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Abstract

Oscillations are crucial to the sustenance of living organisms, across a wide variety of
biological processes. In eukaryotes, oscillatory dynamics are thought to arise from
interactions at the protein and RNA levels; however, the role of non-coding RNA in
regulating these dynamics remains understudied. In this work, using a mathematical
model, we show how non-coding RNA acting as microRNA (miRNA) sponges in a
conserved miRNA - transcription factor feedback motif, can give rise to oscillatory
behaviour. Control of these non-coding RNA can dynamically create oscillations or
stability, and we show how this behaviour predisposes to oscillations in the stochastic
limit. These results, supported by emerging evidence for the role of miRNA sponges in
development, point towards key roles of different species of miRNA sponges, such as
circular RNA, potentially in the maintenance of yet unexplained oscillatory behaviour.
These results help to provide a paradigm for understanding functional differences
between the many redundant, but distinct RNA species thought to act as miRNA
sponges in nature, such as long non-coding RNA, pseudogenes, competing mRNA,
circular RNA, and 3’ UTRs.

Author summary

We analyze the effects of a newly discovered species of non-coding RNA, acting as
microRNA (miRNA) sponges, on intracellular signalling dynamics. We show that
oscillatory behaviour can arise in a time-varying manner in an over-represented
transcriptional feedback network. These results point towards novel hypotheses for the
roles of different species of miRNA sponges, such as their increasingly understood role
in neural development.

Introduction 1

Oscillations are intrinsic to the behaviour of biological systems, across scales, species, 2

stages of development, and in health and disease [1–3]. For example, during organismal 3

development, oscillations are crucial to the generation of vertebrae, in a process termed 4

somitogenesis [4–8]. During this stage of development, embryonic cells entrain 5

synchronised oscillations, resulting in the development of vertebrae in a coordinated, 6

clock-like process. In organisms exhibiting circadian rhythms, synchronised patterns of 7

neurotransmitter and neurohormonal release are coupled to oscillatory modes [9–11]. 8
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For both of these cases, a fundamental question is how a complex interacting system of 9

biomolecules, with intrinsic stochasticity and uncertainty, is able to produce and sustain 10

oscillatory behaviour. In somitogenesis, a seminal work in mathematical biology has 11

proposed the ‘clock and wavefront’ model, which predicts the occurrence of oscillations 12

arising from a biochemical network and diffusive effects [12–15]. Likewise, the Hes1 13

transcription factor involved in stem cell differentiation participates in a negative 14

feedback loop and has been shown to exhibit stochastic, diffusion-driven oscillatory 15

behaviour [16–18]. For circadian oscillators, the discovery of the regulation of the Period 16

protein and intercellular coupling has shown how oscillations can emerge [3, 10,11]. 17

Thus, oscillatory behaviour arises in these systems from carefully balanced interactions 18

at the RNA and protein level, among species with specific kinetic properties, giving rise 19

to tunable, dynamic oscillations, even in a noisy biological environment. 20

Recently, the catalogue of RNA species participating in the dynamics of the 21

transcriptome has been expanded significantly, with the discovery of non-coding RNAs 22

(ncRNAs) - RNA that do not appear to be protein-coding. The manner in which the 23

various species of ncRNAs affect these oscillatory dynamics, if they do at all, is to be 24

determined, as predicted functions remain elusive for circular RNA (circRNA), long 25

non-coding RNA (lncRNA), and pseudogenes [19–22]. One common trait among each of 26

these ncRNA is thought to be the competitive binding of microRNA (miRNA), 27

inhibiting the ability of miRNA to bind mRNA [23]. This competition for miRNA 28

binding is termed ‘sponging’, and is thought to be a primary function of certain 29

circRNA, pseudogenes, expressed 3’ UTRs, and potentially a function for lncRNA as 30

well, as identified through sequence complementarity [20]. In this work, we model these 31

ncRNA, acting as a generalised miRNA sponge on an over-represented 32

miRNA-mRNA-transcription factor feedback motif, can give rise to sustained, tunable 33

oscillations. 34

Materials and methods 35

Mathematical model 36

We model the interaction between a miRNA, miRNA sponge, mRNA, and transcription 37

factor protein participating in a negative feedback loop. Our mathematical model is 38

defined as follows, with parameter values in Table S1. We take the concentration of 39

sponging RNA over time t as C(t), transcription factor mRNA as F (t), transcription 40

factor protein as P (t), and miRNA as M(t). We denote basal rates of production of 41

sponge RNA, miRNA, and transcription factor mRNA as αi where i ∈ {C,M,F}, 42

respectively. We denote basal rates of degradation of sponge RNA, miRNA, 43

transcription factor mRNA, and transcription factor protein as δi with i ∈ {C,M,F, P}, 44

respectively. 45

Inhibitory actions between two species i and j are assumed to follow mass-action 46

kinetics (see [24] for a reference), with rate constant kij for (i, j) ∈ {(C,M), (M,F )} in 47

the case of miRNA sponge repressing miRNA and miRNA repressing transcription 48

factor mRNA, respectively. 49

We suppose that the rate of production of protein from mRNA for transcription 50

follows a delayed linear relationship to the amount of mRNA, with an average 51

translation rate of kP per unit of mRNA. We represent time delays by τ1 and τ2 in this 52

system to account for the transcription factor-mediated activation of transcription, and 53

translation of mRNA into protein, respectively. 54

The interaction term between the transcription factor and its back-activation of
miRNA production is defined by the following Hill function, as in similar models
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(e.g. [25]), such that:

αFM (P ) =
βFM(

γFM

P

)n
+ 1

. (1)

From a first-order mass-action kinetics formulation, we obtain the delay differential
equations, with all derivatives taken with respect to time t signified by Ċ, Ṁ , Ḟ , Ṗ , as
such:

Ċ = αC − δCC − kCMCM
Ṁ = αM − δMM − kCMCM − kMFMF + αFM

(
P (t− τ1)

)
Ḟ = αF − δFF − kMFMF

Ṗ = kPF (t− τ2)− δPP. (2)

Stochastic model 55

The reaction ‘events’ and the associated rates at which they occur in the stochastic 56

version of our system are as described in System 2, with kinetic rate parameters on the 57

right hand side, and a time delay indicated if present for that reaction. Each of the 58

dynamic variables and parameters is as described above and in Table S1. The symbol ∅ 59

on the left side of a reaction indicates de novo synthesis, and on the right side of a 60

reaction this indicates degradation. 61

∅ → C : αC

C → ∅ : δCC

∅ → F : αF

F → ∅ : δFF

∅ →M : αM

∅ →M : αFM (P ) : τ1

M → ∅ : δMM

P → ∅ : δPP

C +M → ∅ : kCMCM

M + F → ∅ : kMFMF

∅ → P : kPF : τ2

(3)

Results 62

Defining a miRNA-transcription factor feedback motif 63

The topology of the underlying network of interactions between RNA and proteins has a 64

direct link to the system dynamics, and understanding this has led to wider predictions 65

about the behaviour of biomolecules in the transcriptome [26–28]. For instance, 66

extending these networks to include species of non-coding RNA, such as miRNA, which 67

act to inhibit their predicted mRNA targets, has led to understanding of their functions 68

in fine-tuning gene expression and maintaining bistable states [19,29–31]. These 69

transcriptome-wide studies have shown significant over-representation of specific 70

miRNA-mRNA-protein subnetworks, representing distinct classes of feedback and 71

feedforward motifs, each with unique intrinsic dynamical properties [32]. We consider 72

an over-represented feedback motif involving a miRNA and transcription factor, as 73

identified by Tsang et al. [32]. This motif is seen in an interaction between the E2F 74

transcription factor and the miR-17/92 oncogenic cluster. Here, we will extend this by 75

considering the effect of a miRNA sponge on network dynamics, depicted graphically in 76

Fig 1 [33]. 77

We model this system mathematically by the set of equations outlined in the 78

Materials and Methods. With this model, we analyse the long-term behaviour of this 79

system via a stability analysis, and thereby study the properties of the unique 80
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Fig 1. The miRNA sponge network considered. Directed arrows represent
activation-type behaviour, and blunted arrows represent inhibitory behaviour. The
system interconnections are overlayed with rate kinetic functions for each of the
interactions and time delayed interactions are indicated by τ1 and τ2, yielding System 2.

equilibrium solution. The stability analysis gives an understanding of the qualitative 81

behaviour of the system dynamics at equilibrium; for instance, whether it is stable 82

steady state or oscillatory behaviour. A critical point at which the system changes from 83

stable to oscillatory behaviour is known as a Hopf bifurcation, and the Hopf bifurcation 84

theorem gives the necessary and sufficient conditions characterising whether these 85

points occur, and the parameter values at these points. As per the derivation 86

in Appendix S1, we apply the Hopf bifurcation theorem to show that for cases where 87

the time delays are non-zero, there is a Hopf bifurcation when the sum of the time 88

delays τ1 and τ2 exceeds some critical time τ0; resulting in a switch from asymptotic 89

stability to an oscillatory steady state. 90

As a numerical illustration of this switch, consider the system for the following 91

parameter values, chosen because they fall within a realistic range for known range 92

parameters for mammalian cells as used in similar models (e.g. [34, 35]): 93

αC = 1 mol ·min−1, δC = 0.01 min−1, αF = 1 mol ·min−1, δF = 0.1 min−1, 94

αM = 1 mol ·min−1, δM = 1 min−1, kP = 10 mol ·min−1, δP = 0.1 min−1, 95

kCM = 10 min−1 · mol−1, kMF = 0.1 min−1 · mol−1, βFM = 200 mol ·min−1, 96

γFM = 100 mol, and n = 8, with both cases of τ1 = τ2 = 0.5 min and τ1 = τ2 = 0.8 min 97

as depicted in Fig 2A and B, respectively. These parameter values give a critical time τ0 98

of 1.43 min for which if τ1 + τ2 > τ0, there is an oscillatory solution, and when 99

τ1 + τ2 < τ0 there is a steady state solution, as shown in Fig 2A and B. 100

A novel mechanism for generating sustained oscillations 101

Our analysis shows that there is a critical sum of the two time delays, which is is a 102

function of system parameter values, above which oscillatory behaviour emerges. This 103

parametric dependence of the critical time may be exploited by biological systems to 104

generate dynamic oscillatory behaviour, as although the parameters governing the 105

kinetics and delays present in a biological system are largely fixed, rates of production 106

and degradation vary significantly [35–38]. These may cause the system to move from 107

an oscillatory state to a non-oscillatory state, or vice versa. 108

Transcriptional bursting is a phenomenon that has been observed across species for 109

many genes, especially during development, whereby transcription rate is increased 110

significantly in a ‘burst’ over a relatively short period of time [36]. As a descriptive 111

example, we consider a time-varying value for αC , increasing it ten-fold from the 112

baseline parameter values used in Fig 2. In this case, with a parameter value of 113

αC = 10 mol ·min−1 the system has a critical time of τ0 = 0.62 min. The time delays τ1 114

and τ2 do not change with transcriptional bursting, and so the total delay remains 115
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Fig 2. Increasing system delay past critical threshold induces steady
oscillatory behaviour, traversing a Hopf bifurcation. Plots depict the effects of
having τ1 + τ2 below (A) and above (B) the critical time threshold τ0 as derived above,
based on the Hopf bifurcation theorem. Common parameter values used for this
simulation are: αC = 1 mol ·min−1, δC = 0.01 min−1, αF = 1 mol ·min−1,
δF = 0.1 min−1, αM = 1 mol ·min−1, δM = 1 min−1, kP = 10 mol ·min−1,
δP = 0.1 min−1, kCM = 10 min−1 · mol−1, kMF = 0.1 min−1 · mol−1,
βFM = 200 mol ·min−1, γFM = 100 mol, and n = 8, with τ1 and τ2 indicated as above.

τ1 + τ2 = 1 min, which is greater than the critical time during transcriptional bursting, 116

so the system will exhibit oscillatory behaviour during bursting. To visualise this 117

change, we show the system behaviour as αC is increased ten-fold only transiently 118

between simulation times 50 min and 150 min, and is 1 mol ·min−1 otherwise, in Fig 3. 119

Here, oscillations are created dynamically and in a time-varying fashion, with their time 120

to disappearance primarily determined by the miRNA sponge degradation rate. 121

Stochastic considerations 122

In the case where the number of molecules is small, as may occur in single cells with low 123

copy numbers of these biomolecules, stochastic effects may predominate. In the 124

stochastic setting, our system is no longer well described by the continuous variables 125

written in System 2, but rather is better represented by a list of events that occur at 126

discretised time steps, which we summarise in the Materials and Methods. 127

Moreover, because of the presence of non-zero time delays τ1 and τ2, this system 128

exhibits non-Markovian behaviour, and therefore the stochastic behaviour may not 129

follow the mean-field approximation by the ODE system in the long-term. That is, 130

there may be oscillatory behaviour in the stochastic case for a parameter regime where 131

the deterministic model does not predict oscillations [39]. This phenomenon, of 132

stochastic oscillations, is one which we posit to be both significant and common among 133

the behaviour of RNA networks, and has been thought to contribute to other oscillatory 134

systems, such as the generation of circadian rhythms [40,41], and in the Hes1 gene 135

regulatory network [42]. 136

To capture the potential for stochastic oscillations in our system, we simulate our 137

system numerically using the dde23 Runge-Kutta based solver in Matlab, noting that 138

conventional analytic approaches to this problem are intractable as they require 139

deriving and solving the Langevin equations derived from the reactions in System 3. 140

The algorithm we implement, described in Appendix S3 is based on the standard 141

stochastic simulation algorithm by Gillespie, modified to handle the case of time-delayed 142

reactions, also used for similar purposes such as delayed mRNA gene networks and 143

May 28, 2018 5/14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 29, 2018. ; https://doi.org/10.1101/292029doi: bioRxiv preprint 

https://doi.org/10.1101/292029
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 3. A time-varying αC generates transient oscillatory behaviour. Here, a
time varying value of αC is used to illustrate the presence of a bifurcation. αC is
increased to 10 mol ·min−1 from an initial value of 1 mol ·min−1 between simulation
time 150 min and 300 min, between which oscillatory behaviour is the absorbing state,
and is reduced to 1 mol ·min−1 otherwise, at which asymptotic stability predominates.
Other parameter values are such that: δC = 0.01 min−1, αF = 1 mol ·min−1,
δF = 0.1 min−1, αM = 1 mol ·min−1, δM = 1 min−1, kP = 10 mol ·min−1,
δP = 0.1 min−1, kCM = 10 min−1 ·mol−1, kMF = 0.1 min−1 ·mol−1,
βFM = 200 mol ·min−1, γFM = 100 mol, and n = 8, with τ1 = τ2 = 0.5 min as in Fig 2.

chemical reaction networks [41,43,44]. The original version of the Gillespie algorithm 144

simulates reactions occurring instantaneously at randomly distributed times, weighted 145

by their likelihood of occurring based on mass-action kinetics. In the modified 146

algorithm, we account for time-delayed reactions by implementing a queuing system. If 147

a time-delayed reaction is chosen to occur, it is not executed until a scheduled future 148

time, determined by the length of time delay. 149

Fig 4 (left) depicts the results of a stochastic simulation for our system, showing 150

oscillatory behaviour, with the overlayed mean field behaviour of N = 100 runs of the 151

stochastic model (equivalent to the ODE solution). To study the periodicity of the 152

stochastic signal, we take the discrete Fourier transform of the time dynamics, and 153

analyse the power spectra for underlying modes. Shown in Fig 4 (right), this reveals a 154

strong subcomponent of an underlying oscillatory mode for the stochastic simulations, 155

whereas the deterministic model for this system with the same parameter values does 156

not show this oscillatory mode. 157
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Fig 4. Stochastic system dynamics, showing an individual trace of mean
behaviour and stochastic oscillations (left) and periodogram (right). Left:
Averaged stochastic system dynamics do not show oscillations, but individual
trajectories do. Dotted lines indicate an individual trajectory for a simulation, and bold
lines are taken over an average of N = 100 runs, with standard error shaded around
these lines.
Right: Using the dynamics from stochastic simulations, we show the presence of
underlying oscillatory modes, when the deterministic behaviour predicts asymptotic
stability. Plots are of the average of N = 100 periodogram signal intensities, computed
for each of the simulations of the stochastic model. Strong signal for an underlying
oscillatory mode with period 10-15 minutes for the stochastic oscillations is evident, as
corroborated by the individual series trace in Fig 4 (right). C refers to counts of miRNA
sponge, M refers to counts of miRNA, F refers to counts of transcription factor mRNA,
and P refers to counts of transcription factor protein. Parameter values used are the
same as that of Fig 2, such thatαC = 1 mol ·min−1, δC = 0.01 min−1,
αF = 1 mol ·min−1, δF = 0.1 min−1, αM = 1 mol ·min−1, δM = 1 min−1,
kP = 10 mol ·min−1, δP = 0.1 min−1, kCM = 10 min−1 · mol−1,
kMF = 0.1 min−1 · mol−1, βFM = 200 mol ·min−1, γFM = 100 mol and n = 8, with
τ1 = τ2 = 0.5 min, initial values chosen as five arbitrarily for all species.

Discussion 158

Here, we have considered a common miRNA-transcription factor network motif 159

extended to include a miRNA sponge. We have shown that in this system, without 160

changing time delays or fixed kinetic parameters, oscillations can arise with simple 161

changes in production and degradation rates of the miRNA sponge. In the stochastic 162

case, oscillatory dynamics are more prevalent, and because of a change in bifurcation 163

point location, are not seen in the deterministic limit for some cases. These results have 164

implications that show how different types of non-coding RNA acting as miRNA 165

sponges may generate dynamics not otherwise possible in a biological system. 166

Different types of miRNA sponges confer different system 167

behaviours 168

A key conclusion of this work is that different fixed kinetic properties of miRNA 169

sponges will lead to different regimes and potentials for oscillatory dynamics in this 170

network motif. As such, mapping these kinetic parameters to known information for the 171

different species of RNA acting as miRNA sponges, we can hypothesise their effects, as 172

depicted in Fig 5. For example, circRNA are differentiated from other species of ncRNA 173
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by their stability, as they do not have free ends, and so are not subject to the same 174

RNA-se degrading enzymes [45,46]. Based on our analysis, circRNA in this network 175

motif acting as a miRNA sponge will push the steady state closer to oscillatory 176

behaviour, potentially crucial to the maintenance of this state. In the same vein, recent 177

work involving circRNA characterisation has shown, through knockdown experiments, 178

that specific circRNA are heavily involved in neurogenesis, a process where such 179

oscillatory behaviour is likely crucial [47, 48]. 180

On the other hand, these results suggest that miRNA sponged by lncRNAs with a 181

short half-life (as identified through a recent genome-wide analysis of lncRNA half-lives), 182

are likely to exhibit greater stability and less propensity towards oscillatory 183

behaviour [49]. In effect, these lncRNA, if produced in targeted bursts, may provide 184

tight temporal control of oscillatory behaviour, perhaps crucial to regulating a switch 185

between oscillatory and non-oscillatory behaviour, as in somitogenesis. It has also 186

recently been shown that in mice, the lncRNA 116HG functions in the maintenance of 187

circadian oscillations, as loss of this locus results in disruption of diurnal rhythms, 188

although it is unknown if this is due to sponging functions [50]. 189

Fig 5. Summary of potential behaviours for different ncRNA acting as
miRNA sponges in reaction network. Relationships between the dynamic
parameters thought to occur for different ncRNA species functioning as miRNA
sponges, and the effects of these parameter regimes has on system behaviour.

miRNA sponges in low copy number may be involved in the 190

generation and maintenance of stochastic oscillations 191

As a result of the underlying biology of the interactions between the RNA, protein, and 192

DNA species in our system, the mathematical description of this system involves 193

delays.In practical terms, this results in the system exhibiting a phenomenon of 194

stochastic oscillations, whereby stochastic system dynamics can exhibit oscillatory 195

behaviour, even in a parameter regime where the deterministic solution does not. 196

Translating this observation back into biologic terms, this result is particularly relevant 197

for non-coding RNA, such as circRNA, which are thought to exist with low molecular 198

counts, suggesting that oscillatory behaviour may be a more common feature of these 199
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RNA networks than would otherwise be predicted. 200

Next, we postulate the implications of extending the presented model to account for 201

spatial differences in molecule concentration. Because the production of the 202

biomolecules we consider is spatially organised within the cell, and they diffuse within 203

the nucleus and cytoplasm, the concentration gradient of these molecules includes 204

regions of very low numbers of molecules, up to much higher counts. As a result, the 205

dynamics of any interacting network involving these species will differ along this 206

gradient; encapsulating both stochastic and deterministic behaviours along different 207

sub-regions in the cell. Regions closer to the edges of a diffusive boundary will have 208

lower numbers of molecules, and, depending on parameter values, a greater propensity 209

for stochastic oscillations. This may lead to a scenario in which there are steady state 210

dynamics of the network at central regions of higher concentration, followed by 211

disordered stochastic oscillatory behaviour as the biomolecules diffuse outward. 212

Experiments, using techniques such as single RNA molecule tracking (e.g. [51, 52]) may 213

be used to study how such spatial organisation may allow cells to generate oscillations 214

at the behaviour of a cellular membrane; potentially facilitating motile behaviour, for 215

example. 216

Implications for ncRNA-based therapeutics 217

The results presented within this work also have implications for ncRNA-based 218

therapeutic strategies. Fig S1 in Appendix S2 shows the key determinants of steady 219

state levels for each of the species, through a parameter sensitivity analysis. Focussing 220

on the values obtained for the system sensitivity to miRNA sponge parameters, we are 221

able to infer the impact of a ncRNA therapeutic acting as a miRNA sponge on the 222

network dynamics. For example, this shows that in order to decrease miRNA 223

concentration, as opposed to increasing the binding kinetics of the sponge to the 224

miRNA, we predict that it would be more effective to increase the production rate of 225

the sponge (or introduce a higher concentration of miRNA sponge exogenously). 226

A novel experimental paradigm 227

This work provides fertile ground for generating hypotheses regarding the functional 228

roles of the various miRNA sponge species. However, we have done so within the 229

confines of the limited evidence available at the present time. Characterisation of key 230

kinetic parameters for miRNA sponge species, through the generation of synthetic 231

forms, could provide ample substrate for more clearly elucidating their possible 232

dynamics. Moreover, because we predict that these miRNA sponges may lead to 233

oscillatory behaviour, the experimental design implemented must be robust enough to 234

capture this. Instead of supposing a priori that there will be asymptotically stable 235

dynamics, multiple time points with a sufficiently fine resolution must be considered to 236

determine whether these oscillations are present. To optimise these time points for 237

experimental assays, guidance should be sought from a theoretical model, with an 238

analogous analysis as presented in this work. 239

Conclusion 240

Overall, we have shown a novel paradigm by which oscillatory behaviour can emerge in 241

RNA networks, via the actions of miRNA sponges. From this theoretical exploration, 242

we have provided insight into the functional redundancy of miRNA sponges in different 243

RNA configurations in nature. This, together with emerging knowledge of the roles of 244
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ncRNA, suggests that these species potentially have key implications for the behaviour 245

of RNA networks in states of health and disease. 246

Supporting information 247

Appendix S1 Mathematical derivations. Derivation of existence and uniqueness 248

of system solution and stability analysis. 249

Appendix S2 Parameter sensitivity analysis. Analysis of system solution upon 250

varying parameters through range of possible values. 251

Appendix S3 Modified Gillespie Algorithm listing, pseudocode. 252

Pseudocode listing for the algorithm used for stochastic simulation, enabling the 253

simulation of delayed reactions. 254

Table S1 Parameter values. Description of parameters and associated values as 255

considered for sensitivity analysis. 256

Fig S1 Partial rank correlation coefficients for each parameter value 257

correlated with steady state values for modelled species. Correlations are 258

taken partial to all other parameter values. Parameter values were sampled using Latin 259

hypercube sampling with 105 points from the parameter space, and for each of these 260

parameter combinations, steady state values were computed, from which the partial 261

rank correlation coefficients can be presented. C refers to the steady state concentration 262

of the miRNA sponge, M to the miRNA, F to the transcription factor mRNA, and P 263

to the transcription factor protein. 264

Fig S2 Partial rank correlation coefficients for each parameter value 265

correlated with Euclidean norm of system steady state values. Correlations 266

are taken partial to all other parameter values. Parameter values were sampled using 267

Latin hypercube sampling with 105 points from the parameter space, and for each of 268

these parameter combinations, steady state values were computed, from which the 269

partial rank correlation coefficients can be presented. 270

Fig S3 Logistic regression model coefficients for model parameters. These 271

are depicted with the associated 95% confidence interval for predicted coefficient. Model 272

was trained as a classifier for whether regression would occur or not on 105 parameter 273

value combinations sampled from the space of possible values by Latin hypercube 274

sampling. A positive coefficient indicates more likely to associate with existence of a 275

bifurcation, and a negative coefficient indicates more likely to associate with global 276

asymptotic stability. 277

Fig S4 Partial rank correlation coefficient for each parameter value 278

considered correlated with the critical time for which a bifurcation occurs. 279

Correlation is taken partial to all other parameters, for the cases in which a bifurcation 280

is predicted to occur. Parameter values considered were selected using Latin hypercube 281

sampling, using 105 points in the parameter space, of which approximately 2300 had 282

existence of a bifurcation. 283
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coupling regulates the period of the segmentation clock. Current Biology.
2010;20(14):1244–1253.

16. Sturrock M, Hellander A, Matzavinos A, Chaplain MA. Spatial stochastic
modelling of the Hes1 gene regulatory network: intrinsic noise can explain
heterogeneity in embryonic stem cell differentiation. Journal of The Royal Society
Interface. 2013;10(80):20120988.

17. Macnamara CK, Chaplain MA. Diffusion driven oscillations in gene regulatory
networks. Journal of Theoretical Biology. 2016;407:51–70.

18. Phillips NE, Manning CS, Pettini T, Biga V, Marinopoulou E, Stanley P, et al.
Stochasticity in the miR-9/Hes1 oscillatory network can account for clonal
heterogeneity in the timing of differentiation. Elife. 2016;5.

19. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2. 0: decoding
miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from
large-scale CLIP-Seq data. Nucleic Acids Research. 2013;42(D1):D92–D97.

20. Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and
controversy. Nature Reviews Genetics. 2016;17(5):272–283.

21. Paraskevopoulou MD, Georgakilas G, Kostoulas N, Reczko M, Maragkakis M,
Dalamagas TM, et al. DIANA-LncBase: experimentally verified and
computationally predicted microRNA targets on long non-coding RNAs. Nucleic
Acids Research. 2012;41(D1):D239–D245.

22. Jeggari A, Marks DS, Larsson E. miRcode: a map of putative microRNA target
sites in the long non-coding transcriptome. Bioinformatics.
2012;28(15):2062–2063.

23. Ebert MS, Sharp PA. MicroRNA sponges: progress and possibilities. RNA.
2010;16(11):2043–2050.

24. Horn F, Jackson R. General mass action kinetics. Archive for Rational Mechanics
and Analysis. 1972;47(2):81–116.

25. Ingalls B, Mincheva M, Roussel MR. Parametric Sensitivity Analysis of
Oscillatory Delay Systems with an Application to Gene Regulation. Bulletin of
Mathematical Biology. 2017; p. 1–25.

26. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, et al.
Transcriptional regulatory networks in Saccharomyces cerevisiae. Science.
2002;298(5594):799–804.

27. Oates AC, Morelli LG, Ares S. Patterning embryos with oscillations: structure,
function and dynamics of the vertebrate segmentation clock. Development.
2012;139(4):625–639.

28. Chaplain M, Ptashnyk M, Sturrock M. Hopf bifurcation in a gene regulatory
network model: Molecular movement causes oscillations. Mathematical Models
and Methods in Applied Sciences. 2015;25(06):1179–1215.

29. Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G, Drusco A, et al.
Reprogramming of miRNA networks in cancer and leukemia. Genome Research.
2010;20(5):589–599.

May 28, 2018 12/14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 29, 2018. ; https://doi.org/10.1101/292029doi: bioRxiv preprint 

https://doi.org/10.1101/292029
http://creativecommons.org/licenses/by-nc-nd/4.0/


30. Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the
implications for cancer research. Nature Reviews Cancer. 2010;10(6):389–402.

31. Lai X, Wolkenhauer O, Vera J. Understanding microRNA-mediated gene
regulatory networks through mathematical modelling. Nucleic Acids Research.
2016;44(13):6019–6035.

32. Tsang J, Zhu J, van Oudenaarden A. MicroRNA-mediated feedback and
feedforward loops are recurrent network motifs in mammals. Molecular Cell.
2007;26(5):753–767.

33. Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB. MicroRNA
regulation of a cancer network: consequences of the feedback loops involving
miR-17-92, E2F, and Myc. Proceedings of the National Academy of Sciences.
2008;105(50):19678–19683.

34. Monk NA. Oscillatory expression of Hes1, p53, and NF-κB driven by
transcriptional time delays. Current Biology. 2003;13(16):1409–1413.

35. Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global
quantification of mammalian gene expression control. Nature. 2011;473(7347):337.

36. Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, Naef F. Mammalian
genes are transcribed with widely different bursting kinetics. Science.
2011;332(6028):472–474.

37. Cai L, Dalal CK, Elowitz MB. Frequency-modulated nuclear localization bursts
coordinate gene regulation. Nature. 2008;455(7212):485.

38. Chen T, He HL, Church GM. Modeling gene expression with differential
equations. In: Biocomputing’99. World Scientific; 1999. p. 29–40.
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