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Abstract

Mass spectrometry is a valued method to evaluate the metabolomics content of a

biological sample. The recent advent of rapid ionization technologies such as Laser

Diode Thermal Desorption (LDTD) and Direct Analysis in Real Time (DART) has

rendered high-throughput mass spectrometry possible. It can now be used for

large-scale comparative analysis of populations of samples. In practice, many factors

resulting from the environment, the protocol, and even the instrument itself, can lead to

minor discrepancies between spectra, rendering automated comparative analysis

difficult. In this work, a sequence/pipeline of algorithms to correct variations between

spectra is proposed. The algorithms correct multiple spectra by identifying peaks that

are common to all and, from those, computes a spectrum-specific correction. We show

that these algorithms increase comparability within large datasets of spectra,

facilitating comparative analysis, such as machine learning.
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Author summary

Mass spectrometry is a widespread technology used to measure the chemical content of

samples. This measurement technique is often used with biological samples for diverse

applications, such as protein sequencing, metabolomic profiling or quantitative

measurements. However, with the increasing throughput of mass spectrometry

technologies and methodologies, the resulting datasets are becoming larger. This reveals

slight shifts in mass measured by the instruments, in the case of Time-of-Flight (ToF)

mass spectrometers. These shifts render spectra harder to compare and analyze in large

datasets. In this article, we propose algorithms that counter mass shifts and variations

in datasets of ToF mass spectra. These algorithms use no external reference points,

instead calculating spectrum-specific corrections by finding peaks present in all spectra

of a dataset. Applying these algorithm yields a representation of the mass spectra that

can then easily be used for statistical or machine learning analyses.

Introduction 1

Mass spectrometry (MS) is a widely used technique for acquiring data on the 2

metabolome or the proteome of individuals [1] [2]. Proteomics applications can consist, 3

among others, of typing of microbial organisms [3], imaging MS [4], quantitative 4

comparisons [5], and peptide sequencing [6] [7]. For metabolomics applications, the two 5

main approaches fall into the categories of targeted and untargeted studies. In 6

comparison with targeted studies, untargeted studies acquire data using a shotgun 7

approach. Therefore, this type of study is a good option for novel biomarker discovery 8

and hypothesis generation [8] [9]. 9

Through recent years, novel ionization technologies have emerged, facilitating the 10

high-throughput acquisition of mass spectra [10]. Technologies such as Laser Diode 11

Thermal Desorption (LDTD) or Direct Analysis in Real Time (DART), allow for the 12

rapid acquisition of large datasets. These methods often preclude or bypass the time 13

separation process used in Liquid Chromatography (LC) or Gas Chromatography 14

(GC) [11]. Thus, without any time separation, a single mass spectrum will often be 15

represented as lists of peaks, composed of the mass-to-charge ratio of the ion (m/z 16
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value) and its intensity. 17

With the rise of larger datasets, multiple problems of comparability between spectra 18

have emerged. Datasets are acquired in multiple batches over numerous days, on 19

different instruments in multiple locations, with recalibrations of the instruments 20

occurring between batches [12]. These factors induce variations in the spectra that 21

hinders their comparison. 22

In the past, three algorithms have been proposed to address this problem, mainly 23

affecting Time-of-Flight mass spectrometers. These include the work of Tibshirani et al. 24

(2004) [13], Jeffries (2005) [14], and Tracy et al. (2008) [15]. Tibshirani’s algorithm 25

relies on a clustering algorithm to align peaks that are present in multiple spectra and 26

picks them for further statistical analyses. However, unlike the algorithms proposed in 27

this article, it does not address the problem of inter-batch variations. Jeffries’ algorithm 28

is more appropriate for this problem. This method uses cubic splines to recalibrate 29

spectra, based on the shifts between observed peaks and known reference masses. A 30

similar algorithm has been proposed by Barry et al. (2013) for Fourier-Transform Mass 31

Spectrometry [16]. This approach uses ambient ions in order to correct the spectra 32

using known reference masses. One limitation of these algorithms is that they require 33

known reference masses. The algorithm presented in this work alleviates this constraint, 34

by automatically detecting such reference points. Another algorithm of interest for 35

MALDI-ToF spectra has been proposed by Tracy et al. [15]. In this case, commonly 36

occurring peaks within the dataset are used to correct the spectra and determine the 37

binning distance used. However, this method computes a single constant correction 38

factor for the entire spectrum, while the method proposed in this work computes 39

correction factors that vary across the m/z axis of the spectra in order to obtain a more 40

accurate correction. 41

The algorithms proposed in this article aim to render spectra more comparable prior 42

to peak selection and statistical analyses. We draw inspiration from the internal lock 43

mass approach and exploit the fact that spectra of samples of the same nature (i.e., 44

blood plasma samples, urine samples, etc.) are very likely to share common peaks (i.e., 45

compounds that are present in each sample). For example, human blood plasma 46

contains compounds, such as glucose and amino acids [17]. Similarly, urine contains 47

urea, creatinine, citric acid, and many more [18]. Hence, we propose to correct the 48
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spectra based on the position of peaks that are detected to be consistently present in 49

samples of the same nature. We call these peaks “virtual lock masses” (VLM) and 50

propose an algorithm to detect them automatically. This idea is similar to the one 51

proposed by Barry et al. [16], but the peaks are not limited to ambient ions. In this 52

work, we show that our algorithm allows the detections of tens to hundreds of peaks 53

that can be used as reference points to re-align the spectra and reduce inter-batch 54

variations. Our approach is fully compatible with the classical lock mass approach, 55

which can be used complementarily. Moreover, we show that a slight modification to 56

the VLM detection algorithm can produce an alignment algorithm that can be used to 57

further correct the spectra. 58

Hence, our key contributions are: an algorithm that automatically detects reference 59

points in mass spectra, an algorithm that corrects the spectra based on these points, and 60

an alignment algorithm to align large sets of spectra. In the next section, we present 61

results supporting the accuracy of our reference point detection algorithm. Moreover, 62

we show that the proposed algorithms are a key component of machine learning analysis 63

performed on ToF mass spectra. Subsequently, we discuss these results and their 64

implications and finally, present the details of the algorithms and their implementation. 65

Results 66

A consistent set of virtual lock masses can be detected in 67

different batches 68

This experiment was conducted on the Days dataset (see Methods), which consist of 192 69

samples of pooled blood plasma. Half of the samples were acquired on a given day and 70

the others were acquired on a separate day. Since the samples are of the same nature, 71

we expect a high similarity apart from inter-batch variations. The goal of the 72

experiment was to determine if a consistent set of virtual lock masses could be detected 73

among similar datasets and within parts of the same dataset. 74

The VLM detection algorithm was independently applied to 1) every spectrum in 75

the dataset, 2) only the spectra acquired on the first day, and 3) only the spectra 76

acquired on the second day. The algorithm was applied with the same window size of 40 77
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ppm in all cases. This window size was determined by the procedure described in the 78

Methods section, being the w that yielded the largest number of isolated VLMs on the 79

entire dataset. 80

The detected VLMs were then compared in the following manner. We define that if 81

we have two sets of spectra A and B, their detected VLMs will be VA and VB . Each 82

element of VA is a VLM vA that is composed of a single peak per spectrum for the 83

spectra in A. If B ⊂ A, then a VLM vA ∈ VA and a VLM vB ∈ VB are homologous if 84

the peaks forming vB are a subset of the peaks forming vA. Additionally, we can define 85

comparisons between the VLMs of subsets of A. If we have sets of spectra A,B and C, 86

where B ⊂ A and C ⊂ A, then we can define that VLMs vB and vC are homologous if 87

vB if homologous to vA and vC is homologous to vA. 88

We compared the peak groups forming the VLMs in all spectra with the spectra 89

acquired on the first day, and found that the 113 VLMs detected on all spectra have 90

homologues in the set of 148 VLMs detected on the first day. Conversely, we observed 91

that the 113 VLMs also have homologues within the set of 118 VLMs detected in the 92

spectra acquired on the second day. 93

Hence, the algorithm finds common VLM points in all settings, corresponding to 94

different days and multiple instrument recalibrations. This suggests that it correctly 95

identifies landmark compounds that are present in a particular type of sample, which 96

can be used as a common basis for correction. We therefore conclude that our detection 97

algorithm behaves as expected. 98

Virtual lock mass correction improves machine learning analysis 99

Machine learning experiments were conducted on four binary classification tasks. The 100

first two tasks consist of the detection of a single compound spiked in blood plasma 101

samples from the Clomiphene-Acetaminophen dataset (see Methods). The third task is 102

the detection of malaria infection in red blood cell culture samples from the Malaria 103

dataset (see Methods). The fourth and final task consists of distinguishing plasma 104

samples of patients with and without breast cancer in the Cancer dataset (see Methods). 105
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Machine learning algorithms 106

Multiple machine learning algorithms were applied to the spectra. The first algorithm 107

used is the AdaBoost ensemble method [19]. This method learns a weighted majority 108

vote on a set of simple pre-defined classifiers. A linear Support Vector Machine 109

(SVM) [22] was used with a L1-norm regularizer. The latter is to ensure that the 110

predictions are based on a small subset of the peaks. We also used decision tree [20] and 111

Set Covering Machine classifiers [21]. These algorithms have the advantage of producing 112

interpretable classifiers that consist of a very small combination of simple rules on peak 113

intensities. We used the Scikit-learn implementations for AdaBoost, CART, and the 114

L1-regularized SVM [23]; whereas we used our own implementation of the SCM. This 115

implementation is available at https://github.com/aldro61/pyscm. 116

Experimental protocol 117

For each experiment, the spectra were randomly partitioned into a training set and a 118

test set. For the compound detection tasks (clomiphene and acetaminophen), the test 119

set consisted of 50 selected samples. For the cancer detection task, the same number of 120

samples were included in the test set. Finally, for the malaria detection task, 100 121

samples were selected for the test set. The hyper-parameters of each learning algorithm 122

were chosen by 5-fold cross-validation on the training set (refer to Elements of 123

Statistical Learning [24]). Each experiment was repeated 10 times independently on 124

different partitions of the data. 125

Two different experimental protocols were tested which are illustrated in Fig (1). 126

First, the correction and alignment algorithms were applied in the transductive learning 127

setting [25]. In this setting, the whole dataset is exposed to the pipeline of proposed 128

algorithms (VLM detection + VLM correction + alignment point detection). The 129

training and testing sets are then partitioned randomly. The second experimental 130

protocol was conducted as the inductive learning setting, in which the pipeline of 131

proposed algorithms were only applied to the training set. Hence the set of alignment 132

points is found from the training set only. For the inductive learning protocol, the 133

percentile parameter of the alignment algorithm is considered an hyper-parameter and 134

is thus cross-validated on the training set. For the transductive learning protocol, the 135

PLOS 6/33

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/292425doi: bioRxiv preprint 

https://github.com/aldro61/pyscm
https://doi.org/10.1101/292425
http://creativecommons.org/licenses/by/4.0/


percentile parameter is set at 95%. The features shown to the machine learning 136

algorithms are the alignment points and their associated intensity values. 137

(A)

(B)

Fig 1. Transductive and inductive workflows. (A) The transductive workflow, in
which all spectra are corrected at once, prior to partitioning the data into a training
and testing set. (B) The inductive workflow, where the data are first partitioned and
only the spectra in the training set are used to learn a transformation that is applied to
all spectra. The dotted blue arrows show where the algorithms were applied on unseen
data, while the whole black arrows show the workflow of the training data.

For each task, we compared the performance of classifiers according to their 138

preprocessing. We thus compared (a) simply binning the spectra, (b) using the VLM 139

detection and correction algorithms and then binning the mass spectra and (c) using 140

the VLM detection and correction algorithms before using the alignment algorithm. 141

Binning is a commonly used technique in mass spectrometry analysis consisting in 142

grouping peaks and intensities found in a larger bin on the m/z axis into a single point 143

or peak [26]. 144

Results for transductive learning 145

Table 1 shows the results of the machine learning experiments in the transductive 146

setting for different tasks. Let us first consider the case of the clomiphene detection 147

task. In all conditions, we observe excellent results, with accuracies over 90% in almost 148
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every case. However, we know that the solution to this problem is the appearance of a 149

single additional molecule and its fragments in the spectra, since a solution of water and 150

clomiphene is added in the plasma samples. Thus, it is expected that a single peak 151

(feature) should be sufficient to classify the spectra. Considering this information, we 152

see that a single peak is used for classification only when applying the VLM correction 153

and alignment algorithms when using the Decision Tree and SCM. We also see a 154

decrease in the number of features used for the AdaBoost classifier when using the VLM 155

correction and alignment algorithms. In the case of the L1-regularized SVM, the 156

sparsest solution (with an average of 2.6 features used) was obtained when the VLM 157

correction algorithm was applied in addition to binning. 158

Condition AdaBoost Decision Tree SCM L1 SVM
Clomiphene Detection

Binning only 98.0% (4.7) 98.6% (1.8) 95.2% (1.1) 89.6% (52.0)
VLM + Binning 98.2% (4.9) 97.0% (2.3) 97.0% (1.2) 93.6% (2.6)

VLM + Alignment 98.8% (2.3) 99.4% (1.0) 99.4% (1.0) 92.8% (138.6)
Acetaminophen Detection

Binning only 99.2% (1.0) 99.2% (1.0) 99.2% (1.2) 97.6% (97.5)
VLM + Binning 99.2% (1.0) 99.2% (1.0) 99.4% (1.0) 99.0% (121.0)

VLM + Alignment 99.8% (1.0) 100.0% (1.0) 99.4% (1.0) 99.6% (63.4)
Malaria Detection

Binning only 92.4% (51.8) 82.5% (4.3) 84.6% (2.2) 92.6% (150.1)
VLM + Binning 93.3% (39.7) 88.7% (4.6) 89.4% (2.0) 95.4% (133.2)

VLM + Alignment 93.8% (65.3) 86.1% (4.8) 85.4% (2.3) 95.2% (131.4)
Cancer Detection

Binning Only 70.4% (69.2) 63.8% (6.4) 55.6% (1.9) 56.8% (113.6)
VLM + Binning 70.2% (43.9) 61.6% (4.8) 53.6% (2.2) 69.4% (138.6)

VLM + Alignment 67.4% (30.0) 62.6% (2.3) 59.6% (2.2) 74.6% (135.2)

Table 1. Machine learning results in the transductive setting. The percentage
in each column is the average accuracy of classifiers on 10 repeats of the experiment.
The number shown in parentheses is the average number of features used by the
classifiers.

Consider now the results for acetaminophen detection. In this case, an 159

acetaminophen pill was added to the blood plasma samples. Thus, it is expected that 160

multiple molecules and their fragments appear in the spectra in this case, at extremely 161

high concentration not normally found in physiological blood plasma. It is then not 162

surprising that most algorithms can identify acetaminophen with the use of a singe 163

feature (peak). Note that in the case of the L1-regularized Support Vector Machine, the 164

best results, both in terms of accuracy and sparsity, are obtained when the VLM 165

correction and alignment algorithms were used. 166
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The next two tasks represent more realistic problems with unknown solutions. Let 167

us then consider the malaria detection task. For each algorithm, applying the VLM 168

correction algorithm yields an increase in prediction accuracy. For the AdaBoost 169

classifier, we observe an increase of about 1% and the best sparsity in the case of the 170

VLM correction applied before binning, with a slight increase in accuracy with the 171

alignment algorithm. The Decision Tree classifier increases its accuracy by 172

approximately 5% with the VLM correction algorithm, both with alignment and with 173

binning. We see a similar increase in accuracy for the Set Covering Machine in the case 174

of VLM correction with binning. Finally, the L1-regularized SVM obtains a 3% increase 175

in accuracy with the VLM correction algorithm applied, and a better sparsity. 176

Finally, let us consider the results for the cancer detection task. This classification 177

problem is much harder, with few machine learning algorithms having a prediction 178

accuracy over 70%. Still, both the AdaBoost and Decision Tree classifiers have similar 179

results in all cases, with slight losses in accuracy but improved sparsity with the 180

proposed algorithms applied. The Set Covering Machine sees its accuracy increased by 181

4% with both correction and alignment algorithms applied and with comparable 182

sparsity. However, in the case of the L1-regularized SVM, the classifier accuracy 183

increases of almost 20% with the proposed algorithms compared to binning only. 184

Results for inductive learning 185

In Table 2, we compare the effect of using the proposed algorithms in the transductive 186

setting versus the inductive setting. For the compound detection tasks, there is very 187

little difference between the two approaches for both clomiphene detection and 188

acetaminophen detection. The inductive setting yields slightly sparser classifiers, but 189

the results are very similar. For the malaria detection task, the difference in sparsity is 190

not significant for the Decision Tree and Set Covering Machine algorithms. The 191

AdaBoost classifier is sparser for the inductive setting, while the L1 SVM has a 192

significant advantage in the transductive setting. The results are also very similar in 193

terms of accuracy for both settings, with very slightly better accuracies in the 194

transductive setting. Finally, the transductive setting appears to be the best setting for 195

cancer detection. The AdaBoost classifier is sparser in this case, with a slight decrease 196

in accuracy. The Decision Tree and Set Covering Machine have better accuracies in the 197
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transductive setting, though the SCM is sparser in the inductive setting. The 198

L1-regularized SVM is, on the other hand, much more accurate and slightly sparser in 199

the transductive setting, with an increase in accuracy of about 6%. 200

Condition AdaBoost Decision Tree SCM L1 SVM
Clomiphene Detection

Transductive 98.8% (2.3) 99.4% (1.0) 99.4% (1.0) 92.8% (138.6)
Inductive 99.4% (1.0) 99.4% (1.0) 96.4% (1.0) 93.4% (90.0)

Acetaminophen Detection
Transductive 99.8% (1.0) 100.0% (1.0) 99.4% (1.0) 99.6% (63.4)

Inductive 100.0% (1.0) 99.2% (1.0) 99.6% (1.0) 98.6% (30.0)
Malaria Detection

Transductive 93.8% (65.3) 86.1% (4.8) 85.4% (2.3) 95.2% (131.4)
Inductive 92.9% (54.3) 87.8% (4.7) 84.2% (2.2) 95.1% (151.0)

Cancer Detection
Transductive 67.4% (30.0) 62.6% (2.3) 59.6% (2.2) 74.6% (135.2)

Inductive 69.2% (63.9) 61.2% (6.7) 57.4% (1.6) 68.2% (145.4)

Table 2. Comparison of transductive and inductive learning of the VLM and
Alignment algorithms

Finally, and perhaps not surprisingly, we can see (for AdaBoost and L1-SVM) that 201

cancer and malaria detection need far more features then clomiphene and 202

acetaminophen detection. 203

Stability of virtual lock masses in datasets 204

This experiment was conducted in order to verify that virtual lock masses detected on a 205

given dataset will be found in unseen spectra of the same type. The algorithm for VLM 206

detection was also cross-validated on the Days Dataset and the 207

Clomiphene-Acetaminophen Dataset. Each dataset was randomly partitioned into k 208

folds. The VLM detection algorithm was applied to the first k − 1 folds, the training 209

folds. The detected VLMs on the training folds are then used for VLM correction of the 210

spectra in last remaining fold, the testing fold. When the correction is applied, we note 211

if every VLM is found in the spectra of the testing fold. The algorithm is scored 212

according to the ratio of detected VLMs on the training folds that are also found in the 213

testing fold. This process is repeated k times so that each fold serves as a test fold once. 214

Multiples values of k were used in the experiment, such that k ∈ {3, 5, 8, 10, 15, 20}. 215

In each case, we found that every VLM point detected on the training set was 216

detected on the testing set. This thus results in a ratio of VLMs found in the testing set 217
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over the VLMs detected on the training set of 100% in all cases. This provides empirical 218

evidence of the stability of VLM points across different sets of spectra. 219

Influence of the number of samples on virtual lock mass 220

correction 221

An experiment was performed in order to evaluate the behavior of the VLM detection 222

and correction algorithms on varying numbers of samples. In a first step, the VLM 223

detection algorithm followed by the VLM correction algorithm was performed on the 224

whole set of spectra. 25 spectra were randomly selected as a test set. These test spectra 225

will be considered the “ground truth”, i.e., the best correction that the algorithm can 226

achieve for these 25 spectra. 227

The algorithm was subsequently applied to a part of the training set. This part was 228

gradually increased from 10 to 160 spectra. At each point, the uncorrected test spectra 229

were corrected and compared to the ground truth. The difference in m/z value between 230

the homologous peaks is calculated in ppm. Then, the difference is squared and 231

summed for all test spectra. Finally, this sum is divided by the number of peaks in the 232

test spectra and the square root is taken. The difference in correction is thus expressed 233

as the Root Mean Squared Error (RMSE) in ppm units for each peak. This experiment 234

was repeated 50 times, with randomly re-partitioned test sets, in order to obtain 235

statistically significant results. 236

Fig 2 shows the learning curves obtained on three different datasets. In each case, 237

the trends is similar. When sub-sampling a low number of spectra as a training set for 238

the VLM detection and correction algorithms, a higher number of lock masses is found. 239

As the number of training spectra increases, the number of virtual lock masses found 240

diminishes and starts to plateau near the number of lock masses found in the whole 241

dataset. This is explained by the fact that when few spectra are in the training set, 242

there is a higher number of candidates. As new spectra are added in the training set, 243

there is a probability that one of the new spectra are missing at least one peak that was 244

previously considered a virtual lock mass. These peaks could be missing because of 245

strong noise, either on the m/z axis or in terms of intensity, rendering its intensity too 246

small to be considered a VLM. A peak could also be missing simply because the 247
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compound or fragment generating that peak is not present in all samples. 248

(A) (B)

(C) (D)

Fig 2. Learning Curves of Virtual Lock Mass Detection and Correction.
Subfigures (A), (B) and (C) show the learning curves for three different datasets (Days ,
Clomiphene-Acetaminophen, Malaria). Subfigure (D) shows the RMSE of VLM
Correction for these datasets.

The same trend is found in all three datasets for the Root Mean Squared Error 249

(RMSE) in Subfigure (D). The error is initially high when few spectra are in the 250

training set, but as more spectra are added in the training set it gradually decreases. In 251

the case of the Days Dataset, the final average RMSE when using 160 spectra to train 252

the algorithm is 0.56 ppms. For the other two datasets (Clomiphene-Acetaminophen 253

and Malaria), the final RMSEs are approximately 1.10 ppms. In each case, the RMSE 254

drops under 2.0 ppms when using 100 spectra or more to train the correction algorithm. 255

In conjunction with the results of inductive learning shown above, these results suggest 256

that the VLM detection and correction algorithms can generalize the virtual lock 257

masses and correction it learns to unseen spectra of the same nature, such as those of a 258

new test set. 259
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Discussion 260

The algorithms proposed in this article aim to render mass spectra more comparable for 261

large datasets acquired in single or multiple batches. The VLM detection algorithm is 262

stable and detects virtual lock masses reliably in datasets. It also detects peaks that are 263

present in mass spectra of the same type but that are not part of the training set. In 264

addition, applying the proposed pipeline of algorithms (VLM detection + VLM 265

correction + alignment point detection) on sets of mass spectra before statistical and 266

machine learning analyses generally yields classifiers with increased accuracy and 267

sometimes with increased sparsity, leading to interpretable models that could serve for 268

biomarker discovery. The proposed pipeline of algorithms has a very low running time 269

complexity of O(n logm) for a collection of m spectra containing a total of n peaks 270

which, as argued, cannot be surpassed by algorithms based on clustering (with the 271

current state of knowledge). 272

However, the algorithms, as presented, have a number of drawbacks. Since the 273

virtual lock masses are assigned the average m/z value of the peaks associated to it, the 274

correction algorithm does not correct the peaks to the exact m/z value of the ion. The 275

alignment algorithm has also the same property. However, the virtual lock mass 276

approach is compatible with any external lock masses added to the spectra. Thus, by 277

applying both methods, any shift away from the exact (and known) m/z value of an 278

external lock mass can be corrected. Some situations are also unsuitable for the 279

proposed algorithms. In order for the VLM detection algorithm to function properly 280

and detect virtual lock masses, the mass spectra forming the dataset must be of the 281

same “nature” so that the algorithm can detect a sufficient number of peaks that are 282

common to all spectra. Additionally, the correction algorithm works best in a situation 283

where there are more peaks than spectra. In the cases where each spectrum contains 284

very few peaks, there is a much lower probability that that algorithm can find peaks 285

present in all spectra of the set. 286

Future works The algorithms, as presented here, can only be applied to mass 287

spectra represented by a list of peaks of the form (µ, ι) where µ is the m/z value of the 288

peak and ι its intensity. Hence, the algorithms are currently not applicable with mass 289
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spectra having additional dimensions for the peaks, such as ion mobility. It is also not 290

applicable to mass spectra paired with chromatography. It is thus relevant to 291

investigate if the proposed approach, based on virtual lock masses, can be extended to 292

incorporate these extra dimensions. 293

Materials and methods 294

In this section, we present the mathematical basis of the proposed methodology. First, 295

the problem of virtual lock-mass identification is addressed. A formal definition of VLM 296

peaks is introduced, along with an highly efficient algorithm capable of identifying such 297

peaks in a set of mass spectra. Second, a methodology for correcting mass spectra based 298

on a set of identified virtual lock masses is described. Third, an algorithm for mass 299

spectra alignment based on the previous algorithm is proposed. Finally, the datasets 300

used and the experimental methodologies are presented. 301

Definitions 302

Let us first recall that a set is an un-ordered collection of elements whereas a sequence is 303

an ordered collection of elements. Hence, in a sequence we have a first element, a second 304

element, and so on. If A is a sequence or a set, |A| denotes the number of elements in A. 305

Let S def
= {S1, ..., Sm} be a set of mass spectra. Each spectrum Si is a sequence of 306

peaks, where each peak is a pair (µ, ι) with an m/z value µ and a peak intensity ι. 307

Let a window of size 2w centered on the peak (µ, ι) be an interval that starts at 308

µ · (1−w) and ends at µ · (1 +w). Notice that the size of the window w is relative to µ. 309

The reason for using window sizes in relative units is that the mass measurement 310

uncertainty of ToF mass spectrometers increases linearly with the m/z value of a peak. 311

Given a set S of mass spectra and a window size parameter w, a virtual lock mass 312

(VLM) with respect to (S, w) is a point v on the m/z axis such that there exists a set P 313

of peaks from S that satisfies the following properties 314

1. P contains exactly one peak from each spectrum in S. 315

2. The average of the m/z values of the peaks in P is equal to v. 316

3. Every peak in P has a m/z value located in the interval [v(1− w), v(1 + w)]. 317
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4. No other peak in S has an m/z value that belongs to [v(1− w), v(1 + w)]. 318

5. Every peak in P has an intensity superior to a threshold t. 319

If and only if all these criteria are satisfied, we say that P is the set of peaks associated 320

with the VLM v. 321

Note than we impose an intensity threshold t, since peaks with a higher intensity 322

will tend to have a higher mass accuracy. Hence, in principle, a VLM is defined only 323

with respect to (w.r.t.) (S, w, t). However, we will drop the reference to t to simplify 324

the notation. 325

A crucial aspect of the definition of a VLM is the fact that it holds only w.r.t. a 326

given window size w. Indeed, consider Fig (3) which represents peaks coming from three 327

different spectra. We can observe that a first window size w1 will correctly detect four 328

VLM points. If the window size is too large however, we observe the case of w2: peaks 329

that are further apart can be erroneously grouped into a VLM group. Moreover, w2 can 330

detect the first grouping of peaks within the figure as a VLM, and then the shown 331

grouping as a second one. Thus, the same peaks would be part of two distinct VLM 332

points. This would create ambiguity in the correction and is nonsensical. The last 333

possible case is that of a window size that is too small. In this situation, the window 334

would be unable to detect groups of peaks coming from each spectra of S. 335

Hence, this motivates the following definition of overlapping VLM points. Given 336

(S, w), a VLM vi w.r.t. (S, w) is said to overlap with another VLM vj (with respect to 337

(S, w)) if and only if there exists an intersection between the m/z interval 338

[vi(1−w), vi(1 +w)] and the m/z interval [vj(1−w), vj(1 +w)]. Moreover, we say that 339

a VLM v w.r.t. (S, w) is isolated from all all other VLM with w.r.t. (S, w) if and only if 340

there does not exists any other VLM v′ w.r.t. (S, w) that overlaps with v. For a given 341

window size w, the algorithm that we present in the next subsection identifies all 342

isolated VLM points w.r.t. (S, w). Consequently, the best value for w is one for which 343

the number of isolated VLM points is the largest. 344

An Algorithm for Virtual Lock Mass Identification 345

Given a set S = {S1, . . . , Sm} of m spectra, each peak is identified by a pair (σ, ρ) 346

where σ ∈ {1, . . . ,m} is the index of its spectrum of origin and ρ ∈ {1, . . . , nσ} is the 347
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Fig 3. Peaks coming from three different spectra (identified as 1, 2, and 3).
Window size w1 correctly detects four VLM groups. Window size w2 however is too
wide and will detect ambiguous and erroneous groups. Moreover, w2 will detect several
overlapping VLM groups.

index of the peak in spectrum Sσ containing nσ peaks. Given that we have a total of n 348

peaks in S, we have that
∑m
σ=1 nσ = n. For the description of the algorithm, µ(σ, ρ) 349

denotes the m/z value of peak (σ, ρ). Finally, we assume that the peaks in each spectra 350

Si are listed in increasing order of their m/z values. 351

The proposed algorithm uses two data structures: a binary heap and a so-called 352

active sequence. A binary heap is a classical data structure used for priority queues 353

which are useful when one wants to efficiently remove the element of highest priority in 354

a queue. In our case, the heap will maintain, at any time, the next peak of each spectra 355

to be processed by the algorithm. Hence, given a set S of m spectra, the heap generally 356

contains a set of m peaks, where each peak belongs to a different spectrum of S. The 357

”priority value” for each peak (σ, ρ) in the heap is given by its m/z value µ(σ, ρ); a peak 358

with the smaller mass is always on top of the heap. A heap H containing the first peak 359

of each spectrum can thus be constructed in O(m) time. Moreover, we can read the 360

m/z value at the top of the heap in constant time; we can remove the peak (σ, ρ) of the 361

top of the heap and replace it with the next available peak in the spectrum Sσ in 362
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O(logm) time 1. 363

The second data structure is, what we call, the active sequence A. At any time, A 364

contains a sequence of peaks, listed in increasing order of their m/z values, which are 365

currently being considered to become a VLM sequence. That data structure uses a 366

doubly linked list L and a boolean-valued vector B of dimension m. The linked list L is 367

actually containing the sequence of peaks to be considered for the next VLM and the 368

vector B is such that, at any time, B[σ] = True if and only if a peak from spectrum Sσ 369

is present in L. The active sequence A also maintains the m/z value µl of the last peak 370

that was removed from L, the average m/z value µA of the peaks in L, and a copy wA 371

of the window size w chosen by the user. Since L is a linked list, we can read the front 372

(first) and back (last) values of L in constant time, as well as obtaining its size (number 373

of peaks). Removing the value at the front of L is also performed in constant time. 374

We now present a short description of the algorithm for virtual lock mass 375

identification. The detailed description is provided in Supplementary Information 1. 376

Validation of an active sequence For this step, we use a method, call A.isV alid(), 377

that returns True if and only if the peaks in the active sequence A satisfies all the 378

criteria enumerated in the definition of a VLM. A precondition for the validity of this 379

method is that L contains only peaks that belong to distinct spectra of S. This 380

precondition holds initially for an empty list L and will always be maintained for each 381

new peak inserted in A (see the next paragraph for details). Thus, this step of the 382

algorithm checks first that the active sequence contains exactly |S| peaks, thus one peak 383

from each spectrum in the set. Then, if there are still peaks in the heap, we verify that 384

the peak at the top of H (thus, the peak immediately following the active sequence) has 385

a m/z value that is out of the interval [µA(1− w), µA(1 + w)]. Similarly, it is verified 386

that the peak whose m/z value immediately precedes the active sequence also has an 387

m/z value outside of [µA(1−w), µA(1 +w)]. If either peak lies inside this window, then 388

the property (4) of a VLM is violated, as the window contains more than |S| peaks. 389

Finally, we ensure that the first and last peaks in the active sequence A are both within 390

the window [µA(1− w), µA(1 + w)]. If all checks pass, then the current sequence is 391

1We refer here to the well-known running times (available from any introductory textbook on data
structures and algorithms) for heap construction, removal of its top element, and insertion of a new
element.
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considered a potential virtual lock mass. 392

Advancing the active sequence This step tries to insert at the end of the list L of 393

A the peak (σ, ρ) located on top of H. The insertion succeeds if the resulting A still 394

have some probability that the peak sequence can become a VLM after zero or more 395

future insertions. Thus, we first verify if another peak from spectrum Sσ is present in A. 396

If that is the case, then the insertion fails. Otherwise, we compute the new value µ′A 397

that µA will have after the insertion. If the peak at the front of L (the peak in A having 398

the smallest m/z value) and the new peak (σ, ρ) have masses that are within the window 399

[µ′A(1− wA), µ′A(1 + wA)], then the insertion succeeds. The peak is inserted, and H is 400

updated by removing the peak (σ, ρ) and adding the next peak from the spectrum Sσ. 401

Thus, this step ensures that we can insert a new peak in A and still have some 402

probability that the sequence can become a VLM after zero or more future insertions. 403

Whenever we have an insertion failure, it means that the active sequence cannot 404

become a valid VLM and that we must remove from A the peak having the smallest 405

m/z value (which is located in the front of L) in order to have a chance that the 406

sequence of peaks in A becomes a valid VLM. 407

Advancing the lower bound This step is used to remove the peak (σ, ρ) at the 408

front of L until a valid insertion can be made. First, it updates B[σ] to False, as peak 409

(σ, ρ) is about to be removed and no peak from Sσ will be in the active sequence A 410

anymore. The m/z value of peak (σ, ρ) is copied in µl, and the peak is then removed 411

from L. If L is empty at this point, its average m/z value µA is set to 0. Otherwise, µA 412

is set to the average value of the peaks remaining in the active sequence. 413

Removing overlapping virtual lock masses The final step of the algorithm 414

removes all overlapping VLMs. As described in Appendix 1, a Boolean vector (with a 415

number of components equal to the number of VLMs found) is initialized to False. 416

Then, we simply iterate over all the VLM points found and assign the corresponding 417

vector entry to True whenever a VLM point (with m/z value µ) is found such that its 418

window [µ(1− w), µ(1 + w)] overlaps with that of its neighboring VLMs. Only the 419

VLMs whose entry in the vector is False are kept. 420
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virtualLockMassDetection(S, w);
Input: S = {S1, S2, ..., Sm}, a set of mass spectra.
Input: w, a window size parameter in relative units.
Output: The sequence of all isolated VLM points with respect to (S, w).
Data: H, a heap initialized with H.init(S); thus containing the first peak of each

spectra in S.
Data: A, an active sequence initialized with A.init(H,w); hence initially empty.
Data: U , a sequence of m/z values, initially empty.
found← False;
while H.empty() = False do

if A.isV alid(H) = True then found = True;
if A.insert(H,S) = false then

if found = True then
U .append(A.getµA());
found← False;

end
A.advanceLowerBound();

else
if H.empty() = True then

while A.empty() = False do
if A.isV alid(H) = True then
U .append(A.getµA());
break;

end
A.advanceLowerBound();

end

end

end

end
return deleteOverlaps(U , w);

Algorithm 1: The Virtual Lock Mass Detection Algorithm.
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Main algorithm Having described the data structures used and their methods, we 421

are now in position to present the main algorithm for virtual lock mass detection, which 422

is described by Algorithm (1). The task of this algorithm is to find all the isolated VLM 423

points w.r.t. (S, w). To achieve this, the central part of the algorithm is to find find the 424

sequence U =
〈
µ1, . . . , µ|U|

〉
of all possible VLM points w.r.t. (S, w). This sequence may 425

contain several pairs of overlapping VLMs. The strategy to achieve this central task is 426

to use A.insert(H,S) to try to insert in A (consequently in L) the next unprocessed 427

peak of S, which is always located on the top of the heap H. 428

Initially, the first peak of S, a peak having the smallest m/z value among those in S, 429

gets eventually inserted in an empty A by A.insert(H,S). Next, after verifying with 430

A.isV alid(H) if the content of A satisfies the criteria to be a valid VLM sequence, we 431

try to insert again in A the next available peak. On each insertion failure, we test if, 432

before this insertion, the content of A was a valid VLM sequence. This is done with the 433

Boolean variable found (which is set to True as soon as the content of A is a valid 434

VLM sequence and which is set to False immediately after the average m/z value µA of 435

A’s content is appended to U). Hence, for each considered peak in L.front(), we try to 436

insert one more peak in L and test after the insertion if L’s content is a valid VLM 437

sequence. If we cannot insert an extra peak in L with the current peak in L.front() 438

this means that there is no possibility of finding one more VLM sequence with the 439

current peak in L.front(). In that case we remove that peak from L with 440

A.advanceLowerBound() and, consequently, L.front() now becomes the peak that was 441

next to L.front() in L. 442

Hence, with this strategy, the algorithm attempts to find the largest consecutive 443

sub-sequence of peaks from S that starts with any given peak in S and that forms a 444

valid VLM sequence2. In addition, note that in the else branch of Algorithm (1), we 445

verify if H becomes empty after a successful insertion. In that case, we need to check if 446

we can find a valid VLM sequence by incrementing sequentially the lower bound 447

L.front() and then append to U the first VLM found. Then, we can safely exit the 448

while loop since any other possible VLM sequence will be a subset of the one already 449

2This may appear to be a strategy a bit too complicated than necessary in view of the fact that the
largest (and smallest) such sub-sequence must contain exactly m peaks to be a valid VLM. However,
we will see below that a significant advantage of using the proposed strategy is the fact that the same
algorithm, with some very small and trivial modification, can also be used to detect the alignment
points of S.
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found. Without this else branch, a VLM sequence that ends with the last peak 450

presented by H would be missed by the algorithm. 451

As explained in Appendix 1, the running time of Algorithm (1) (i.e., the VLM 452

detection algorithm) is in O(n logm) for a sequence S of m spectra that contains a total 453

of n peaks. This, however, is for a fixed value of window size w. Note that in order to 454

obtain the most accurate correction (by interpolation) for the spectra in S, we should 455

use the largest number of isolated (i.e., non-overlapping) VLMs we can find. 456

Consequently, the optimal value for w is the one for which Algorithm (1) will give the 457

largest number of isolated VLMs. Moreover, note that if w is too small, very few VLMs 458

will be detected as w will not be able to cover exactly one peak per spectra. If, on the 459

other hand, w is too large, a large number of the VLMs found in the first phase of the 460

algorithm will overlap and the remaining isolated VLMs will be rare. Consequently, 461

because of this “unimodal” behavior, one can generally find rapidly the best value for w. 462

In our case, we never needed to tried more than 20 different values. 463

An Algorithm for Virtual Lock Mass Correction 464

Given a set S of spectra and a widow size parameter w expressed in relative units, once 465

the sequence V of all isolated VLM points w.r.t. (S, w) has been determined, the 466

individual spectra in S can be corrected in a manner similar as it is usually done with 467

traditional lock masses. Algorithm (2) performs the correction needed for each peak in 468

a spectrum S ∈ S. 469

First, in the for loop, we identify each peak of S corresponding to a lock mass point 470

vi ∈ V. Since S ∈ S and vi is a VLM point w.r.t. (S, w), we are assured to find exactly 471

one such peak pj ∈ S with an observed m/z value of µj such that µj lies in the interval 472

[(1− w)vi, (1 + w)vi]. For such µj , we assign the index j to αi so that ααα = (α1, . . . , αn) 473

is a vector of n indexes, each pointing to the peak in S associated to a VLM point. 474

Note that for µj ∈ [(1− w)vi, (1 + w)vi], its corrected m/z value must be equal to vi. 475

Instead of performing these corrections immediately in the for loop, we delay them to 476

the linear interpolation step where all peaks having a m/z value µj such that 477

α1 ≤ j ≤ αn will be corrected. 478

Next, for each VLM vi, we correct by linear interpolation all the m/z values µj such 479
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virtualLockMassCorrection(S,V, w);
Input: S = 〈(µ1, ι1), (µ2, ι2), ..., (µm, ιm)〉, a spectrum
Input: V = 〈v1, v2, ..., vn〉, a sequence of m/z values (VLMs) sorted in increasing

order
Input: w, a window size parameter in relative units
Output: A spectrum S′ = 〈(µ′1, ι1), (µ′2, ι2), ..., (µ′m, ιm)〉 where each µ′j is the

corrected m/z value for the peak (µj , ιj) ∈ S
Data: ααα = (α1, . . . , αn), a vector of indexes (natural numbers)
//construction of ααα
i← 1;
for j = 1 to m do

if µj ∈ [vi(1− w), vi(1 + w)] then
αi ← j //peak (µj , ιj) is associated to VLM vi;
i← i+ 1;

end

end
//correct each µj such that α1 ≤ j ≤ αn
j ← α1;
i← 1;
while i < n do

//linear interpolation correction of µj when αi ≤ j ≤ αi+1

slope← vi+1−vi
µαi+1

−µαi
;

b← vi − slope× µαi ;
while j ≥ αi ∧ j ≤ αi+1 do

//correction of µj
µ′j ← slope× µj + b ;

j ← j + 1;

end
i← i+ 1;

end
Algorithm 2: Virtual Lock Mass Correction Algorithm
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that αi ≤ j ≤ αi+1. To explain precisely this procedure, let µ′(µj) denote the corrected 480

value of µj . Linear interpolation consists at looking for a correction of the form 481

µ′(µj) = aµj + b ,

where a is called the slope and b is the intercept. By imposing that µ′(µj) = vi for 482

j = αi and µ′(µj) = vi+1 for j = αi+1, we find that 483

a =
vi+1 − vi
µαi+1

− µαi
,

and b = vi − aµαi . The nested while loops of the algorithm performs exactly these 484

linear interpolation corrections for all µj such that αi ≤ j ≤ αi+1 for i = 1 to n− 1. 485

Once all m/z values µj such that α1 ≤ j ≤ αn have been corrected, the algorithm is 486

done. Hence, we have decided not to correct any m/z value of S that is either smaller 487

that v1(1− w) or larger than vn(1 + w) because such a peak has only one adjacent 488

VLM and, consequently, could only be corrected by extrapolation, which is much less 489

reliable than interpolation3. Finally, the intensities of the peaks remain unchanged. The 490

running time complexity of this algorithm is O(m) where m is the number of peaks in 491

the spectrum S (see the full details in Appendix 1). 492

From VLM correction to spectra alignment 493

After running the VLM detection and correction algorithms, all the peaks associated 494

with VLM points will be perfectly aligned in the sense that each peak in different 495

spectra associated to a VLM point v will have exactly the same m/z value v. However, 496

all the other peaks corrected by Algorithm (2) will not be perfectly aligned in the sense 497

that a molecule fragment responsible for a peak in different spectra will not yield 498

exactly the same mass after correction. This is due to possibly many uncontrollable 499

phenomena that vary each time a sample gets processed by a mass spectrometer, and by 500

the fact that the correction of each peak was performed by an approximate numerical 501

interpolation. However, if all the peaks have been corrected by Algorithm (2), we expect 502

that the peaks corresponding to the same molecule fragment f across different spectra 503

3Therefore, we recommend removing all these peaks from S to perform statistical analyses or machine
learning experiments.
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will have very similar masses and will all be localized within a very small window of 504

m/z values. Moreover, we also expect that the m/z values of the peaks coming from 505

another molecule fragment g having a different mass will not cross the m/z values 506

coming from molecule fragment f . 507

More precisely, suppose that we have executed Algorithms (1) and (2) with a 508

window size parameter w (in relative units) on a set S of mass spectra. In addition, 509

suppose that a molecule fragment f gives rise to a peak of m/z value µ1 in spectrum S1, 510

and a peak of m/z value µ2 in spectrum S2, and so on for a sub-sequence of spectra in 511

S. Let Mf = {µ1, µ2, . . .} be the set of these m/z values. Moreover, let µf be the 512

average of the m/z values in Mf . Then, we expect that there exists a window size θ in 513

relative units, such that 0 < θ � w, and for which we have µi ∈ [µf (1− θ), µf (1 + θ)] 514

for all µi ∈Mf . Moreover, if θ is sufficiently small, we expect that the sequence Mg 515

referring to peaks produced by another molecule fragment g having a different mass will 516

be such that each µj ∈Mg will not be located within [µf (1− θ), µf (1 + θ)]. 517

Motivated by this hypothesis, let us introduce the following definitions. Given that 518

Algorithms (1) and (2) have been executed on a set S of mass spectra with window size 519

parameter w in relative units, and given that we have another window size parameter 520

θ � w in relative units, we say that a m/z value µf is an alignment point w.r.t. (S, θ) if 521

there exists a set Mf of peaks from S that satisfies the following properties. 522

1. Every peak in Mf comes from a different spectrum of S. 523

2. The average of the m/z values of the peaks in Mf is equal to µf . 524

3. Every peak in Mf has an m/z value in [µf (1− θ), µf (1 + θ)] and all other peaks 525

of S have an m/z value outside this interval. 526

4. There does not exist another peak in S that we can add to Mf and still satisfy 527

the above properties. 528

Whenever these criteria are satisfied, we say that Mf is the alignment set associated to 529

alignment point µf . Given S and θ, an alignment point µf w.r.t. (S, θ) is said to overlap 530

with another alignment point µg w.r.t. (S, θ) if and only if there exists a non-empty 531

intersection between the m/z intervals [µf (1− θ), µf (1 + θ)] and [µg(1− θ), µg(1 + θ)]. 532
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Let m
def
= |S|. Note that there are only two differences between the definition of

alignment point (and its associated alignment set) and the definition of VLM point (and

its associated VLM set). The first difference is the fact that a VLM set must contain

exactly m peaks, whereas an alignment set can contain any number of peaks between 1

to m (since the peaks in an alignment set may originate from a molecule fragment

which is not present in all the samples for which we have a spectrum in S). Hence, if we

remove the constraint that each virtual lock mass must be formed of |S| peaks from the

validation step, Algorithm (1) then finds all the maximum-length sub-sequence of peaks

that satisfy the 4 criteria for a valid alignment set when it reaches the overlap deletion

step. The second difference is that there is no intensity threshold t applied to the peaks

for alignment, as we wish to align every peak in the spectra if possible. Note that,

generally, a lower intensity threshold is still applied to the peaks in order to remove

peaks that are the result of background noise. Consequently, with that very minor

change,

virtualLockMassDetection(S, θ)

finds all isolated alignment points w.r.t. (S, θ) in O(n logm) time, where n is the total 533

number of peaks in S. 534

If the window size parameter θ is too large, then many alignment points will overlap 535

and Algorithm (1) will return very few isolated alignment points. If θ is too small, then, 536

in contrast with the VLM identification case, Algorithm (1) will return a very large 537

number of isolated alignment points associated to aligned sets that contain only one 538

point. Hence, in contrast with the VLM identification case, the best parameter θ is not 539

the one for which we obtain the largest number of alignment points. 540

What should then be the choice for θ? To answer this question, we consider each 541

VLM point (and its associated sequence of peaks) found by Algorithm (1). If we leave 542

out one VLM point vi from the correction algorithm (2) and use this algorithm to 543

correct all the m/z values of the peaks associated to this VLM point, the maximum 544

deviation from vi among these m/z values will give us the smallest window size θi such 545

that each m/z value will be located within [vi(1− θi), vi(1 + θi)]. Essentially, this 546

window size θi is the smallest one for which we can still recognize all the peaks 547

associated to the same VLM vi. It would then certainly be a very good choice for θ in 548
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that region of m/z values. We can then repeat this procedure for all isolated VLM 549

points (except the VLMs with the smallest and largest m/z values) found by 550

Algorithm (1) to obtain a sequence of θi values. 551

One interesting possibility for θ is the maximum among the θi values. However, this 552

is clearly an overestimate of the maximum spreading of peaks associated to the same 553

molecule fragment since all the VLMs will be used for the correction, including the one 554

that was left out. Moreover, as we can see in Figure (4), we can recover a large fraction 555

of the non-overlapping VLMs if we use a significantly smaller window size than the 556

maxi θi. For that reason, we have decided to use, for the window size θ, the smallest 557

value covering 95% of the non-overlapping VLMs, i.e., the 95th percentile. Alternatively, 558

to attempt to maximize the accuracy of a learning algorithm, a percentile z can be 559

selected by cross-validation along with the selection of the hyperparameters of the 560

learning algorithm. 561

(A) (B)

Fig 4. Error in ppm versus mass units. Subfigure (A) shows the error on left-out
VLMs in ppms, while Subfigure (B) shows the error in Daltons.

If we have r VLM points, each θi associated to the ith VLM point is found in O(m) 562

time for a sequence S of m spectra; thus implying a running time in O(mr) to find 563

every θi. Then, the 95th percentile is found by sorting the vector of θis in O(r log r) 564

time. Assuming that we always have log(r) < m, the total running time to find θ is in 565

O(mr), and hence in O(n) when S contains a total of n peaks. 566

Once the window size θ is found, we can then run Algorithm (1) just once on the full 567

set S of spectra with that value of θ in O(n logm) time. Consequently, the total 568
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running time of the alignment algorithm, which includes the running time to find θ and 569

to find all non overlapping alignment points w.r.t. (S, θ), is in O(n logm). 570

Once we have the VLM points and the alignment points, these are used to provide a 571

representation of the spectra which is well suited for running machine learning 572

algorithms on them. Indeed, consider Fig (5). For any new spectrum S, the VLM points 573

are first used correct the m/z value of each peak of S and, following that, the intensity 574

of any corrected peak that fall into the window associated to an alignment point give a 575

feature of S. Hence, the vector of these intensities provides a new representation of the 576

spectrum S that we will use for the input into a classifier to predict the label of S. 577

m/z value

in
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original corrected

m/z value

in
te

n
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ty

alignment points

m/z value m/z value

in
te

n
si

ty

spectrum
representation

VLM
correction

Fig 5. A representation of the original spectra is given by the intensities of the
VLM-corrected peaks that fall into the windows associated to alignment points.

Finally, it might be tempting to use a clustering approach to solve the problem of 578

finding the isolated alignment points. However, we have to keep in mind that current 579

trends lead to the processing of hundreds of spectra, each potentially containing 580

thousands of peaks. The total number of peaks to be processed can thus reach a million 581

peaks or more. In our case, the total running time of the full pipeline (finding all 582

isolated VLMs, correcting all the mass spectra with the VLMs, and finding all the 583

isolated alignment points) is in O(n logm). Hence, any algorithm running in Ω(n2) 584

time, will be completely surpassed by the proposed pipeline of algorithms. Currently, 585
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the running times of popular off-the-shelf clustering algorithms such as K-means and 586

linkage-based clustering algorithms all require a running time in Ω(n2). Moreover, all 587

the clustering algorithms that we know have at least one parameter to tune, which often 588

includes the number of desired clusters. Hence, with the current state of knowledge, a 589

clustering-based algorithm is bound to be substantially less efficient than the proposed 590

pipeline of algorithms. 591

An implementation of the algorithms for Python is available at 592

https://github.com/francisbrochu/msvlm. 593

Dataset descriptions 594

Days Dataset Plasma from 20 healthy persons was equally pooled together. The 595

pooled plasma was aliquoted and kept at -20 °C. 596

Two consecutive days, an acetonitrile crash was performed using 9 parts of 597

acetonitrile (Fisher Optima) for 1 part of unfrozen plasma pool. The crash solution was 598

centrifuged at 4000 rpm for 5 minutes. 2 µl of the solution was spotted on every well of 599

a 96 wells Lazwell plate (Phytronix). The same experiment was repeated the next day. 600

Clomiphene-Acetaminophen Dataset One pill of acetaminophen (500 mg) was 601

diluted in 50 ml of methanol and water (50:50). The solution was put in a sonicating 602

bath for 20 minutes. The resulting solution was centrifuged and diluted 1:100 in water. 603

For clomiphene, we used a solution of 100µg/ml of clomiphene in methanol (Phytronix). 604

A pool of plasma was crashed as previously described. The solution was split in 3 605

parts. One received 10 µl of the acetaminophen solution, another 10 µl of the 606

clomiphene solution and the last one stayed unmodified. Each type of sample was 607

spotted 32 times. 608

Malaria Dataset Plasmodium falciparum parasites were put in culture in red blood 609

cells and tightly synchronized. Culture was performed for 28-36 hours, until parasites 610

are in the trophozoite stage and parasitaemia reached 5-10%. In the same conditions, 611

red blood cells were kept uninfected. Cells were diluted to 2% hematrocrit by adding 612

the correct amount of pelleted cells to complete RPMI media. 200 µl of the cell 613

suspensions was deposited in a 96 well plate in order to have 40 samples of infected cells 614
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and 40 samples of uninfected cells. 615

After 4 hours at 37 °C, the plate was spin at 800x g for 5 minutes. 180 µl of culture 616

media was removed. Pellet was resuspended in the remaining 20 µl and 10 µl was 617

transferred to a new 96 well plate. 100 µl of ice-cold methanol was quickly added to the 618

plate and put on dry-ice to stop any metabolic reaction. The plate was vortexed 3 619

times, for 15 seconds each, over 15 minutes incubation on dry-ice. The plate then was 620

placed for sonication in a water bath for 5 times 1 minute with 2 minutes breaks on 621

dry-ice. Finally, the plate was centrifuged at 3200 rpm for 5 minutes at 4°C. 30µL of the 622

supernatant was transferred to another plate and kept at -80°C until LDTD-MS 623

analysis. 624

For analysis, 2 µl of the metabolomic extract was spotted on a 96 well Lazwell plate 625

and left at room temperature until dryness. 626

Cancer Dataset Plasma from patients diagnosed for breast cancer and from healthy 627

patients were individually treated using the same acetonitrile crash protocol. A total of 628

96 samples from breast cancer patients were acquired. In addition, 96 plasma samples 629

from healthy patients were also acquired in order to have control samples. 630

Data acquisition 631

All data were acquired on a Synapt G2-Si mass spectrometer. The instrument was 632

operated in high resolution mode. Except if stated otherwise, data acquisition was 633

performed in positive ionization. The acquisition method was MSe with a scan time of 634

0.1 second. Calibration of the instrument was performed daily before data acquisition 635

using a solution of sodium formate 0.5 mM. The instrument was operated with Mass 636

Lynx software. The source is a LDTD 960 ion source (Phytronix). The laser pattern 637

used is the following: 2 seconds at 0%, ramp up to 65% in 6 seconds, hold at 65% for 2 638

seconds and back at 0% in 0.1 second. 639

Data conversion Raw files produced by the mass spectrometer were converted to 640

ion list using a continuous to centroid approach using the ProcessKernel software 641

(Waters Corporation) using only the first function (low energy) present in the files. The 642

resulting centroided peak list were used for data analysis. 643

PLOS 29/33

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/292425doi: bioRxiv preprint 

https://doi.org/10.1101/292425
http://creativecommons.org/licenses/by/4.0/


For all experiments presented in this article, the t threshold on intensity for virtual 644

lock mass detection was set at 1000 counts. 645
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