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Abstract14

Infectious disease transmission in animals is an inherently spatial process in which a host’s15

home location and their social mixing patterns are important, with the mixing of infectious16

individuals often different to that of susceptible individuals. Although incidence data for17

humans have traditionally been aggregated into low-resolution data sets, modern representative18

surveillance systems such as electronic hospital records generate high volume case data with19

precise home locations. Here, we use a high resolution gridded spatial transmission model of20

arbitrary resolution to investigate the theoretical relationship between population density,21

differential population movement and local variability in incidence. We show analytically that22

uniform local attack rate is only possible for individual pixels in the grid if susceptible and23

infectious individuals move in the same way. Using a population in Guangdong, China, for24

which a robust quantitative description of movement is available (a movement kernel), and a25

natural history consistent with pandemic influenza; we show that for the estimated kernel,26

local cumulative incidence is positively correlated with population density when susceptible27

individuals are more connected in space than infectious individuals. Conversely, when28

infectious individuals are more connected, local cumulative incidence is negatively correlated29

with population density. The amplitude of correlation is substantial for the estimated kernel.30

However, the strength and direction of correlation changes sign for other kernel parameter31

values. These results describe a precise relationship between the spatio-social mixing of32

infectious and susceptible individuals and local variability in attack rates, and suggest a33

plausible mechanism for the counter-intuitive scenario in which local incidence is lower on34

average in less dense populations. Also, these results suggest that if spatial transmission35

models are implemented at high resolution to investigate local disease dynamics, including36

micro-tuning of interventions, the underlying detailed assumptions about the mechanisms of37

transmission become more important than when similar studies are conducted at larger spatial38

scales.39
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Author Summary40

We know that some places have higher rates of infectious disease than others. However, at the41

moment, we usually only measure these differences for large towns and cities. With modern42

data, such as those we can get from mobile phones, we can measure rates of infection at much43

smaller scales. In this paper, we used a computer simulation of an epidemic to propose ways44

that rates of incidence in small local areas might be related to population density. We found45

that if infectious people are better connected than non-infectious people, perhaps because they46

receive visitors, then, on average, higher density areas would have lower rates of infection. If47

infectious people were less connected than non-infectious people then higher density areas48

would have higher rates of infection. As data get more accurate, this type of analysis will49

allow us to propose and test ways to optimize interventions such as the delivery of vaccines50

and antivirals during a pandemic.51

Introduction52

The spatial heterogeneity of infectious disease incidence at large scales presents numerous53

intervention opportunities and challenges. Maps of malaria prevalence [1] have been used to54

target additional surveillance and to prioritize countries and geographical regions for additional55

intervention investment, resulting in substantial decreases in numbers of infections [2]. Over56

shorter timescales, spatial asynchrony in the northern hemisphere during the 2009 influenza57

pandemic likely led to variable effectiveness of vaccination when eventually deployed because58

of prior infections [3]. The epidemiological implications of substantial spatial heterogeneity in59

both incidence and transmission are topics of active research for most human pathogens [4].60

These spatial heterogeneities must be influenced by two key human behaviours: where people61

choose to live and how they move. Because the home location of an individual is primarily62

used as the geographic location when cases are recorded, absolute spatial incidence is driven63

by population density: where more people live in a given unit area, there is greater potential64

for cases. Accurate high resolution estimates of population density [5, 6] have helped refine65

global absolute estimates of disease incidence and prevalence [7, 8, 9]. In order for a directly66

transmitted human pathogen to move through space, at least one person must travel away from67

3

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 31, 2018. ; https://doi.org/10.1101/291674doi: bioRxiv preprint 

https://doi.org/10.1101/291674


home and meet another person. Even for vector borne pathogens such as malaria and Zika68

virus, typical distances traveled by the vector are much shorter than those traveled by human69

hosts. Human movement is captured by survey data on journeys to work [10],70

questionnaire-based surveys [11] and location logging of mobile devices [12, 13, 14].71

Although spatial heterogeneity has been measured mainly at larger scales, modern pathogen72

surveillance enables more finely resolved incidence data sets, with details such as precise73

geographical location captured with increasing frequency by modern digital and biological74

technology. For example, the full genome of a pathogen can be made available in almost real75

time directly from clinical samples taken in the community [15], and the home location of76

everyone attending a health care facility can be extracted from clinical episode data [16].77

Because this level of geographical precision for high quality incidence data has not previously78

been available, both epidemiological and disease-dynamic studies of infectious disease have79

focused on predicting and explaining incidence patterns measured at larger spatial scales, often80

with all cases within an administrative unit reported together. Additional insights are likely81

being lost during this aggregation process.82

Available evidence and intuition suggests that infectious and non-infectious individuals have83

different social interactions during an outbreak [17], with plausible scenarios in which either84

one or the other may be more connected in space. For example, susceptible individuals are85

more likely to travel than are infectious individuals with mild symptoms [18]. However, family86

members and friends of infectious individuals may often not behave in the same way as an87

average susceptible individual. Also, infectious individuals themselves may travel long88

distances away from transmission hotspots to seek medical care during outbreaks of highly89

pathogenic infections [19].90

Disease dynamic models are often used to study infection incidence and are defined primarily91

by their force-of-infection (FOI) term: a precise mathematical specification of how the risk of92

infection experienced by a susceptible individual is driven by the number of currently93

infectious individuals and by their characteristics. For example, the ages of infectious and94

susceptible individuals must sometimes affect the risk of infection, as must the distance95
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between their home addresses. Disease dynamic models that represent space [20] are now used96

routinely to understand large-scale spatial heterogeneity in incidence: to estimate the relative97

effectiveness of spatially heterogeneous interventions (given the observed incidence); to reveal98

underlying social mechanisms of transmissions; and, with increasing frequency, to forecast99

future spatial incidence patterns [21]. All transmission models that represent space include100

some kind of spatial kernel - a formal definition of the way in which individuals from different101

locations distribute their influence over the whole of geographical space.102

However, there is substantial variability in the underlying FOI assumptions made in these103

models, which are often not discussed explicitly and have likely only rarely made material104

differences to model-based results aggregated at larger spatial scales. Nonetheless, we105

hypothesise that these different FOI assumptions represent important alternate hypotheses for106

the mechanisms of transmission and may lead to substantial structural biases in the predictions107

of attack rates at smaller spatial scales. Here, we propose a general theoretical framework for108

the study of infectious disease incidence at arbitrarily small spatial scales and, in particular, we109

look at the relative mobility of infectious individuals relative to susceptible individuals as a110

potential driver of heterogeneity in incidence.111

Results112

Algebraic analyses show that differential spatial connectivity of susceptible and infectious113

individuals can lead to variability in local attack rates (Protocol S1). Firstly, we showed that if114

susceptible and infectious individuals are assumed to be connected in the same way across all115

points in space, then local attack rates are uniform for any population density distribution or116

grid resolution. For lower resolution grids with large individual spatial elements, where the117

amplitude of connectivity of individuals outside their home grid square is small, the impact of118

differential connectivity between susceptible and infectious individuals is still negligible, even119

to the point that it is reasonable to assume that infectious individuals have no connectivity at120

all outside their home location. However, as the resolution of the grid increases and squares121

become smaller, individuals have a substantial number of connections outside their own grid122

square. Under this scenario, it was no longer possible to prove analytically that differences in123
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the connectedness of susceptible and infectious individuals would not lead to local variation in124

attack rates. These analytical results were not affected by the presence of age stratification in125

the transmission process, so long as the behavior and distribution of age groups was assumed126

to be uniform across space.127

We established a baseline numerical scenario by implementing the underlying transmission128

model (see Methods) as ordinary differential equations (ODEs). Using: a 1 k2 gridded129

population density (55 by 33 k to the east and north of Guangzhou, China); a spatial contact130

kernel estimated in the same population [22]; and a basic reproductive number R0 = 1.8; we131

recovered a global uniform attack rate of z = 0.73. We also introduced age-stratified132

populations and transmission using parameters estimated in this population [11]. For this133

population, accurate high-resolution data on local age distributions were not available,134

therefore, we assumed that all grid squares had populations with the same age distribution,135

even though the total number of individuals in a grid square varied substantially. This addition136

of age effects in the transmission process did not introduce spatial variation but did reduced the137

uniform global attack rate to z = 0.43. We validated the precision of attack rates obtained138

from the ODEs using age- and space-stratified refinements [20] of the standard implicit139

equation relating attack rate to R0 z = 1− e−R0z [23] and .140

We hypothesized that both population density and the gradient of population density may141

influence small-scale attack rates in these models. Figures 1A and 1B show the uniform attack142

rate when using dual mobility with four age classes, plotted against log of population density143

and gradient of log population density respectively (with log gradient defined as the average144

difference between the log of a location’s resident population and that of its 8 immediate145

neighbours).146

Figure 1 The relationship between: force-of-infection (FOI) assumptions, local attack
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rates, population density and population density gradient; for a pandemic-influenza-like

epidemic. FOI assumptions are explained in the text. The LHS shows the relationship

between the log10 population density and attack rate for (A) dual mobility, (C) S-mobility

and (E) I-mobility. The RHS shows the relationship between the gradient of log10

population density and attack rate for (B) dual mobility, (D) S-mobility and (F) I-mobility.

Population gradient was defined as the difference between the population density of a cell

and the average population density of the 9 surrounding cells in the square lattice.

When only susceptible individuals were assumed to be mobile, location-specific attack rates147

were positively correlated with log population density, correlation coefficient c=0.75148

(Figure 1C). Attack rates varied between a minimum of 33.72% to a maximum of 45.76%, an149

absolute range of 12.04%. Location-specific attack rates were slightly less correlated with the150

log gradient of population density (correlation coefficient c=0.73, Figure 1D). Locations with151

higher attack rates tended to be densely populated relative to neighboring locations152

(Figures 2A and 2C). Figure 2B illustrates the uniformity in attack rate obtained from dual153

mobility (locations with attack rate 0 are empty).154

Figure 2 Population density. Location-specific attack rates for (B) dual-mobility, (C)

S-mobility and (D) I-mobility. We change color scale between plots to better illustrate the

emergent patterns. A total of 3 pixels are unpopulated and so attack rates are necessarily

always zero in these locations.

Conversely, when only infectious individuals were assumed to be mobile, pixel attack rates155

were negatively correlated with log population density (c=-0.7707, Figure 1E) and even more156

strongly negatively correlated with log density gradient (c=-0.8816, Figure 1F). Attack rates157

varied over a greater range than for susceptible-only mobility: from a minimum of 32.61% to a158

maximum of 90.73%, with an absolute range of 58.12%. High attack rate pixels tended to be159

sparsely populated relative to neighboring locations (Figures 2A and 2D).160

Measures of spatial variation are inherently dependent on the resolution of the model grid and161
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even the strong variability outlined above would be missed by most surveillance systems. The162

absolute range of attack rates for the susceptible-only movement was reduced to 1.67% when163

aggregated to 8km by 8km pixels. Even though the effect of infectious-only movement was164

stronger than for susceptible-only mobility, it was rapidly hidden by the aggregation of pixels,165

with the absolute range dropping to 3.78% when aggregated to 8km by 8km pixels. Results of166

aggregation are plotted in figures S1 and S2.167

Figure S1 S-mobility: (A) initial result, aggregated into (B) 2km by 2km, (C) 4km by 4km,

and (D) 8km by 8km squares.

Figure S2 I-mobility: (A) initial result, aggregated into (B) 2km by 2km, (C) 4km by 4km,

and (D) 8km by 8km squares.

The direction of association between FOI assumptions and local attack rate was preserved and168

the amplitude remained substantial for intermediate scenarios in which both susceptible and169

infectious individuals were mobile but to differing degrees. If infectious individuals had any170

more contacts than susceptible individuals then attack rates were negatively correlated with171

population density, and vice versa (Figure 3). When infectious individuals reduced their travel172

by a factor of 0.5, the absolute range of attack rates was 5.38% and when susceptible173

individuals reduced their mixing by the same degree (with infectious agents fully mobile), the174

absolute range was 12.89%.175

Figure 3 Limiting mobility of susceptible/recovered and immune agents according to

parameters δ and ε, as described in the main text. Upper and lower surfaces show

maximum and minimum values. Inset: correlation coefficient with population density

The underlying mobility choice kernel K was defined by the relative probability of making a176

contact in a population at a distance x and of population size m. It was parameterized by an177

offset distance d, a distance power γ and destination population power α;178

K = mα/(1 + d/x)−γ , with values obtained by fitting to data from this population [22].179

Qualitatively, our conclusions about the impact of differential contact rates by susceptible180
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individuals were not sensitive to values for the offset distance d nor the distance power γ181

(Figures 4A-4D). However, they were sensitive to values of the destination power α for which182

we have used the best fit value of 0.53 (for results up to this point) (Figures 4E, 4F).183

Intriguingly, with the often-assumed default value α = 1, the correlation between local attack184

rates and population density or gradient have the opposite sign (Figures S3 and S4). Moreover,185

α = 1 induces weaker correlations with local population gradient.186

Figure 4 Sensitivity analysis with respect to kernel parameters a, p and α using S-mobility

(LHS) and I-mobility (RHS). Box plots show standard percentiles and outliers, solid lines

show global attack rate. Dual mobility are omitted as they are flat with variance σ2 = 0.

Empty cells yield attack rate zero and are omitted from calculations.

Figure S3 Sensitivity analysis: correlation coefficient of attack rate with population

density (A) with a and p fixed, (B) S-mobility, p fixed, (C) I-mobility, p fixed, (D)

S-mobility, a fixed, and (E) I-mobility, a fixed. Fixed parameters are set at optimal values

discussed in the main text.

Figure S4 Repeating results of figure 1 with α = 1: (A) S-mobility/density, (B)

S-mobility/gradient, (C) I-mobility/density, and (D) I-mobility/gradient.

Stochastic solutions to the meta-population models suggest that attack rate variation driven by187

asymmetric mobility would not be dominated by demographic stochasticity (Figure 5).188

Although attack rate variation driven may be dominated by stochastic effects for small189

populations, this was not the case for medium and high population densities. For pixels with190

the smallest population, the amplitude of variation expected to arise from asymmetric mobility191

is similar to that which may arise by chance due to stochastic effects. However, as the size of192

the pixel populations increases, the expected amplitude of stochastic variation diminishes more193

quickly than does the expected amplitude of variation due to asymmetric mobility (Figure S5).194

For example, using susceptible-only mobility for 1km by 1km pixels with populations between195

1 and 85,163, the standard deviation in attack rate due to stochasticity is 9.45% while the196
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standard deviation of expected attack rates due to asymmetric mobility is 2.61%.197

Figure 5 Mean and IQR over 50 iterations of stochastic model, using (A) S-mobility and

(B) I-mobility.

Figure S5 Ratio R of location-specific standard deviation over 50 iterations of stochastic

model to standard deviation of corresponding deterministic model result over all pixels,

using (a) S-mobility and (b) I-mobility.

These results are robust to our choice of illustrative population density and to alternate natural198

history parameters. The same effects are observed when using population density of Puerto199

Rico with influenza natural history parameters (Figures S6) and with parameters that200

approximate vector-borne transmission, such as those of Zika of Chikungunya (Figure S7).201

Summary statistics for these alternate scenarios for a range of deterministic model variants we202

have studied are shown in Table S1.203

Table S1Summary statistics for different model parameters, populations and mobility

assumptions. Results for different grid sizes involve aggregation of result obtained at 1km

by 1km resolution. In all cases, empty cells are omitted from calculations. It is therefore

possible to obtain a smaller minimum value of attack rate after aggregation.

Figure S6 Simulated attack rates using population density of North-East Puerto-Rico, a

60km by 60km grid, and influenza-like natural history parameters R0 = 1.8, γ = 1/2.6,

with (A) S-mobility plotted against population density, (B) S-mobility plotted against log

population gradient, (C) I-mobility/density, and (D) I-mobility/gradient.

Figure S7 Simulated attack rates using population density of North-East Puerto-Rico, a
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60km by 60km grid, and natural history parameters R0 = 4, γ = 1/10 approximating

vector-borne transmission (e.g. Zika, Chikungunya), with (A) S-mobility plotted against

population density, (B) S-mobility plotted against log population gradient, (C)

I-mobility/density, and (d) I-mobility/gradient.

Discussion204

We have shown that, under the assumption that an individual’s total contact is independent of205

home location and where they travel, substantial heterogeneity in local attack rates could arise206

if mobility is dependent on infection status. Moreover, the direction of the relationship207

between attack rate and population density is dependent on the relative attractiveness of208

densely populated destinations compared to less dense destinations. For the best estimate of209

that scaling for our population of interest, when susceptible individuals are more mobile than210

infectious individuals, attack rates are negatively correlated with population density.211

Conversely, for the often implicitly assumption that the kernel is directly proportional to212

population size, susceptible-only movement is positively correlated with population density.213

Our study has a number of limitations. We have not considered spatial variation in the age214

distribution of people, because these data were not available for our study population.215

Variability in local attack rates will very likely also be driven in non-trivial ways by spatial216

correlation in the proportion of the population in different age classes. Nor have we considered217

multiple years of transmission which would extend the applicability of our results beyond218

pandemic scenarios for influenza and other emergent pathogens.219

The negative correlation between local attack rate and population density that we observe with220

the most likely parameter values for some mobility assumptions is intriguing and somewhat221

counter intuitive. However, our sensitivity analysis with respect to kernel population power α222

provides insight into the underlying mechanisms. For example, consider the special case where223

only infectious people are mobile and α tends to large values, making mobility dependent only224

on population density of location, and not on geographical distance. Under this scenario, high225

density cells will draw in more and more infectious people and therefore generate higher226
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attack rates. Conversely, if α = 0, then mobility is dependent only on distance. Under this227

scenario, we can think of the infectious populations spilling out of their home locations into228

neighbouring ones. Thus, any sparsely populated location that is adjacent to a densely229

populated location will see an influx of infectious individuals resulting in a greater proportion230

infectious in that location, and therefore a stronger FOI and subsequent attack rate (Figure 6.231

Figure 6 Illustration of the transmission process with infectious-only mobility: location x

is locally densely populated, and prevalence is initially proportional to population density.

If the travel kernel K is dominated by distance (α small, c.f. figure S3a), then some of the

infectious population in each pixel will relocate to neighbouring pixels. The result is a

higher prevalence in locally sparsely populated pixels. Moreover, a larger local gradient

will allow this phenomenon to persist. Infection status is recorded by home location, which,

under the I-mobility assumption, is equivalent to location when susceptible/recovered.

These results illustrate the potential knock-on effects of little or no dependence between232

transmissibility and population density: that infectious people from more densely populated233

areas go to nearby sparsely populated areas and in some sense "seek out" people in those areas234

to infect so they can reach their quota (I-mobility). Within the realm of parameters that are235

supported by studies of human movement and infectious processes, the behaviors implied by236

the models we presented here seem valid.237

Mobility assumptions also have implications for the interpretation of attack-rates derived from238

individual-based models, many of which assume implicitly that the spread of infection is239

driven by the movement of individuals. We have shown that, whichever mobility assumption is240

made in a given model, it is possible to modify this assumption by replacing isotropic K by a241

convoluted non-isotropic kernel L that accounts for different contact patterns. In particular, the242

low-prevalence assumption makes this transformation achievable with minimal modification to243

existing computer programs. Therefore, developers of individual-based models may wish to244

consider alternate connectivity matrices for their simulations so as to explicitly reflect different245

spatial assumptions about the force of infection.246
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We have also shown that the implications of typical assumptions that are made in spatially247

explicit FOI terms, including approximations to this crucial normalization, are non-trivial at248

small spatial scales. Such assumptions are, however, often not addressed explicitly and so may249

contribute unknowingly to results. We hope to offer clarity in the interpretation of FOI in250

spatial models, and to have provided a comprehensive framework from which we can gain a251

deeper understanding of the role of spatial mobility in disease transmission dynamics as252

infectious disease incidence data become available at higher and higher spatial resolution.253

Methods254

Spatial kernels255

Data taken from populations we study here show that total contacts made per day, and contact256

durations, do correlate with population density (p < 0.001, [11]), but that the strength of the257

relationship is weak. This is in part due to a typically older populations in urban areas, but also258

to the phenomenon of urban isolation [24]. When investigating the effect of mobility259

assumption alone in FOI, our main results made the baseline assumption that total contact and260

duration of contact is independent of home location.261

The way in which these contacts are distributed in space does, however, depend on distance262

and population density, and is described via a spatial kernel K. In matrix notation, Kij is263

defined as the proportion of time spent by an agent from location i in location j. The264

assumption of uniformity of total contact therefore means that the rows of K sum to unity. Our265

model employs the offset gravity kernel, defined as follows:266

Kij ∝
NiN

α
j

1 + (rij/a)p
(1)

with baseline parameters of a = 0.58, p = 2.72, α = 0.52, where rij denotes the geodesic267

distance between the centre-points of cells i and j. Of the kernel structures studied in [22],268

offset gravity is shown to best represent contact data. Imposing the constraint that K is269

stochastic renders redundant the factor Ni in the numerator (owing to row-normalisation).270

Population density map271
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We used rectangular excerpts from the Landscan dataset [25] with the lower left corner of the272

rectangle located on the centre of the city of Guangzhou, China. The rectangle is 55 k from273

east to west and 33 k from north to south, and a 4 k boundary area was excluded after274

simulation.275

The boundary area was chosen according to the following rationale: when population density276

data for large suburban areas is truncated for the purpose of simulation, it is equivalent to277

imposing empty space outside of the boundary, and this modification may effect the attack278

rates calculated in cells close to that boundary. We ran simulations on a large area of 1km by279

1km squares, and on smaller areas contained within this larger area. We found that attack rates280

agree on all cells on the interior of the smaller area once a 4km perimeter is removed.281

Force-of-infection282

Let A denote the S-mobility kernel and B the I-mobility kernel. Then the age-independent283

generalized FOI equation is given by:284

λi = β
∑
j

Aij

∑
k B

T
jkIk∑

l

[
ATjl(Nl − Il) +BT

jlIl
] . (2)

For reduced mobility, movement of the non-infectious population is governed by a parameter δ285

such that A = (1− δ)E + δK, where E is an identity matrix representing absence of spatial286

mobility. Similarly, we describe mobility of infective individuals by ε such that287

B = (1− ε)E + εK.288

If K is the n× n spatial kernel, indexed by i, j, k, l, and C the 4× 4 age-mixing matrix,289

indexed by a, b, c, d, then the age-explicit dual-mobility equation is given by:290

λD(a,i) = β
∑
b,j

Kijδab

∑
c,kK

T
jkCbcI(c,k)∑

d,lK
T
jl1bdN(d,l)

(3)

where 1bc = 1 ∀b, d. This can be combined with equation (2) to give the age-dependent system291

with reduced mobility.292

In all simulations presented in this study, we use the pointwise product of the matrices defining293
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number of contacts and duration of contact between age groups 0− 4, 5− 19, 20− 64 and294

65+ derived in [11]. These age-mixing matrices were constructed from a contact surveys295

conducted in the region of Guangzhou used in our results.296

Model Solutions297

We define the gridded transmission model as ordinary differential equations. However, we also298

implement a stochastic compartmental version of the model and we calculate attack rates using299

recursive equations.300

We used a standard SIR model with Ṡi = −Siλi, İi = Siλi − γIi, Ṙi = γIi. ODE models301

were seeded proportional to population density (σ = 10−4 ×N/
∑

iNi), and agreed with final302

size calculations (which assume infinitesimal seeding). Integration of ODEs with full FOI in303

the S- and I-mobility case, i.e. with Il(t) in denominators, showed low-prevalence304

approximations to be good. For example, in the main S-mobility result, the mean difference in305

cell attack rates between the full FOI and low prevalence approximation was 6.22× 10−4 with306

maximum difference 3.3× 10−3 occurring in a cell with population 726. Therefore, numerical307

solutions for all figures were obtained using the low prevalence approximation with infectious308

individuals in the numerator of the FOI but not the denominator (equations (18) and (22)). A309

selection of smaller examples agreed when checked using the full FOI.310

The stochastic compartmental variant of our model selected the number of agents to infect311

from binomial distribution with parameters S(a,i) and 1− exp(−λ(a,i)). This method requires312

specification of a time-step, and we found ∆t = 1/6 days to be sufficiently small (results did313

not change when ∆t is doubled).314
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Figures315

A B

C D

E F

Figure 1: The relationship between: force-of-infection (FOI) assumptions, local attack rates,
population density and population density gradient; for a pandemic-influenza-like epidemic.
FOI assumptions are explained in the text. The LHS shows the relationship between the log10
population density and attack rate for (A) dual mobility, (C) S-mobility and (E) I-mobility. The
RHS shows the relationship between the gradient of log10 population density and attack rate
for (B) dual mobility, (D) S-mobility and (F) I-mobility. Population gradient was defined as the
difference between the population density of a cell and the average population density of the 9
surrounding cells in the square lattice.
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A B

C D

Figure 2: (A) Population density. Location-specific attack rates for (B) dual-mobility, (C) S-
mobility and (D) I-mobility. We change colour scale between plots to better illustrate the emer-
gent patterns. A total of 3 pixels are unpopulated and so attack rates are necessarily always zero
in these locations.
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Figure 3: Limiting mobility of susceptible/recovered and immune agents according to param-
eters δ and ε, as described in the main text. Upper and lower surfaces show maximum and
minimum values. Inset: correlation coefficient with population density
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A B

C D

E F

Figure 4: Sensitivity analysis with respect to kernel parameters a, p and α using S-mobility
(LHS) and I-mobility (RHS). Box plots show standard percentiles and outliers, solid lines show
global attack rate. Dual mobility are omitted as they are flat with variance σ2 = 0. Empty cells
yield attack rate zero and are omitted from calculations.
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A

B

Figure 5: Mean and IQR over 50 iterations of stochastic model, using (A) S-mobility and (B)
I-mobility.
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Figure 6: Illustration of the transmission process with infectious-only mobility: location x is
locally densely populated, and prevalence is initially proportional to population density. If the
travel kernel K is dominated by distance (α small, c.f. figure S3a), then some of the infectious
population in each pixel will relocate to neighbouring pixels. The result is a higher prevalence in
locally sparsely populated pixels. Moreover, a larger local gradient will allow this phenomenon
to persist. Infection status is recorded by home location, which, under the I-mobility assump-
tion, is equivalent to location when susceptible/recovered.
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Protocol S1: Algebraic analyses401

Uniform local attack rates for dual mobility assumptions402

To show uniformity of attack rate with respect to space, we construct the final size equation for403

the system. If the final size for age-group a in location i is given by za,i = Ra,i/Ni, then404

∫ ∞
0

Ṡa,i
Sa,i

dt = −β
∑
b,j

LD(a,i)(c,k)

∫ ∞
0

Ic,k
Nk

(4)

where L(a,i)(c,k) = Kijδab

∑
c,kK

T
jkCbcNk∑

d,lK
T
jl1bdN(d,l)

(5)

= Kijδab

∑
kK

T
jkNk

∑
cCbc∑

lK
T
jlNl

(6)

so log(1− za,i)− log

(
Na,i

Ni

)
= −β

γ

∑
b,j

LD(a,i)(c,k)zc,k (7)

As reasoned in Ref [26] (for the S-mobility FOI with denominator Ni, and in the absence of405

age-mixing), if there exists a solution z such that za,i = xa, i.e. final sizes are independent of406

space, then we have:407

log(1− za,i)− log

(
Na,i

Ni

)
= −β

∑
b,j

Kijδab

∑
kK

T
jkNk∑

lK
T
jlNl

∑
c

Cbcxc (8)

= −β
∑
j

Kij

∑
c

Cacxc (9)

= −β
∑
c

Ca,cxc (10)

If the distribution of age-groups is uniform in space, then we have Na,i/Ni = qa, and so, if408

there exists a solution to the age-only final size equation:409

log(1− x)− log q = −βCx (11)

then za,i = xa is a solution to equation (7), and final sizes are uniform in space.410

Relationship to other approximations in the literature411
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It is shown in [26] that susceptible-only mobility induces uniformity of attack rate, using a FOI412

with normalization by native population. In fact, we can show that uniformity is guaranteed413

only when all agents are equally mobile, owing to denominator in the force of infection term,414

which must be corrected to account for spatial mobility within the whole population.415

For ease of notation, the following formulae are presented without explicit reference to416

age-mixing, but this is always included in computational results (c.f. methods for age-explicit417

formulae). The dual mobility FOI assumes that all agents are fully mobile as described by the418

kernel K (a stochastic matrix). The dual mobility FOI on an agent resident in pixel i is given419

by420

λDi = β
∑
j

Kij

∑
kK

T
jkIk

Mj

(12)

Mj =
∑
l

KT
jlNl (13)

where Mj denotes the total population present in cell j. Crucially, when a model incorporates421

spatial mobility, we can not say Mj = Nj . This FOI assumes frequency-dependent422

transmission based on constant contacts, and describes the expected dynamics in an423

agent-based system with explicit travel determined by K.424

In the literature, the S- and I-mobility kernels are typically denoted as follows:425

λSi = β
∑
j

Kij
Ij
Nj

(14)

λIi = β
∑
j

KT
ij

Ij
Ni

(15)

We claim that the denominators Nj and Ni do not accurately represent the population present426

in cells j and i respectively in high resolution gridded models, owing to spatial mobility. The427

argument below shows that the classic IM FOI serves as at least as a good approximation when428

incidence is small, but the SM FOI does not.429

Using the above equations, SM and DM both induce uniform cumulative attack rates in space.430

The real SM FOI is significantly different to equation (14) in a way that is described by the431
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ratio of total time spent in each cell and the native population of that cell.432

Consider deriving the S-mobility and I-mobility FOIs from the dual mobility FOI. This433

involves starting with equation (12) and replacing either the single appearance of K or the434

single appearance of KT with the identity matrix (denoted E to avoid confusion with the Ii),435

and adjusting denominators Mj accordingly:436

λSi = β
∑
j

Kij

∑
k E

T
jkIk

Ij +
∑

lK
T
jl(Nl − Il)

(16)

= β
∑
j

Kij
Ij

Ij +
∑

lK
T
jl(Nl − Il)

(17)

≈ β
∑
j

Kij
Ij∑

lK
T
jlNl

(first approximation) (18)

≈ β
∑
j

Kij
Ij
Nj

(second approximation) (19)

λIi = β
∑
j

Eij

∑
kK

T
jkIk

Nj − Ij +
∑

lK
T
jlIl

(20)

= β

∑
kK

T
ikIk

Ni − Ii +
∑

lKjl
T Il

(21)

≈ β
∑
j

KT
ij

Ij
Ni

(22)

The denominator in equation (18) is not Nj (the native population of cell j) but is instead the437

population present in cell j according to K. In the case where these 2 quantities are equal, we438

have uniformity of attack rates, as seen in the literature (using a similar argument to our proof439

that the DM FOI induces uniform attack rates). This approximation makes the assumption that440

prevalence is low, i.e. Ii � Ni ∀i.441

The further approximation in equation (19) requires that the total number of people leaving442

each cell is the same as the total number of people arriving in each cell, or, because the row443

sums of K are equal to 1 (k is stochastic), then KT is also stochastic. This is a weaker444

assumption but is related to the Ni →∞ approximation used in [27]. When using the full FOI445

terms for S- and I-mobility, the only case in which these conventional mobility assumptions446

induce uniformity of attack rate is when each location is equally visited (in mathematical447

terms, uniformity of total contact means that the spatial kernel is a stochastic matrix, and the448
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latter requirement is equivalent to the transpose of K also being stochastic, hence K is449

orthogonal). The notion of normalization by total population present is not new to the450

literature [28], though is often excluded in the construction of spatial epidemic models.451

Non-isotropic convoluted kernels452

It is possible to change the mobility assumption in an existing model via an effective, or453

convoluted kernel L such that replacing K with L in a given explicit FOI is equivalent to a454

change of mobility assumption. In fact, we can write any spatially explicit FOI in the form:455

λi = β
∑
j

Lik
Ik
Nk

for some matrix L. This formulation is essential in final size calculations. Then, for example,456

the convoluted D-mobility kernel LD is given by LDik =
∑

jKijK
T
jkNj/Mj , where457

Mj =
∑

lKjlNl, as in the main text. When using low-prevalence approximations, this can be458

done prior to numerical simulation, and so requires minimal additional modification to existing459

model codes.460

Global transmissibility coefficient461

In all simulations, we use the next generation matrix (NGM) method [23] to derive a global462

transmissibility parameter β that yields our desired global R0. NGMs are derived from λi,463

evaluated at disease-free equilibrium (DFE). We can show that, in all 3 cases, using the464

approximations to S- and I-mobility given in equations (18) and (22) the value of β obtained is465

equal to that of the spatially heterogeneous system, maintaining heterogeneity in age only.466

In the I-mobility case, the NGM is given by467

GI
(a,i)(b,j) =

β

γ

N(a,i)

Ni

CabK
T
ij (23)

Since K is a stochastic matrix, we have λ1(K) = 1 and so λ1(KT ) = 1, thus the dominant468
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eigenvalue of GI is equal to the dominant eigenvalue of469

Gage
ab =

β

γ

Na

Ntotal

Cab (24)

Using S-mobility, we have470

GS
(a,i)(c,k) =

β

γ
Na,iCacKik

1∑
d,lK

T
klN(d,l)

(25)

=
β

γ
Cac

KT
kiNa,i∑

d,lK
T
klN(d,l)

(26)

=
β

γ
CacX(a,i),(c,k) (27)

where X(a,i)(c,k) : =
KT
kiNa,i∑

d,lK
T
klN(d,l)

(28)

Note that X is a stochastic matrix, and so the dominant eigenvalue of GS is equal to the471

dominant eigenvalue of Gage.472

A similar argument applies to dual mobility, where we have473

GD
(a,i)(c,k) =

β

γ
Na,iCac

∑
j

Kij

KT
jk∑

d,lK
T
klN(d,l)

(29)

=
β

γ
Cac

∑
j

Kkj

KT
jiNa,i∑

d,lK
T
klN(d,l)

(30)

=
β

γ
CacY(a,i),(c,k) (31)

where Y(a,i)(c,k) : =
∑
j

Kkj

KT
jiNa,i∑

d,lK
T
klN(d,l)

(32)

Here, since Y is the product of 2 stochastic matrices, it must itself be stochastic, and so the474

dominant eigenvalue of GD is also equal to the dominant eigenvalue of Gage.475

The arguments presented above for susceptible-only and dual mobility require that the same476

travel kernel K be used to describe the movement of all age groups, i.e. Kij be independent of477

a, b, c, d. It can be verified computationally that age-dependent mobility can indeed induce478

different values of β to the spatially heterogeneous model, in all cases other than pure479

infectious-only mobility. We reserve a detailed analysis of this scenario for a subsequent study.480
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Supplementary figures and tables481

A B

C D

Figure S1: S-mobility: (A) initial result, aggregated into (B) 2km by 2km, (C) 4km by 4km,
and (D) 8km by 8km squares.
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A B

C D

Figure S2: I-mobility: (A) initial result, aggregated into (B) 2km by 2km, (C) 4km by 4km, and
(D) 8km by 8km squares.
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A

B C

D E

Figure S3: Sensitivity analysis: correlation coefficient of attack rate with population density
(A) with a and p fixed, (B) S-mobility, p fixed, (C) I-mobility, p fixed, (D) S-mobility, a fixed,
and (E) I-mobility, a fixed. Fixed parameters are set at optimal values discussed in the main
text.
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C D

Figure S4: Repeating results of figure 1 with α = 1: (A) S-mobility/density, (B) S-
mobility/gradient, (C) I-mobility/density, and (D) I-mobility/gradient.

A

B

Figure S5: RatioR of location-specific standard deviation over 50 iterations of stochastic model
to standard deviation of corresponding deterministic model result over all pixels, using (a) S-
mobility and (b) I-mobility.
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Figure S6: Simulated attack rates using population density of North-East Puerto-Rico, a 60km
by 60km grid, and influenza-like natural history parameters R0 = 1.8, γ = 1/2.6, with (A)
S-mobility plotted against population density, (B) S-mobility plotted against log population
gradient, (C) I-mobility/density, and (D) I-mobility/gradient.

A

Zika parameters, S-mobility: density

B

Zika parameters, S-mobility: gradient

C

Zika parameters, I-mobility: density

D

Zika parameters, I-mobility: grad

Figure S7: Simulated attack rates using population density of North-East Puerto-Rico, a 60km
by 60km grid, and natural history parameters R0 = 4, γ = 1/10 approximating vector-borne
transmission (e.g. Zika, Chikungunya), with (A) S-mobility plotted against population den-
sity, (B) S-mobility plotted against log population gradient, (C) I-mobility/density, and (d) I-
mobility/gradient.
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