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Oscillations are crucial to the sustenance of living organisms, across a wide variety of9

biological processes. In eukaryotes, oscillatory dynamics are thought to arise from inter-10

actions at the protein and RNA levels; however, the role of non-coding RNA in regulating11

these dynamics remains understudied. In this work, using a mathematical model, we show12

how non-coding RNA acting as miRNA sponges in a conserved miRNA - transcription factor13

feedback motif, can give rise to oscillatory behaviour. Control of these non-coding RNA can14

dynamically create oscillations or stability, and we show how this behaviour predisposes15

to oscillations in the stochastic limit. These results point towards novel hypotheses for the16

roles of different species of miRNA sponges, and help to provide a paradigm for functional17

differences between the many distinct RNA species thought to act as miRNA sponges in18

nature.19

Oscillations are intrinsic to the behaviour of biological systems, across scales, species, stages20

of development, and in health and disease Glass (2001); Winfree (1967); Mirollo and Strogatz21

(1990). For example, during organismal development, oscillations are crucial to the generation22

of vertebrae, in a process termed somitogenesisWahl et al. (2007); Serth et al. (2003); Dale et al.23

(2006). During this stage of development, embryonic cells entrain synchronised oscillations, resulting24

in the development of vertebrae in a coordinated, clock-like process. In organisms exhibiting25

circadian rhythms, synchronised patterns of neurotransmitter and neurohormonal release are26

coupled to oscillatory modes Welsh et al. (1995); Goldbeter (2002); Strogatz (2000). For both of27

these cases, a fundamental question is how a complex interacting system of biomolecules, with28

intrinsic stochasticity and uncertainty, is able to produce and sustain oscillatory behaviour. In29

somitogenesis, a seminal work in mathematical biology has proposed the ‘clock and wavefront’30

model, which predicts the occurrence of oscillations arising from a biochemical network and31

diffusive effects Baker et al. (2006). For circadian oscillators, the discovery of the regulation of32

the Period protein and intercellular coupling has shown how oscillations can emerge Mirollo33

and Strogatz (1990); Goldbeter (2002); Strogatz (2000). Thus, oscillatory behaviour arises in these34

systems from carefully balanced interactions at the RNA and protein level, among species with35

specific kinetic properties, giving rise to tunable, dynamic oscillations, even in a noisy biological36

environment.37

The manner in which the various species of non-coding RNA (ncRNA) affect these oscillatory38

dynamics is to be determined, as predicted functions remain elusive for circular RNA (circRNA),39

long non-coding RNA (lncRNA), and pseudogenes Li et al. (2013); Thomson and Dinger (2016);40

Paraskevopoulou et al. (2012); Jeggari et al. (2012). One common trait among each of these ncRNA41

is thought to be the competitive binding of miRNA, repressing these so that they are unable to42
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bind mRNA Ebert and Sharp (2010). This competition for miRNA binding is termed ‘sponging’,43

and is thought to be a primary function of certain circRNA, pseudogenes, expressed 3’ UTRs, and44

potentially a function for lncRNA as well, as identified through sequence complementarity Thomson45

and Dinger (2016). In this work, we show how these ncRNA, acting as a generalised miRNA sponge46

on an over-representedmiRNA-mRNA-transcription factor feedback motif, can give rise to sustained,47

tunable oscillations.48

Defining a miRNA-transcription factor feedback motif49

The topology of the underlying network of interactions between RNA and proteins has a direct link50

to the system dynamics, and understanding this has led to wider predictions about the behaviour51

of biomolecules in the transcriptome Lee et al. (2002). For instance, extending these networks52

to include species of non-coding RNA, such as miRNA, which act to inhibit their predicted mRNA53

targets, has led to understanding of their functions in fine-tuning gene expression and maintaining54

bistable states Volinia et al. (2010); Ryan et al. (2010); Li et al. (2013); Lai et al. (2016). These55

transcriptome-wide studies have shown significant over-representation of specific miRNA-mRNA-56

protein subnetworks, representing distinct classes of feedback and feedforward motifs, each57

with unique intrinsic dynamical properties Tsang et al. (2007). We consider an over-represented58

feedback motif involving a miRNA and transcription factor, as identified by Tsang et al. Tsang et al.59

(2007). This motif is seen in an interaction between the E2F transcription factor and the miR-17/9260

oncogenic cluster, and we will extend this by considering the effect of a miRNA sponge, depicted61

graphically in Figure 1 Aguda et al. (2008).62
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Figure 1. The miRNA sponge network considered. Directed arrows represent activation-type behaviour, and
blunted arrows represent inhibitory behaviour. The system interconnections are overlayed with rate kinetic

functions for each of the interactions and time delayed interactions are indicated by �1 and �2, yielding System 2.

We summarise this system mathematically by the set of equations outlined in Box 1. With this91

model, we analyse the long-term behaviour of this system via a stability analysis, and study the92

properties of the unique equilibrium solution. As per the derivation in the Supplementary Methods,93

we apply the Hopf bifurcation theorem to show that for cases where the time delays are non-zero,94

there is a Hopf bifurcation when the sum of the time delays �1 and �2 exceeds some critical time �0;95

resulting in a switch from asymptotic stability to an oscillatory steady state.96

As a numerical illustration of this switch, consider the system for the following parameter values,97

chosen because they fall within a realistic range for known range parameters for mammalian cells98

as used in similar models (e.g.Monk (2003); Schwanhäusser et al. (2011)): �C = 1, �C = 0.01, �F = 1,99

�F = 0.1, �M = 1, �M = 1, kP = 10, �P = 0.1, kCM = 10, kMF = 0.1, �FM = 200, 
FM = 100, and n = 8, with100

both cases of �1 = �2 = 0.5 and �1 = �2 = 0.8 as depicted in Figure 2A and B, respectively. These101

parameter values give a critical time �0 of 1.43 for which if �1 + �2 > �0, there is an oscillatory solution,102

and when �1 + �2 < �0 there is a steady state solution, as shown in Figure 2A and B.103
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Box 1. Mathematical model6364

Our mathematical model is defined as follows, with parameter values in Table S1. We take

the concentration of sponging RNA over time t as C(t), transcription factor mRNA as F (t),
transcription factor protein as P (t), and miRNA asM(t). We denote basal rates of production
of sponge RNA, miRNA, and transcription factor mRNA as �i where i ∈ {C,M,F }, respectively.
We denote basal rates of degradation of sponge RNA, miRNA, transcription factor mRNA, and

transcription factor protein as �i with i ∈ {C,M,F , P }, respectively.

65

66

67

68

69

70

Inhibitory actions between two species i and j are supposed to follow mass-action kinetics
(see Horn and Jackson (1972) for a reference), with rate constant kij for (i, j) ∈ {(C,M), (M,F )}
in the case of miRNA sponge repressing miRNA and miRNA repressing transcription factor

mRNA, respectively.

71

72

73

74

We suppose that the rate of production of protein from mRNA for transcription follows a

delayed linear relationship to the amount of mRNA, with an average translation rate of kP
per unit of mRNA. We represent time delays by �1 and �2 in this system to account for the
transcription factor-mediated activation of transcription, and translation of mRNA into protein,

respectively.

75

76

77

78

79

The interaction term between the transcription factor and its back-activation of miRNA pro-

duction is defined by the following Hill function, as in similar models (e.g. Ingalls et al. (2017)),
such that:

�FM (P ) =
�FM

(


FM
P

)n
+ 1

. (1)

From a first-order mass-action kinetics formulation, we obtain the delay differential equations,

with all derivatives taken with respect to time t signified by Ċ, Ṁ, Ḟ , Ṗ , as such:

Ċ = �C − �CC − kCMCM

Ṁ = �M − �MM − kCMCM − kMFMF + �FM
(

P (t − �1)
)

Ḟ = �F − �FF − kMFMF

Ṗ = kPF (t − �2) − �PP . (2)

80

81

82
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85

86

87

88

89
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Figure 2. Increasing system delay past critical threshold induces steady oscillatory behaviour,traversing a Hopf bifurcation. Plots depict the effects of having �1 + �2 below (A) and above (B) the critical
time threshold �0 as derived above, based on the Hopf bifurcation theorem. Common parameter values used
for this simulation are: �C = 1, �C = 0.01, �F = 1, �F = 0.1, �M = 1, �M = 1, kP = 10, �P = 0.1, kCM = 10, kMF = 0.1,
�FM = 200, 
FM = 100, and n = 8, with �1 and �2 indicated as above.

A novel mechanism for generating sustained oscillations104

Our analysis shows that there is a critical sum of the two time delays, which is is a function of system105

parameter values, above which oscillatory behaviour emerges. This parametric dependence of106

the critical time may be exploited by biological systems to generate dynamic oscillatory behaviour,107

as although the parameters governing the kinetics and delays present in a biological system are108

largely fixed, rates of production and degradation vary significantly Suter et al. (2011); Cai et al.109

(2008); Schwanhäusser et al. (2011); Chen et al. (1999). These may cause the system to move from110

an oscillatory state to a non-oscillatory state, or vice versa.111

Transcriptional bursting is a phenomenon that has been observed across species for a number112

of genes, especially during developmental properties, whereby transcription is increased in a ‘burst’113

over a relatively short period of time Suter et al. (2011). Thus, as a descriptive example, we consider114

a time-varying value for �C , increasing it ten-fold from the baseline parameter values as used in115

Figure 2, as may occur during particular developmental processes (e.g. those in which circRNA116

are hypothesised to function as miRNA sponges) Qureshi and Mehler (2012). In this case, the new117

system with a parameter value of �C = 10 has a critical time of �0 = 0.62, which implies that the118

original system with �1 = �2 = 0.5 is now oscillatory in steady state. To visualise this change, we119

show the system behaviour as �C is increased ten-fold only transiently between simulation times120

50 and 150 min, and is 1 otherwise, in Figure 3. Here, oscillations are created dynamically and in a121

time-varying fashion, with their time to disappearance primarily determined by the miRNA sponge122

degradation rate.123

Stochastic considerations124

In the case where the number of molecules is small, as may occur in single cells with low copy125

numbers of these biomolecules, stochastic effects will predominate. In the stochastic setting,126

our system is no longer described by the continuous variables written in System 2, but rather is127

represented by a list of events that occur at discretised time steps, which we summarise in Box 2.128

Moreover, because of the presence of non-zero time delays �1 and �2, this system exhibits139

non-Markovian behaviour, and therefore the stochastic behaviour may not follow the mean-field140

approximation in the long-term. That is, there may be oscillatory behaviour in the stochastic case for141

a parameter regime where the deterministic model does not predict oscillations. This phenomenon,142
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Figure 3. A time-varying �C generates transient oscillatory behaviour. Here, a time varying value of �C is
used to illustrate the presence of a bifurcation. �C is increased to 10 from an initial value of 1 between
simulation time 150 and 300, between which oscillatory behaviour is the absorbing state, and is reduced to 1
otherwise, at which asymptotic stability predominates. Other parameter values are such that: �C = 0.01, �F = 1,
�F = 0.1, �M = 1, �M = 1, kP = 10, �P = 0.1, kCM = 10, kMF = 0.1, �FM = 200, 
FM = 100, and n = 8, with
�1 = �2 = 0.5 as in Figure 2.

of stochastic oscillations, is one which we posit to be both significant and common among the143

behaviour of RNA networks, and has been thought to contribute to other oscillatory systems, such144

as the generation of circadian rhythms olde Scheper et al. (1999); Bratsun et al. (2005).145

To capture the potential for stochastic oscillations in our system, we simulate our system146

numerically, noting that conventional analytic approaches to this problem are intractable as they147

require deriving and solving the Langevin equations derived from the reactions in System 3. The148

algorithm we implement, described in the Supplementary Materials (Algorithm 1) is based on the149

standard Gillespie algorithm, modified to handle the case of time-delayed reactions, also used for150

similar purposes such as delayed mRNA gene networks and chemical reaction networks Gillespie151

(1977); Bratsun et al. (2005); Anderson (2007). Briefly, in this algorithm, if a time-delayed reaction is152

chosen to occur based on the current state of the system, it is not executed until a future time, at153

which it is scheduled to occur, by a queuing system.154

Figure 4 (left) depicts the results of a stochastic simulation for our system, showing oscillatory155

behaviour, with the overlayed mean field behaviour of N = 100 runs of the stochastic model. To156

study the periodicity of the stochastic signal, we take the Fourier transform of the time dynamics,157

and analyse the power spectra for underlying modes. Shown in Figure 4 (right), this reveals a158

strong subcomponent of an underlying oscillatory mode for the stochastic simulations, whereas159

the deterministic behaviour for this system with the same parameter values does not show this160

oscillatory mode.161
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Box 2. Stochastic model129130

The reaction ‘events’ and the associated rates at which they occur in the stochastic version

of our system are as described in System 2, with kinetic rate parameters on the right hand

side, and a time delay indicated if present for that reaction. Each of the dynamic variables and

parameters is as described above and in Table S1. The symbol ∅ on the left side of a reaction
indicates de novo synthesis, and on the right side of a reaction this indicates degradation.

∅ → C ∶ �C
C → ∅ ∶ �CC

∅ → F ∶ �F
F → ∅ ∶ �FF

∅ →M ∶ �M
∅ →M ∶ �FM (P ) ∶ �1

M → ∅ ∶ �MM

∅ → P ∶ �P
P → ∅ ∶ �PP

C +M → ∅ ∶ kCMCM

M + F → ∅ ∶ kMFMF

∅ → P ∶ kPF ∶ �2

(3)
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Figure 4. Stochastic system dynamics, showing an individual trace of mean behaviour and stochasticoscillations (left) and periodogram (right). Left: Averaged stochastic system dynamics do not show
oscillations, but individual trajectories do. Dotted lines indicate an individual trajectory for a simulation, and

bold lines are taken over an average of 100 runs, with standard error shaded around these lines.
Right: Using the dynamics from stochastic simulations, we show the presence of underlying oscillatory modes,

when the mean field behaviour predicts asymptotic stability. Plots are of the average of 100 periodogram signal

intensities, computed for each of the simulations of the stochastic model. Strong signal for an underlying

oscillatory mode with period 10-15 minutes for the stochastic oscillations is evident, as corroborated by the

individual series trace in Figure 4 (right). Parameter values used are the same as that of Figure 2, such that

�C = 1, �C = 0.01, �F = 1, �F = 0.1, �M = 1, �M = 1, kP = 10, �P = 0.1, kCM = 10, kMF = 0.1, �FM = 200, 
FM = 100,
and n = 8, with �1 = �2 = 0.5, initial values chosen as 5 arbitrarily for all species.

Discussion162

Here, we have considered a common miRNA-transcription factor network motif extended to include163

a miRNA sponge. We have shown how, without changing time delays or fixed kinetic parameters,164

oscillations can arise with simple changes in production and degradation rates of the miRNA sponge.165

In the stochastic case, we have shown how these oscillatory dynamics are more prevalent, and are166

not seen in some cases, for an equivalent set of parameters in the deterministic limit. These results167

have implications that show how different types of non-coding RNA acting as miRNA sponges may168

generate dynamics not otherwise possible in a biological system.169
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Different types of miRNA sponges confer different system behaviours170

A key conclusion of this work is that different fixed kinetic properties of miRNA sponges will lead to171

different regimes and potentials for oscillatory dynamics in this network motif. As such, mapping172

these kinetic parameters to known information for the different species of RNA acting as miRNA173

sponges, we can hypothesise their effects, as depicted in Figure 5. For example, circRNA are174

differentiated from other species of ncRNA by their stability, as they do not have free ends, and175

so are not subject to the same RNA-se degrading enzymes Enuka et al. (2016); Gruner et al. (2016).176

Based on our analysis, circRNA in this network motif acting as a miRNA sponge will push the177

steady state closer to oscillatory behaviour, potentially crucial to the maintenance of this state.178

In the same vein, recent work involving circRNA characterisation has shown, through knockdown179

experiments, that specific circRNA are heavily involved in neurogenesis, a process where such180

oscillatory behaviour is likely crucial Piwecka et al. (2017); Hanan et al. (2017).181

On the other hand, these results suggest that miRNA sponged by lncRNAs with a short half-life182

(as identified through a recent genome-wide analysis of lncRNA half-lives by Clark et al.), are likely183

to exhibit greater stability and less propensity towards oscillatory behaviour Clark et al. (2012). In184

effect, these lncRNA, if produced in targeted bursts, may provide tight temporal control of oscillatory185

behaviour, perhaps crucial to regulating a switch between oscillatory and non-oscillatory behaviour,186

as in somitogenesis.187

Pseudogenes ceRNA 3’ UTRs circRNA lncRNA

Degradation 
Rate (δC)

Production 
Rate (αC)

Binding  
Rate (kCM)

é/Variable

Variable

Variable

êê é/Variable

Variable
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Potential 
Behaviour

Stable behaviour,  
time-varying oscillatory behaviour

Time varying 
oscillatory 

behaviour, quick 
stabilisation

Prolonged 
oscillatory 

behaviour, slow 
stabilisation

Figure 5. Summary of potential behaviours for different ncRNA acting as miRNA sponges in reactionnetwork. Relationships between the dynamic parameters thought to occur for different ncRNA species
functioning as miRNA sponges, and the effects of these parameter regimes has on system behaviour.

miRNA sponges in low copy number may be involved in the generation and main-188

tenance of stochastic oscillations189

As a result of the delay differential equation system we are considering, the system does not act in190

a purely Markovian manner. In practical terms, this means that the stochastic system dynamics can191

exhibit oscillatory behaviour, even in a parameter regime where the deterministic solution does not.192

This result is particularly relevant for non-coding RNA, such as circRNA, which are thought to exist193

with low molecular counts, suggesting that oscillatory behaviour may be a more common feature194

of these RNA networks than would otherwise be predicted.195
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Further, we consider the implications of extending the presented model to account for spatial196

differences in molecule concentration. Because the production of these biomolecules is spatially197

organised within the cell, and they diffuse within the nucleus and cytoplasm, the system dynamics198

will differ between stochastic and deterministic among various sub-regions in the cell. Regions199

closer to the edges of a diffusive boundary will have lower numbers of molecules, and therefore a200

greater propensity for stochastic oscillations, in certain cases. This may lead to a scenario in which201

there are steady state dynamics of the network at central regions of higher concentration, followed202

by disordered stochastic oscillatory behaviour as the biomolecules diffuse outward. While this203

level of resolution has not yet been attained experimentally, such a spatial organisation may allow204

cells to generate oscillations at the behaviour of a cellular membrane; potentially facilitating motile205

behaviour, for example.206

Implications for ncRNA-based therapeutics207

The results presented within this work also have implications for ncRNA-based therapeutic strate-208

gies. Figure S1 in the Supplementary Materials shows the key determinants of steady state levels209

for each of the species, through a parameter sensitivity analysis. Focussing on the values obtained210

for the system sensitivity to miRNA sponge parameters, we are able to infer the impact of a ncRNA211

therapeutic acting as a miRNA sponge on the network dynamics. For example, this shows that212

in order to decrease miRNA concentration, as opposed to increasing the binding kinetics of the213

sponge to the miRNA, we predict that it would be more effective to increase the production rate of214

the sponge (or introduce a higher concentration of miRNA sponge exogenously).215

A novel experimental paradigm216

This work provides fertile ground for generating hypotheses regarding the functional roles of217

the various miRNA sponge species. However, we have done so within the confines of the limited218

evidence available at the present time. Characterisation of key kinetic parameters for miRNA sponge219

species, through the generation of synthetic forms, could provide ample substrate for more clearly220

elucidating their possible dynamics. Moreover, because we predict that these miRNA sponges221

may lead to oscillatory behaviour, the experimental design implemented must be robust enough222

to capture this. Instead of supposing a priori that there will be asymptotically stable dynamics,223

multiple time points with a sufficiently fine resolution must be considered to determine whether224

these oscillations are present. To optimise these time points for experimental assays, guidance225

should be sought from a theoretical model, with an analogous analysis as presented in this work.226

Overall, we have shown a novel paradigm by which oscillatory behaviour can emerge in RNA227

networks, via the actions of miRNA sponges. From this theoretical exploration, we have provided228

insight into the functional redundancy of miRNA sponges in different RNA configurations in na-229

ture. This, together with emerging knowledge of the roles of ncRNA, suggests that these species230

potentially have key implications for the behaviour of RNA networks in states of health and disease.231
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