers of bacteria and/or phage, along with their 186	

attributes). The statistics collected at different time points are stored in dictionaries and dataframes 187	

(using pandas), can be tailored to the experimenter's choice and can be represented visually 188	
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(using matplotlib and seaborn) or created as an output file.  189	

Random	Forest	Analysis	190	

The Random Forest Analysis is based on simulations performed with the model, covering 3000 191	

random combinations of parameters, with 30 simulated repeats per combination. The output of 192	

this cohort of simulations is grouped and resumed in response variables, to which a column with 193	

3000 rows of a random parameter is added (i.e., a choice of a number between 1 and 3). This 194	

table is used as input of the randomForest package in R (version 4.6.12), where the randomForest 195	

function is run with the parameters ntrees set to 10000. The relative importance of each parameter 196	

(the percentage increase in minimum squared error, %IncMSE) is assessed using the importance 197	

function from the same package. 198	

Bacterial	strains,	antibiotics	and	growth	conditions	199	

Bacteria strains used in this study are listed in Table S2. Bacteria were grown in Tryptic Soy Broth 200	

(TSB), Tryptic Soy Agar (TSA) and TSB+0,04%TSA from Oxiod. When appropriate, the following 201	

antibiotics were applied: Erythromycin 10mg/L, Chloramphenicol 10 mg/L, Streptomycin 50 mg/L, 202	

0.5 mg/L of Rifampicin. All antibiotics were purchased from Sigma.  203	

Co-culture	experiment	204	

Cultures of JH944, JH927 and JH930 were incubated in 20ml TSB overnight with shaking (200 205	

rpm) at 37◦C. OD600 was measured and cultures were diluted to final OD600 = 0.01 in 1:1 ratios 206	

of JH944+JH930 and JH944+JH927 in TSB media supplemented with 5mM CaCl2. After overnight 207	

incubation (shaking 200 rpm at 37◦C), the cultures were sonicated (10 pulses, 500msec, 50%) to 208	

ensure single bacterial cells when plating. Serially diluted cultures were plated on TSA containing 209	

erythromycin (JH944+JH927) and chloramphenicol (JH944+JH930) and incubated overnight at 210	

37◦C. The following day, 100 single colonies from the JH944+JH927 culture plates were streaked 211	
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on TSA supplemented with streptomycin and rifampicin, TSA supplemented with erythromycin 212	

and TSA without addition. For the JH944+JH930 culture, 100 colonies were restreaked on TSA 213	

supplemented with streptomycin and rifampicin, TSA supplemented with chloramphenicol and 214	

TSA without addition. All plates were incubated overnight at 37◦C.  215	

Phage	induction	assay	216	

Bacteria lysogenic for phi11 were detected by a prophage induction assay. Bacterial colonies that 217	

were present on TSA supplemented with chloramphenicol or erythromycin but absent on TSA 218	

supplemented with streptomycin and rifampicin were selected for the phage induction assay. The 219	

bacteria were inoculated in TSB and grown to mid-log phase (OD600 = 0.5) with shaking (200 rpm) 220	

at 37◦C. Mitomycin C (Sigma) 0,4 mg/L was added to TSB to induce any prophages present in the 221	

strain and the cultures were incubated at 37◦C with shaking (200 rpm) overnight. The cultures 222	

were centrifuged at 4◦C, 3700 rpm for 10 min to pellet the cells and supernatant sterile filtered 223	

(0.22 µm). Phages present in the supernatant were detected by mixing 100µl of the filtered 224	

supernatant and 100µl of the indicator strain RN4220 in presence of 15µl 100mM CalCl2. After 225	

incubation at room temperature for 10 min, top agar (TSB+0,04%TSA) was added and the mixture 226	

was poured onto a TSA plate supplemented with 10µM CaCl2 and incubated at 37◦C overnight. 227	

Phages present in the plates were indicative of the original culture being lysogenized by the phage. 228	

 229	

FIG 1. Mechanisms and workflow of the eVIVALDI model. A) Bacterial cells and bacteriophage particles are modelled in a 2-230	
dimensional space, where each (x,y) location holds at most a single bacterial cell and at most a predefined maximum number of 231	
phages. The environment ranges from completely well-mixed (liquid), where the contents of each location are randomized at each 232	
iteration, to spatially structured, where they are fixed. An intermediate structure is achieved by allowing replication of bacterial cells 233	
into a neighbourhood of a given distance.  Bacteria and phage can be of different species, and the latter exist as entities either in the 234	
environment, where they can infect new hosts, or within hosts, where they either replicate or integrate into their genomes. B) Phage 235	
host range is defined in a matrix where each phage has a probability of infecting a given bacterial species. C) Superinfection exclusion 236	
is the probability that infection by a given phage aborts when a given type of prophage is present. D) The basal probability of bacterial 237	
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death can increase by antibiotic exposure or phage infection. Phages decay in function of the period of time spent outside a bacterial 238	
host. E) Bacteria compete to reproduce to empty locations, with the fittest bacteria being more likely to produce an offspring. The 239	
offspring inherits the traits of the parent cell, but can undergo mutations and is placed into the free location. F) The type of phage 240	
infection is determined by the lifestyle of the phage, with virulent following an obligatory lytic cycle, whilst temperate phage can 241	
undertake the lytic or the lysogenic cycle following a stochastic decision affected by the density of phages in the environment. The 242	
probability of specialized transduction is computed during excision, leading eventually to the incorporation into the phage DNA of a 243	
neighboring gene. Generalized transduction occurs before the burst, and a virion has the probability to incorporate random genes from 244	
its host, instead of its own DNA. Transduced genes can be used by the subsequently infected bacterial hosts. G) The main cycle of a 245	
typical simulation within the model. See complete ODD in Supplementary Material. 246	
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Results	and	Discussion	247	

Ecology	of	phage-bacteria	interactions	in	the	light	of	antibiotic	and	phage	therapy	248	

Antimicrobial therapies rely on the effectiveness of selective agents to kill sensitive bacteria. 249	

Phage therapy involves infection and reproduction of the killing agents, thus extending the ability 250	

of standard chemical therapies. We started by investigating if eVIVALDI could reproduce simplified 251	

but typical ecological scenarios where sensitive individuals are killed by antibiotics and/or predated 252	

by virulent phages, thus promoting the increase in frequency of resistant bacteria. A simple 253	

community of two bacterial species, one sensitive and another resistant (either to antibiotic or 254	

virulent phage), was simulated in a well-mixed environment, and no new resistant bacterial 255	

mutants were allowed to emerge in these simulations. Resistance can be defined as costly, in line 256	

with experimental data [43], rendering resistant bacteria less competitive in the absence of 257	

selection pressure (Fig S1). However, when either antibiotics (Fig 2A) or phage (Fig 2B) were 258	

introduced in the environment, the resistant population rapidly increases to fixation. Predation by 259	

phage leads to an initial increase in their numbers, because of the abundance of sensitive bacteria, 260	

but also to their subsequent rapid extinction when sensitive hosts become unavailable (Fig 2B). A 261	

combined treatment of antibiotics and virulent phages leads to the extinction of both populations 262	

because none has the ability to survive both selective pressures (Fig 2C). However, the decrease 263	

of the antibiotic sensitive population is slower in the presence of phages because of lower 264	

competition from antibiotic resistant cells, which are killed by the phage (Fig S2A).  265	

Our model allows to test explicitly the effect of spatial structure on community composition. Spatial 266	

structure affects the ability of individuals to diffuse freely in the environment and is known to affect 267	

population dynamics [35,36]. Here, spatially structured environments assume that bacteria are 268	

fixed in their locations, and can divide only to their immediately adjacent locations. Likewise, we 269	

assume that, in these environments, phage cannot diffuse, and thus can only propagate by 270	

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2018. ; https://doi.org/10.1101/291328doi: bioRxiv preprint 

https://doi.org/10.1101/291328
http://creativecommons.org/licenses/by-nd/4.0/


	 14	

infecting nearby bacteria. Antibiotics applied homogeneously in spatially structured communities 271	

delay the extinction of the sensitive bacteria in comparison to non-structured environments (Fig 272	

S2B). However, antibiotics are more likely to be applied non-homogeneously when environments 273	

are structured. The delayed extinction is more pronounced in these conditions leading to long term 274	

coexistence between sensitive and resistance bacteria (Fig S3). The effect of phage predation on 275	

community dynamics is markedly different between well-mixed and spatially structured 276	

environments because the latter decreases dispersion leading to “predation waves” that produce 277	

spatial arrangements of dead cells akin to those observed in phage plaque assays (see Fig S4 278	

and Video S1). Ultimately, spatial structure results in delayed extinction of phage susceptible cells 279	

(Fig 2E vs Fig 2B). Similar to well-mixed environments, presence of antibiotics and phage in 280	

spatially structured environments leads to a much slower extinction of antibiotic resistant bacteria 281	

compared to environments with antibiotics but lacking phages (Fig 2F vs Fig 2D). However, the 282	

presence of phages and antibiotics in spatially structured environments leads to a faster extinction 283	

of antibiotic sensitive populations, compared to well mixed environments (Fig 2F vs Fig 2C, Fig 284	

S2C), due to a much less efficient phage predation of their competitors when the environment is 285	

structured. 286	

 287	

Fig 2. Community dynamics driven by antibiotic selection and phage predation. A small community composed of two different 288	
species is subjected to different selective pressures. Bacteria can be sensitive to antibiotics but resistant to phage (in green), or 289	
resistant to antibiotics but sensitive to phage (in red). We follow the temporal dynamics and show the populations in their respective 290	
colors (the number of free phage in the environment is shown in black). Solid lines indicate mean values for 30 simulations ran with 291	
the same parameters and shaded areas show their 95% confidence interval. At the right of each plot is a representative time lapse at 292	
3 time points of the lattices for each scenario, where the colors represent each bacterial species and white spaces represent the 293	
absence of bacterial cells. In A) and D) antibiotics are applied at the indicated time. In B) and E), virulent phages (10 individual particles) 294	
are co-inoculated with the bacteria at time 0. In C) and F), both selective regimes are applied, with antibiotics applied at the indicated 295	
time and virulent phage co-inoculated with bacteria at time 0. In A), B) and C), the environment is homogeneous (well-mixed), as in 296	
liquid culture. In D), E) and F), the environment is spatially structured. In D) and F) antibiotics are applied homogenously in the 297	
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structured environment, and in E) and F) each of the 10 phage particles is initially placed randomly in the biofilm. The complete set of 298	
parameters for these simulations is show in supplementary data. 299	

  300	

The introduction of mutations in the model, eventually reversing the susceptibility to antibiotics or 301	

phages, tends to stabilize the bacterial populations (Fig S5A-B). Nevertheless, some populations 302	

still go extinct because of the loss of rare mutants by genetic drift or because no adaptive 303	

mutations occurred in the time span. Under pressure of antibiotics and phages, double resistant 304	

cells emerge only when the mutation rate is very high (Fig S5C). The impact of the environmental 305	

structure in the dynamics of predation (Fig 2) led us to analyze how it affects the emergence of 306	

resistant lineages (Fig 3). Whilst single resistant mutants increase in frequency slower in 307	

structured environments (Fig S5D), double mutants resistant to antibiotics and phage are much 308	

more likely to emerge (Fig 3A-D) for intermediate rates of mutation (Fig 3E). This is because in 309	

structured environments, the rare mutants resistant to antibiotics benefit from the resources 310	

available from neighboring dead cells and rise in frequency without contact with phages (that 311	

diffuse less efficiently). This increases the span of time available for the acquisition of secondary 312	

mutations conferring resistance to phages, especially if the initial number of phages is not very 313	

high (Fig S6). Hence, the acquisition of multiple adaptive mutations is more likely to occur in 314	

structured environments.  315	

 316	

Fig 3. Spatial structure promotes the emergence of multi-resistant bacteria. A-D) Simulations of a single bacterial species, initially 317	
sensitive to antibiotics and phage. Lines show 30 replicate simulations with emerging resistant lineages (to one or both selective 318	
pressures). Single mutants resistant to phage are shown in red, whilst single mutants resistant to bacteria are shown in green. Double 319	
mutant lineages resistant to antibiotics and phage are shown in grey. In A) and B) mutants emerge at a rate of 10-4. C and D) mutants 320	
emerge at a rate of 10-3. A and C show dynamics from well-mixed environments. B and D show dynamics from spatially structured 321	
environments. E) Percentage of simulations (out of 30) where lineages resistant both to antibiotics and phage have emerged, in either 322	
well mixed or spatially structured environments, for all the mutation rates tested (x-axis). The complete set of parameters for these 323	
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simulations is show in supplementary data. 324	

 325	

The ability of bacteria to evolve resistance to phage might be futile if phage can also adapt 326	

sufficiently fast to overcome these changes [44]. When we allowed bacteria and phage to evolve 327	

in our simulations (Fig S7A), we observed co-evolutionary arms races similar to both theoretical 328	

expectations [33] and experimental observations [45]. Spatially structured environments showed 329	

slower co-evolution dynamics and higher variability between simulations than well-mixed ones 330	

(Fig S7B). Heterogeneous antibiotics added in structured environments further delayed the co-331	

evolution dynamics (Fig S7C-D), due to the death of a significant part of the bacterial population. 332	

Importantly, and as before (Fig 3), surviving bacteria (either resistant to antibiotics or not exposed 333	

to lethal concentrations) were able to generate mutants resistant to phages for a longer period of 334	

time. This is not only due to the limited diffusion of phage, but also because phages need bacterial 335	

hosts to replicate and to generate their own genetic diversity. Thus, a reduction in the number of 336	

bacterial hosts due to antibiotic exposure hinders both phage propagation and evolution. This 337	

suggests that, in natural environments, multiple stressors might render co-evolutionary arms races 338	

less predictable than proposed by theoretical models and experimental settings that assume 339	

homogeneous populations and environments. 340	

Lysogeny	as	a	weapon		341	

Contrary to virulent phages, temperate phages may integrate the bacterial host genome and 342	

reproduce vertically with it. The lysis-lysogeny decision in our simulations mimics experimental 343	

observations [46], and is influenced by the amount of competition faced by the phage: lysogeny is 344	

more likely under high viral concentrations or high multiplicity of infection (Fig S8). Since lysogens 345	

are protected from further infections by similar phages, due to superinfection exclusion, the 346	

environmental concentration of phages in the simulations decreases rapidly with the increase of 347	
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lysogens (and depending on free phage half-life). When lysogeny occurs mostly at high viral 348	

concentration the bacterial population can become extinct before lysogens can arise. 349	

Theoretically, this can also result in the extinction of the phage population.  350	

When a lysogen invader arrives at a community with resident bacteria sensitive to its prophage, 351	

lysis of a small fraction of the invaders can dramatically reduce the population of resident sensitive 352	

bacteria. This liberates resources for the lysogenic invaders [13]. eVIVALDI recapitulates previous 353	

experimental data on this prophage-as-a-weapon hypothesis [17] (Fig 4a): prophage induction 354	

rapidly decreases the sensitive population of residents in the early stages of the process, but 355	

lysogenization of the latter rapidly neutralizes this process (because the resident lysogens are 356	

now resistant to the phage). Hence, the use of prophages as a biological weapon can provide a 357	

decisive advantage for colonizing a new niche, but is rapidly neutralized by lysogenization of 358	

competitor bacteria. This is also in agreement with previous theoretical works exploring dynamics 359	

of invasion in well-mixed environments, using prophages as a competitive weapon [47].  360	

The advantage of lysogens in the colonization of an environment of resident sensitive bacteria 361	

was recently demonstrated in the mouse gut and was suggested to depend on the initial ratio 362	

between invaders and resident cells [29]. Indeed, our simulations considering different initial ratios 363	

of invading lysogens versus resident non-lysogens showed that the latter were more likely to 364	

survive as lysogens when more abundant in the beginning of the process (Fig S9). The 365	

abovementioned study presented a population-based mathematical model that fitted well most 366	

experimental data, but predicted faster initial infection rates than the observed ones. While 367	

different parameters can slow down these dynamics (e.g., the burst size of the phage [29]), the 368	

spatially structured mouse gastrointestinal tract is likely to interfere with the temporal dynamics of 369	

lysogeny. Interestingly, the inclusion of spatial structure in our model, absent from the 370	

abovementioned models, led to a slower increase of free viral particles and slower generation of 371	

lysogens in the resident strain (Fig 4B-C). This implicates that invading lysogens may be more 372	
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successful in vivo than would have been predicted by in vitro studies in well-mixed environments. 373	

 374	

Fig 4. The role of lysogeny in community dynamics. A) Genomes from species A (invaders, grey bars) carry an inducible prophage, 375	
whereas those of species B (residents, white bars) are initially non-lysogens. Species are co-inoculated at a 1:10 mixture. Phages 376	
(black lines) are spontaneously induced from the lysogenic population. These phages infect the sensitive resident population, which 377	
may form lysogens that are protected from phages (B*, black bars). Eventually, the resident that are not lysogens become extinct. All 378	
bars represent the average of 30 replicate simulations with similar parameters, with the error bars indicating their 95% confidence 379	
interval. Data was displayed as in Figure 1 of [17] for comparison. B) Invading lysogens (L, red lines) and resident sensitive cells (S, 380	
blue lines) are co-inoculated at a ratio of 1:10. Phages (purple lines) are spontaneously induced and generate new lysogens in the 381	
sensitive resident cells (SL, green lines). Full lines: well-mixed environments. Dashed lines: spatially structured environment. Data was 382	
displayed as in Figure 3 of [29] for comparison. C) Emergence of resident lysogens in well-mixed (blue) and in spatially structured 383	
(orange) environments during the initial 10 iterations of the simulations shown in B. Shown is the polynomial fit of order 2 for the initial 384	
10 iterations, for each of the two types of environment; ANCOVA between the two environments, F=485.5, p=0. The complete set of 385	
parameters for these simulations is show in supplementary data. 386	

 387	

Autotransduction	of	an	antibiotic	resistance	gene	388	

When the phages lysing the resident sensitive cells are capable of generalized transduction, they 389	

can transfer adaptive traits back to the invader lysogens (autotransduction [27], Fig 5A). To study 390	

this process, we started by demonstrating the adaptive effect of lysogenic conversion in bacteria 391	

and how it can impact the competition between different phages (Fig S10). We recreated the 392	

conditions for autotransduction within our model, by introducing two strains with similar initial 393	

population sizes: a non-lysogenic strain resistant to antibiotics ("residents") and a strain of 394	

lysogenic antibiotic sensitive "invaders" (Fig 5A). After initial growth, antibiotics are applied in the 395	

environment and, as in the experimental study [27], the invaders survive because they acquire the 396	

resistance gene by generalized transduction (Fig 5A-B). The analysis of the bacterial genomes in 397	

the simulations indicates multiple successive transduction events from the resident to the invader 398	

cells (Fig 5C). These events are random (i.e., transduction can transfer any part of bacterial DNA), 399	
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but natural selection results in over-representation of those transferring antibiotic resistance 400	

genes. Overall, invaders lead residents to extinction in most simulations (62%), but sometimes 401	

residents become lysogens and outcompete invaders (3%). Interestingly, many simulations 402	

exhibited coexistence of lysogenic invaders and lysogenic residents (22%, Fig 5D), and a few 403	

showed extinction of all bacterial populations (13%).  404	

  405	

Fig 5. Simulation of autotransduction. A) Representation of the autotransduction events. We created a multispecies community akin 406	
to the experimental work of [27], where the invader lysogenic species (red) is sensitive to antibiotics and the resident non-lysogenic 407	
species (green) is resistant to antibiotics but sensitive to the phage of the invaders. B) Temporal dynamics of a typical simulation 408	
leading to the survival of the invaders. The black line indicates the number of phages in the environment and the time of application of 409	
antibiotics is indicated with the grey line. C) Samples of genomes in the population at two different time points of the simulations of 410	
panel B. Before antibiotics (t=2), the genomes of the resident population (green) carry the resistance trait (orange marker). The invader 411	
population (red) is not resistant (grey marker indicates sensitivity to drugs). After the application of antibiotic (t=10) most of the invaders 412	
have the original prophage and a random sequence of bacterial DNA transduced from the resident cells (other ellipses). D) Outcome 413	
of 100 simulations. The complete set of parameters for these simulations is show in supplementary data. 414	

 415	

eVIVALDI includes many complex stochastic mechanisms and it is not straightforward to 416	

empirically disentangle the importance of each in the final outcome. Therefore, we used a machine 417	

learning approach, Random Forest Analysis (RFA, see Methods), to quantify the importance of 418	

the mechanisms driving the increase of the population of invaders (Fig 6A, in File S7 are the 419	

parameters explored with the RFA). We focused on the percentage increase in minimum squared 420	

error (MSE) associated with each variable in the simulation. Generalized transduction had the 421	

strongest effect in the efficiency of autotransduction (86% increase in mean square error [MSE], 422	

Fig 6B), whilst specialized transduction was almost negligible (3% increase in MSE). 423	

Autotransduction also improved with higher probability of adsorption (44% increase in MSE) and 424	

infection distance (i.e., the maximum distance between a bacterium and a phage still allowing 425	
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infection, 70% increase in MSE), because they increase the reach and efficiency of infection by 426	

phage and, subsequently, the likelihood of generalized transduction (Fig 6C, Fig S11B). In 427	

contrast, when the decision to enter lysogeny (49% increase in MSE) can be made with high 428	

probability for relatively low viral concentrations, the resident population proliferates (Fig S11D 429	

and Fig S11I for the lysis-lysogeny decision functions explored with the RFA). The importance of 430	

the remaining parameters is detailed in Fig S11.  431	

 432	

Fig 6. Identification of the main mechanisms affecting the rate of autotransduction of an antibiotic resistance gene using 433	

Random Forest Analysis. A) Analysis is based on 3000 randomized combinations of parameters and 30 repeated simulations for 434	
each combination). Parameters with a higher % in increased minimum square error have a higher importance for the measured 435	
outcome: the median of the final relative frequency of the invader. A random parameter (in grey) was included in the analysis to provide 436	
a baseline reference of importance. B-C) The directionality of the impact of two parameters is assessed by plotting the frequency of 437	
the invader population at the end of the simulation (across all simulations), in function of the parameter of interest (the other parameters 438	
are shown in Fig S11). In the left y-axis, and as strip plot of grey dots, is the distribution of the frequency of the invader population in 439	
all simulations. In the right y-axis, and as red dots and lines, is the median of this frequency across the simulations.  440	

 441	

To better understand the relationship between two of the most important parameters, generalized 442	

transduction and probability of phage attachment, we explored their space of parameters at a 443	

higher resolution than before (Fig 7A), while fixing all other parameters. We found that a critical 444	

combination of high adsorption efficiency (>1%) and high (between 0.01% and 80%) probability 445	

of generalized transduction is required for the survival of invaders (red region). The survival of the 446	

resident population is the most likely outcome when rates of transduction and/or infection are low, 447	

but also when all phages engage in generalized transduction (100% probability of generalized 448	

transduction), because in this case no viable particles are released in the environment (green 449	

region). The space of parameters leading to coexistence (yellow region) separates the region 450	

leading to the overrepresentation of the invaders from the one leading to the overrepresentation 451	
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of the resident species (see also Fig S12).  452	

The study describing the discovery of autotransduction focused on the process of gene acquisition 453	

by the invaders and did not address the possibility of co-existence [27]. We thus experimentally 454	

addressed the prediction of co-existence by co-culturing in liquid media supplemented with 455	

chloramphenicol two strains of Staphylococcus aureus: a lysogenic strain (JH944, “invaders”) 456	

sensitive to the antibiotic and either one of two non-lysogenic strains (JH930 or JH927, “residents”) 457	

resistant to the antibiotic (see Methods). The two different resident strains were chosen to 458	

demonstrate the result both in the laboratory strain 8325-4 (JH930) as well as in the clinically more 459	

relevant strain USA300 (JH927) background. The majority of the colonies resistant to 460	

chloramphenicol isolated at the end of the two experiments are in the JH944 background, 461	

indicating the acquisition of the resistance gene from the resident bacteria by autotransduction. 462	

However, in both combination of strains, performed in 3 biological replicates, a subpopulation of 463	

JH927 (17.3±1.1%) or JH930 (31.3±6.7%), respectively, were observed to coexist with the invader 464	

strain (Fig 7B, Table S3), confirming our predictions. Interestingly, in simulations were coexistence 465	

is frequently observed, the frequency of invaders can be influenced by both the probability of 466	

adsorption and the probability of generalized transduction (Fig S13). The different frequencies of 467	

invaders observed in co-culture with either JH927 or JH930 could represent different regions of 468	

the predicted parameter space, where released phages have, for instance, a higher infection 469	

efficiency towards JH927 compared to JH930. Confirmation of this hypothesis will require further 470	

work on the biology of these phages. Importantly, we observed in the simulations that coexistence 471	

is strictly dependent on the generation of lysogenic variants of the resident bacteria, being 472	

suppressed when we performed simulations without the generation of new lysogens (Fig S14A-473	

D). This is experimentally corroborated with the observed release of phage particles from the 474	

surviving resident clones at the end of the co-culture, when these are exposed to mitomycin C 475	

(Fig 7B, Table S3, see Methods). This confirms that lysogenization of the resident bacteria is the 476	
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mechanism responsible for the coexistence between the two strains and validates the predictions 477	

of the model. 478	

Our simulations further suggest that structured environments (Fig S12A) provide an additional 479	

region, for extremely high rates of transduction, where coexistence is prevalent (upper regions in 480	

Fig S12B-C). These high rates are biologically implausible for viable phages, but not for defective 481	

phages or for gene transfer agents [48]. Finally, extinctions of both strains were more frequent 482	

when the probability of adsorption was high and transduction was low, suggesting that an inducible 483	

phage that is highly infective but a poor transducer is more likely to lead to the collapse of both 484	

the invaders and the antibiotic resistant populations. The likelihood of double extinctions is higher 485	

in structured environments (Fig S12A, Fig S15 and Fig S16) or in the absence of lysogenization 486	

of the resident bacteria (Fig S14E-F and Fig S17). Our results suggest that ecological interactions 487	

between strains invading communities of susceptible bacteria can be very diverse, depending on 488	

the rates of infection, transduction, lysogenization and population structure.   489	

 490	

Fig 7. The combined role of probability of adsorption and generalized transduction for the autotransduction of an antibiotic 491	
resistance gene. The simulation scenario is similar to Fig 6. A) The heatmap represents the likelihood of the outcome of the 492	
simulations in function of the two parameters. The color scale ranges from green (100% of the final population composed resident 493	
bacteria) to red (100% of the final population composed of invader bacteria), with yellow regions indicating cases where coexistence 494	
is the outcome more likely to occur in the timeframe of the simulations. 30 repeat simulations were performed for each combination of 495	
parameters, and their median value is used to construct the heatmap. When both populations went extinct, this was either ignored to 496	
compute the median (if it occurred in less than 50% of the cases), or was marked as grey (otherwise). B) Co-cultures of a lysogenic 497	
chloramphenicol sensitive strain of S. aureus (JH944, “invaders”, red) and a non-lysogenic chloramphenicol resistant strain (JH930 or 498	
JH927, “residents”, green or green with white circles, respectively) indicate coexistence between the two strains at the end of the 499	
experiment. Y-axis shows the percentage of colonies with a given genotype (out of 100 or 127 in total, for co-cultures with JH930 or 500	
JH927, respectively). Each stacked bar represents an independent replicate of the experiment. 501	

 502	
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Conclusion	503	

Individual-based modelling is providing novel ways to analyze and predict the behavior of microbial 504	

systems [40]. Our novel approach integrates multiple and different bacterial species, phages, 505	

environmental structures and ecological conditions to explore different aspects of bacteria-phage 506	

interactions: temporal changes in community composition (e.g., between lysogens and non-507	

lysogenic bacteria), the concurrent effects of mechanisms of infection, lysogeny, and transduction, 508	

and their consequences for the genomic composition of each individual bacteria and phage. To 509	

the best of our knowledge, no other theoretical or computation model integrates these different 510	

scales of phage-bacteria interactions. This has allowed us to characterize and quantify key 511	

ecological components, such as structured environments, in the dynamics emerging from these 512	

interactions.  513	

Models are based on simplifying assumptions to make biological systems more tractable. This 514	

facilitates pinpointing the relevance of certain mechanisms or agents, but may result in misleading 515	

over-simplifications of the system. One major difference between biological systems and our 516	

model concerns the number of cells which, due to computational reasons, is lower than the one 517	

typically used in experimental settings. Even though our results are qualitatively similar to 518	

experimental and/or other theoretical works, this difference may affect the quantitative results. The 519	

decreased effective population size (and the consequent increase in the effect of drift) requires 520	

that certain rates (e.g., mutation or transduction rates) are simulated at higher values, in order to 521	

increase the probability of detecting such events. Another limitation lies in the characterization of 522	

the environment. Even if we allow for different levels of structure, environments are spatially and 523	

temporally constant throughout the simulations, which might not always be the case in nature. 524	

This can change the dynamics of propagation of phages, and lead to subpopulations specialized 525	

for different spatial niches. A third limitation of the model lies on the lack of a true physiological 526	
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description of the bacteria. We assume that phages can infect bacteria at any time, but phage 527	

infectivity is known, in some cases, to depend on whether its bacterial host is in exponential or 528	

stationary phase [49]. In other cases, a stochastic or induced persistence state in bacteria allows 529	

the population to maintain alive a sensitive subpopulation [50]. This can lead to a slowdown or 530	

complete halt of infection, particularly in structured environments. Nevertheless, it is important to 531	

underline that the model was designed to be easily extensible and further assimilate new 532	

mechanisms. Some that are already implemented but not thoroughly explored here include phage 533	

resistance based on adaptive immunity (e.g., CRISPR-Cas [32,51]) or mutations affecting the 534	

phage host range [52].  535	

One of the major conclusions of this work is that spatial structure affects the dynamics of bacterial 536	

populations in the face of antibiotic exposure, phage predation or a combination of both. Whilst 537	

combining phages and antibiotics is one of the proposed strategies for the clinical use of phage 538	

[53,54], we show here that the emergence of bacteria resistant to both stressors can be enhanced 539	

by structured environments, particularly when antibiotics are not homogeneously distributed, as 540	

seems common in natural settings [55,56]. This should be taken into account in phage therapy 541	

studies.  542	

Adaptation of bacterial cells can also be driven by temperate phage. We showed how 543	

autotransduction promotes the spread of antibiotic resistance and is affected by different 544	

mechanisms. Importantly, we predicted that different community outcomes (coexistence and 545	

extinction) can occur by modulating the efficiency of phages’ infection, lysogeny and transduction, 546	

as well as the structure of the environment. We experimentally confirmed the emergence of co-547	

existence between strains of S. aureus in well mixed environments, underlining the power of our 548	

approach in generating valid and testable hypotheses. It will be important to further test its 549	

predictions, as well to simulate other ecologically (and clinically) relevant scenarios. In particular, 550	

it will be crucial to explore how the co-existence between virulent phages and prophages 551	
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influences the outcomes of a combined treatment with phage and antibiotics under a range of 552	

ecological interactions between the two types of phages. Exploring these and other ecological 553	

settings is also key to understand which factors impact the evolutionary consequences of phage-554	

bacteria interactions for microbial populations.  555	
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