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Abstract.—Next Generation Sequencing (NGS) technologies have led to a ubiquity of13

molecular sequence data. This data avalanche is particularly challenging in metagenetics,14

which focuses on taxonomic identification of sequences obtained from diverse microbial15

environments. To achieve this, phylogenetic placement methods determine how these16

sequences fit into an evolutionary context. Previous implementations of phylogenetic17

placement algorithms, such as the Evolutionary Placement Algorithm (EPA) included in18

RAxML, or pplacer, are being increasingly used for this purpose. However, due to the19
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steady progress in NGS technologies, the current implementations face substantial20

scalability limitations. Here we present EPA-ng, a complete reimplementation of the EPA21

that is substantially faster, offers a distributed memory parallelization, and integrates22

concepts from both, RAxML-EPA, and pplacer. EPA-ng can be executed on standard23

shared memory, as well as on distributed memory systems (e.g., computing clusters). To24

demonstrate the scalability of EPA-ng we placed 1 billion metagenetic reads from the25

Tara Oceans Project onto a reference tree with 3,748 taxa in just under 7 hours, using26

2,048 cores. Our performance assessment shows that EPA-ng outperforms RAxML-EPA27

and pplacer by up to a factor of 30 in sequential execution mode, while attaining28

comparable parallel efficiency on shared memory systems. We further show that the29

distributed memory parallelization of EPA-ng scales well up to 3,520 cores. EPA-ng is30

available under the AGPLv3 license: https://github.com/Pbdas/epa-ng31

(Keywords: phylogenetics; phylogenetic placement; metagenomics; metabarcoding;32

microbiome)33

In the last decade, advances in genetic sequencing technologies have drastically34

reduced the price for decoding DNA and dramatically increased the amount of available35

DNA data. The Tara Oceans Project (Sunagawa et al. 2015), for example, has generated36

hundreds of billions of environmental sequences. Moreover, sequencing costs are decreasing37

at a significantly higher rate than computers are becoming faster according to Moore’s law.38

Therefore, state-of-the art Bioinformatics software is facing a grand scalability challenge.39

A common metagenetic data analysis step is to infer the microbiological40
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composition of a given sample. This can be done, for instance, by determining the best hit41

for each query sequence (QS) in a database of reference sequences (RSs), using sequence42

similarity measures, and by subsequently assigning the taxonomic label of the chosen RS to43

the QS. However, approaches based on sequence similarity do neither provide, nor use,44

phylogenetic information about the QS. This can decrease identification accuracy (Koski45

and Golding 2001), especially when the QSs are only distantly related to the RSs, for46

example when more closely related QS are simply not available.47

Phylogenetic placement algorithms alleviate this problem by placing a QS onto a48

reference tree (RT) inferred on a given set of RSs. This allows for identifying QSs by49

taking the evolutionary history of the sequences into account. Maximum-Likelihood based50

phylogenetic placement algorithms have previously been implemented by Matsen et al.51

(2010) (pplacer) and Berger et al. (2011) (RAxML-EPA). These tools have been52

successfully employed in a number of studies, for instance, to correlate bacterial53

composition with disease status (Srinivasan et al. 2012) as well as in diversity studies54

(Findley et al. 2013; Sunagawa et al. 2013). More recently, we used phylogenetic55

placements to study protist diversity in rainforest soils (Mahé et al. 2017). In this study we56

experienced significant throughput and scalability limitations with pplacer and57

RAxML-EPA. To address them, we re-implemented and parallelized RAxML-EPA from58

scratch using libpll-2 (Flouri et al. 2017), a state-of-the-art library for phylogenetic59

likelihood computations.60

Methods61

The general algorithm for phylogenetic placement as implemented in EPA-ng, which we62

call the placement procedure, is described in the original paper by Berger et al. (2011).63

Our supplement also contains a description of the general algorithm.64
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Like other phylogenetic placement software, EPA-ng operates in two phases: it65

first quickly determines a set of promising candidate branches for each QS (preplacement),66

and subsequently evaluates the maximum placement likelihood of the QS into this set of67

candidate branches more thoroughly via numerical optimization routines (thorough68

placement). The user can choose to treat every branch of the tree as a candidate branch,69

however this induces a significantly higher computational cost. Consequently, by default,70

EPA-ng dynamically selects a small subset of the available branches via preplacement.71

Using preplacement heuristics typically reduces the number of thoroughly evaluated72

branches from thousands (depending on the RT size) to just a handful (depending on the73

query and reference data).74

EPA-ng also offers a second heuristic called masking that is similar to the75

premasking feature in pplacer. It effectively strips the input Multiple Sequence76

Alignments (MSAs) of all sites that are unlikely to contribute substantially to the77

placement likelihood score. Such sites consist entirely of gaps, either in the reference or in78

the query alignment. Additionally, for each individual QS, only the core part of the79

alignment is used to compute the likelihood of a placement. The core of an aligned QS is80

the sequence with all leading, and trailing gaps discarded. Note that pplacer also discards81

all gap sites within an individual sequence, including gaps in the core. We opted not to82

implement this, as our experiments showed that computing these per-site likelihoods,83

rather than omitting the computations, was more efficient in our implementation.84

Parallelization85

EPA-ng offers two levels of parallelism: MPI to split the overall work between the86

available compute nodes, and OpenMP to parallelize computations within the compute87

nodes. Such hybrid parallelization approaches typically reduce MPI related overheads and88

yield improved data locality (Rabenseifner et al. 2009).89
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Figure 1 illustrates how EPA-ng utilizes hybrid parallelism. In hybrid mode,90

EPA-ng splits the input QS into parts of equal size, such that each MPI-Rank has an91

equal number of QS to place on the tree. No synchronization is required to achieve this, as92

each rank computes which part of the data it should process from its rank number and the93

overall input size.94

For within-node parallelization, we use OpenMP. Here, each thread works on a95

subset of QS and branches.96

Evaluation97

We used three empirical data sets to evaluate and verify EPA-ng, the neotrop data98

set (Mahé et al. 2017), the bv data set (Srinivasan et al. 2012), and the tara data set99

(Sunagawa et al. 2015). We compared EPA-ng against pplacer and RAxML-EPA100

under different settings: with/without masking (not implemented in RAxML-EPA),101

with/without preplacement. Details on the command line parameters for these distinct102

settings, as well as full descriptions of the data sets, are provided in the supplement. In the103

supplement, we also compare the single-node parallel performance parallel efficiency (PE)104

of the tested programs.105

Verification106

In Berger et al. (2011), and Matsen et al. (2010), the authors verify the placement107

accuracy of their algorithms and implementations via simulation studies and leave-one-out108

tests on empirical data. As there already exist two highly similar and well-tested109

evolutionary placement tools, we compare the results of EPA-ng to RAxML-EPAs and110

pplacers results to verify that our implementation works correctly. We provide a detailed111
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Figure 1: Illustration of the hybrid parallelization scheme implemented in EPA-ng. a)
shows the parallelization strategy on the level of multiple MPI-Ranks, in this case each
assigned to a socket of a node. Each MPI-Rank processes a distinct subset of QS from the
input file, and does so in chunks of a given size. When a chunk of QS has been successfully
placed the result is written to a global jplace output file, using collective MPI File I/O write
operations. b) shows the parallelization strategy within each MPI-Rank (in this case: one
complete CPU socket). The given subset of the binary input file is read asynchronously
by a dedicated input thread, which allows prefetching of one chunk during computation of
another. All actual placement work is then split across as many OpenMP worker threads as
the user specified (in this case as many as there are physical cores on the socket). Finally, a
dedicated output thread writes the per-chunk results to a file, which again allows overlapping
of computation and I/O.

description of the methods deployed for verification and the respective results in the112

supplement.113

Overall, we find that EPA-ng consistently produces results that are situated, on114

average, closer to the results of RAxML-EPA and pplacer, than the results of115

RAxML-EPA and pplacer are to each other.116

Sequential Performance117
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Figure 2: Comparison of sequential runtimes of the three programs EPA-ng, pplacer,
and RAxML-EPA, under four different configurations. The y-axis represents the runtime,
normalized by the runtime of EPA-ng for each distinct configuration (reads as: program
was x-times slower than EPA-ng). The absence of data for RAxML-EPA for the masking
setting is due to the absence of such a heuristic in RAxML-EPA. The x-axis is scaled
logarithmically.

We compared the sequential runtimes of EPA-ng, RAxML-EPA, and pplacer, under118

two settings. Firstly, with or without the preplacement heuristic. Secondly, with or119

without the masking heuristic. The combination of these settings results in four distinct120

comparisons (see Fig. 2). We used 50,000 aligned QSs from the neotrop data set, as well as121

the accompanying reference tree and alignment for this test. The preplacement and122

masking settings are as specified in the supplement. Note that RAxML-EPA does not123

implement masking and therefore respective results are missing.124

Under most configurations, EPA-ng substantially outperforms the competing125

programs. The only exception is the case where all heuristics are disabled. In this case we126

observe a runtime that is ≈ 30% slower than for pplacer, while still performing127

≈ 3.5-times faster than RAxML-EPA. However, runs with all heuristics disabled do not128

represent the typical use case. In the configuration using both heuristics, we observe a129

≈ 30-fold performance improvement for EPA-ng over pplacer.130

Parallel Performance131
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We tested the scalability of EPA-ng under three configurations. First, with132

preplacement and masking heuristics disabled (thorough test). Secondly, with only the133

preplacement heuristic enabled. Lastly, we tested masking in conjunction with134

preplacement. This corresponds to the default settings (default test). Please note that, as135

RAxML-EPA does not support masking, the respective results are missing.136

As runs under these configurations exhibit large absolute runtime differences, we137

used three distinct input sizes (number of QS) for each of them. The smallest input size for138

each configuration was selected, such that a respective sequential run terminates within 24139

hours. We chose subsequent sizes to be 10, and 100 times, larger, representing medium and140

large input sizes for each configuration. All scalability tests were based on a set of one141

million (1M) aligned QSs from the neotrop data set. To obtain the desired input sizes, we142

either sub-sampled (10k, 100k) or replicated (10M, 100M, 1B) the original set of 1M143

sequences.144

As the parallel speedup and the parallel efficiency are calculated based on the145

fastest sequential execution time, we performed a separate run using the sequential version146

of EPA-ng (see: Sequential Performance). For each configuration, we performed a147

sequential run for the small input volume. As the larger input volumes could not be148

analyzed sequentially within reasonable time, we multiplied the sequential runtime by 10149

and 100, for the medium and large input sizes.150

The results are displayed in Figure 3. We observe that the thorough test preserves151

the single-node efficiency (16 cores, ≈ 80% PE) consistently for all core counts and input152

data sizes. The preplace test behaves similarly, but parallel efficiency tends to decrease153

with increasing core count. This is because the response times are becoming so short, that154

overheads (e.g., MPI initialization and some pre-computations) start dominating the155

overall runtime according to Amdahl’s law. This is most pronounced for the 1M QS / 512156

cores data point, where PE noticeably declines. The response time in this case was only157
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Figure 3: Weak Scaling Parallel Efficiency plot of EPA-ng on a medium-sized cluster. Input
files with sizes ranging from ten thousand (10K) to one billion (1B) query sequences. Three
different configurations are shown: thorough, meaning no preplacement of masking heuristic
was employed, preplace where only the preplacement heuristic was used, and default where
both masking and preplacement were employed.

83 s, compared to 30,542 s of the corresponding sequential run.158

These effects become even more prominent in the default run, which shows a PE of159

≈ 60% on 2,048 cores. This is primarily due to the increased processing speed when using160

masking that accelerates preplacement by an additional factor of ≈ 7. As a consequence,161

operations such as I/O, MPI startup costs, or data pre-processing functions have a more162

pronounced impact on PE.163

Real-World Showcase164

We performed two tests to showcase the improved throughput of EPA-ng and to165

demonstrate how this enables larger analyses in less time.166
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Placing 1 billion metagenomic Tara Ocean sequences167

We performed phylogenetic placement of one billion metagenomic fragments (pre-filtered to168

the 16S rDNA region) against a 3,748 taxa reference tree. Using 2,048 cores (128 compute169

nodes), we were able to complete this analysis in under 7 hours.170

Extrapolating total reduction in analysis time of Mahé et al. (2017)171

We used a representative sample of the neotrop data set to obtain runtimes for both,172

EPA-ng, and RAxML-EPA, using the same settings as in the original study. With this173

runtime data, we extrapolated the total placement time of the study for both programs.174

We find that EPA-ng would have required less than half the overall CPU time175

(RAxML-EPA: 2,173 core days, EPA-ng: 864 core days) under the same heuristic176

settings (no heuristics). Further, using EPA-ng’s novel heuristics, the placement could177

have been completed in ≈ 14 core hours (roughly a 3,700-fold runtime reduction).178

Our distributed parallelization also improves usability. That is, the user does not179

have to manually split up the query data (i.e., split the data into smaller chunks which can180

complete within say 24 hours on a single node) for circumventing common cluster wall time181

limitations.182

Conclusions and Future Work183

In this work, we presented EPA-ng, a highly scalable tool for phylogenetic184

placement. We showed that it is up to 30 times faster than pplacer and RAxML-EPA185

when executed sequentially, while yielding qualitatively highly similar results. Moreover,186

EPA-ng is the first phylogenetic placement implementation that can parallelize over187

multiple compute nodes of a cluster, enabling analysis of extremely large data sets, while188
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achieving high parallel efficiency and short response times. Our showcase test was executed189

on 2,048 cores, and placed 1 billion metagenomic query sequences (QSs) from the Tara190

Oceans project, on a reference tree (RT) with 3,748 taxa, requiring a total runtime of191

under 7 hours.192

We plan to more tightly integrate EPA-ng with upstream and downstream analysis193

tools, such as programs for aligning the QS against a reference MSA (Berger and194

Stamatakis 2011), respective placement post-analysis tools (Matsen et al. 2010; Czech and195

Stamatakis 2017), and methods using the EPA such as SATIVA (Kozlov et al. 2016). In196

addition, we plan to explore novel approaches for handling increasingly large RTs, such as,197

for instance, trees comprising all known bacteria.198
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