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Abstract 
Epigenetic modification of chromatin plays a pivotal role in regulating gene expression 
during cell differentiation. The scale and complexity of epigenetic data pose a significant 
challenge for biologists to identify the regulatory events controlling each stage of cell 
differentiation. Here, we present a model-free method, called Snapshot, that uses 
epigenetic data to generate a hierarchical visualization for the DNA regions segregating 
with respect to chromatin state along any given cell differentiation hierarchy of interest. 
Different cell type hierarchies may be used to highlight the epigenetic history specific to 
particular lineages of cell differentiation. We demonstrate the utility of Snapshot using 
data from the VISION project, an international project for ValIdated Systematic 
IntegratiON of epigenomic data in mouse and human hematopoiesis. 

Availability and implementation: https://github.com/guanjue/snapshot 

1. Introduction 
Multiple consortium projects have generated thousands of epigenomic datasets, and 
integration of such data has become a powerful way to understand the biological 
meaning of the combinations of epigenetic modifications(ENCODE Project Consortium, 
2012; Bernstein et al., 2010; Yue et al., 2014). A commonly used method for studying 
epigenetic patterns in multiple cell types is to first perform peak calling on individual 
data, and then cluster the peaks according to the patterns of their signal intensity across 
all cell types(Corces et al., 2016; Spencer et al., 2015). These peaks are usually 
considered as candidate cis-regulatory elements (ccREs), and their epigenetic signal 
pattern can reflect their role in organismal development or cell differentiation. The 
groups of ccREs with active epigenetic marks are often the target of transcription 
regulatory machinery(Huang et al., 2016). However, this approach has several 
limitations. Firstly, these methods do not take into account of any existing biological 
knowledge about the cell types. Secondly, interpreting the biological meaning and 
visualizing the identified ccRE clusters can be difficult, especially when the number of 
cell types is large. Here, we present a model-free method to cluster and visualize ccREs 
during cell differentiation. Our method takes into account known cell-to-cell relationships 
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in cell differentiation history, while providing the flexibility to analyze the ccREs along 
alternative histories. The method produces a comprehensive map of ccRE cluster 
patterns that can be used intuitively to compare, identify, and interpret the epigenetic 
history specific to each lineage of cell differentiation. 

2. Methods 

2.1 Clustering and visualizing ccREs based on their binary index 
In contrast to unsupervised clustering methods, we developed a model-free method to 
cluster ccREs. While unsupervised clustering methods require pre-determining the 
number of clusters and can miss important clusters, our method can capture all distinct 
and recurring ccREs clusters. Each ccRE cluster portrays a distinct pattern of presence 
or absence of ccREs across the cell types examined. Specifically, we first perform peak 
calling on all cell types using an existing peak calling method, and we call the resulting 
peaks ccREs. Next, we use the binarized presence/absence status of ccREs at each 
location across all cell types to create a ccRE index to represent the unique 
combinatorial pattern of ccREs at the location. The number of bits in the index equals 
the number of cell types. The order of bits is the order of cell types derived from a user-
provided cell differentiation tree. Each location with at least one ccREs across all cell 
types will receive an index. These indices readily classify the genomic locations into 
distinct ccRE clusters, since all ccREs with the same index are grouped into one cluster 
called an index-set. Each index-set contains a list of genomic locations that have the 
same ccRE presence/absence patterns across cell types. While each ccRE is in one 
index-set, it is of practical utility to restrict some further analyses to larger index-sets. 
Thus we filter out an index-set if its size is smaller than a user-specified threshold. 
Finally, we visualize the ccRE clusters in a heatmap. Each row in the heatmap is the 
ccRE pattern for each index-set, and each column is a cell type. The ccRE patterns are 
sorted by their indices in the heatmap. By our definition of the ccRE index, the ccRE 
patterns are separated if they have different ccRE status in a cell type; conversely they 
are clustered together if they have similar ccRE status in a cell type. This segregation is 
made initially at the top of the cell differentiation tree, and then it is repeated at each 
step along a user-specified cell lineage. Thus the major segrating ccRE clusters for a 
specific cell lineage can be well separated and illustrated in the heatmap. Furthermore, 
our method is flexible in that a user can specific a different lineage or order to the cell 
types, with different index-set maps focusing on distinctive lineages. See Figure 1a and 
results section for an example with more detailed explanation. 

2.2 Visualizing epigenetic signal strength and their related functional 
state within each index-set. 
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To facilitate the interpretation of ccRE clusters, our data visualization package includes 
four sets of plots for each index-set: (1) a cell differentiation tree colored based on the 
intensity of epigenetic average signal in the index-set in each cell type (Figure 2a top); 
(2) violin plots of epigenetic signals in each cell type of each index-set (Figure 2a 
bottom). If the user provides a whole-genome functional annotation file, our package will 
further generate (3) an automatically colored cell differentiation tree based on the most 
frequent functional annotation in the index-set in each cell type (Figure 2b top); and (4) 
bar plots based on the proportion of each functional annotation in the index-set in each 
cell type (Figure 2b bottom). These different plots will together highlight the epigenetic 
activity across cell types and the associated functional annotations and their 
enrichments for each index-set, which enhances the interpretation of the functional roles 
of each ccRE cluster during cell differentiation. 

2.3 Input and Main Options 
We implement Snapshot as a python package with a graphical user interface. Snapshot 
takes the following files as input: (1) peak calling results from epigenetic data in different 
cell types in bed format (Kent et al., 2002); (2) signal strength of each peak in the 
merged peak file in bed format; (3) functional annotation labels in bed format; (4) a list 
of colors for different functional annotations to be used in the heatmap; and (5) a list of 
files containing the input file names and the corresponding content labels in the output 
figures. The order of the input file names in peak file name list will be used as the cell 
type order in the index-set visualization. Snapshot uses bedtools(Quinlan, 2014) to 
handle most of the operations on the bed files. In terms of parameters, the user only 
needs to provide the minimum number of peaks that a biological meaningful index-set 
must contain. 

3. Results 
Here, we demonstrate our visualization package by analyzing the ATAC-seq data 
generated by the VISION project (ValIdated Systematic IntegratiON of hematopoietic 
epigenomes) (Philipsen and Hardison, 2017; Oudelaar et al., 2017). We first performed 
peak calling on the ATAC-seq data in 18 hematopoietic cell types using the peak calling 
software called Homer(Heinz et al., 2010). The ATAC-seq data reveal genomic intervals 
that are accessible to nucleases, which is a feature associated with almost all cREs, 
and thus we treat the resulting peaks as ccREs. Next, we assigned each location with at 
least one ccREs an 18-digit index, where each digit corresponds to the presence (1) or 
absence (0) of the ATAC-seq peak in each of the hematopoietic cell type. In theory 
there are 218 possible combinations of the 18-digit index, but our heatmap only plots 
index-sets containing more than 200 genomic regions (Figure 1a). The threshold of 200 
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is based on the distribution of the number of genomic regions covered by the index-sets 
(Figure 1c). One heatmap obtained through our data visualization package shows the 
ATAC-seq average signal strength (Figure 1a) and another shows the most frequent 
functional state (Figure 1b) in each cell type of the index-set. 
  
From the heatmaps, specific ccRE clusters (index-sets) displaying ATAC-seq histories 
of interest to the user can be discovered. For example, we focused on index-set 150, an 
index-set containing 214 genomic regions, because of its ATAC-seq signal and 
functional annotation features suggest that these may correspond to ccREs involved in 
erythroid gene activation. Specifically, the accessibility (ATAC-seq signal) of this index-
set gradually increased from the progenitor cells to the erythroblasts (Figure 2a), and its 
most frequent functional state became active enhancer state (orange color) upon 
entering the erythroid differentiation lineage (Figure 2b). The functional state annotation 
were generated by the IDEAS 2D genome segmentation method(Zhang et al., 2016) 
using the epigenomic data in the VISION project. These observations suggested that 
these ccREs are critical for erythroid differentiation. As one test of this hypothesis, we 
examined the Gene Ontology (GO) terms of genes associated with these regions using 
the GREAT tool (McLean et al., 2010). The results confirmed that the ccREs in index-
set 150 were indeed significantly associated with erythroid differentiation (Figure 2c). 
Furthermore, the most significant enriched transcription factor binding site motifs (from 
MEME-ChIP, (Machanick and Bailey, 2011)) were those for the GATA transcription 
factor family. Two GATA factors, GATA1 and GATA2, are critically important for 
erythroid cell differentiation (Figure 2d)(Katsumura et al., 2017). 
  
4. Discussion 
We developed the novel tool Snapshot that automatically generates cell differentiation 
associated heatmaps highlighting important ccRE clusters for lineage specific 
epigenetic events and their associated functions. It is a model-free clustering method 
that does not require a predetermined number of clusters and that can identify all 
abundant ccRE clusters. The results are more complete and more readily interpretable 
than those from conventional k-means and hierarchical clustering. Furthermore, its 
individual index-set data visualization module enables users to associate ccRE clusters 
with informative functional annotations, which can be genome segmentation results 
from epigenetic marks, ChIP-Seq data on protein-DNA interactions, and/or sequence 
information such as TF binding motifs. Finally, the graphical user interface and simple 
input format of Snapshot make it a handy tool for analyzing most genomic features 
across multiple cell types. Taken together, Snapshot can facilitate the discovery and 
interpretation of ccREs that are critical for lineage specific cell development. While we 
have described Snapshot in terms of its utility for analysis of ccREs across 
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differentiation, it can be applied to any progression of cell types, such as in response to 
hormones or signaling factors or along a developmental series. 
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Figure 1: The heatmap of index-sets. (a) The heatmap of index-set colored by the 
average ATAC-seq signal in each cell type. (b) The heatmap of index-set colored by the 
most frequent functional annotation in each cell type. (c) The density plot of the number 
of genomic region covered by the index-set. (d) The color code and epigenetic 
composition of functional annotation used in (b). 
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Figure 2: The data visualization for index-set-150 and corresponding GO analysis and 
MEME-ChIP TF binding motif analysis. (a) The hematopoietic cell differentiation tree 
colored by the average ATAC-seq signal in each cell type of the index-set-150. The 
violin plot represents the distribution of ATAC-seq signal in each cell type of the index-
set-150 is in below.  (b) The same cell differentiation tree colored by the most frequent 
functional annotation in each cell type of the index-set-150. The two most frequence 
functional annotation in erythroblasts lineage. The bar plot based on the proportion of 
each functional annotation in each cell type of the index-set-150 is below the cell 
differentiation tree. (c) The index-set-150 relevant GO term. (d) The index-set-150 
significantly enriched TF binding motif from MEME-ChIP analysis. 
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