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Abstract 1 

 2 

D-amino acid probes label cell wall peptidoglycan at both the poles and sidewall of pole-growing 3 

mycobacteria. Since peptidoglycan assembly along the cell periphery could provide a rapid, 4 

growth-independent means by which to edit the cell wall, we sought to clarify the precise 5 

metabolic fates of these probes. D-amino acid monopeptides were incorporated into 6 

peptidoglycan by L,D-transpeptidase remodeling enzymes to varying extents. Dipeptides were 7 

incorporated into cytoplasmic precursors. While dipeptide-marked peptidoglycan synthesis at 8 

the poles was associated with cell elongation, synthesis along the periphery was highly 9 

responsive to cell wall damage. Our observations suggest a post-expansion role for 10 

peptidoglycan assembly along the mycobacterial sidewall and provide a conceptual framework 11 

for understanding cell wall robustness in the face of polar growth.  12 
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Introduction 1 

 2 

Model, rod-shaped organisms such as Escherichia coli and Bacillus subtilis elongate across a 3 

broad swath of the cell (1, 2). Mycobacterial cells, by contrast, extend from narrower polar 4 

regions (3-9). Circumscription of growth to discrete zones poses spatial challenges to the 5 

bacterial cell. For example, if polar growth and division are the only sites of cell wall synthesis in 6 

mycobacteria, the entire lateral surface of the cell must be inert (3, 10-12). Such an expanse of 7 

non-renewable surface could leave the cell vulnerable to environmental or immune insults. 8 

 9 

Since cell wall peptidoglycan synthesis is critical for bacterial replication, it is often used to 10 

localize the sites of growth and division. Intriguingly, D-amino acid probes, which in other 11 

species have been shown to incorporate into peptidoglycan (1, 11, 13), label both the poles and 12 

sidewall of mycobacteria (5, 13-17). The localization of these molecules is supported by the 13 

detection of peptidoglycan synthetic enzymes at the mycobacterial cell tips and periphery (5, 9, 14 

18-20). However, both intracellular and extracellular incorporation pathways have been 15 

characterized or hypothesized for D-amino acid probes, complicating the interpretation of 16 

labeling patterns (21). Intracellular uptake implies that the probe enters the biosynthetic pathway 17 

at an early stage, and therefore marks nascent cell wall. Extracellular incorporation, on the other 18 

hand, suggests that the probe enters the pathway at a later stage and/or is part of enzymatic 19 

remodeling of the macromolecule in question. The extent to which peptidoglycan synthesis and 20 

remodeling are linked is not clear (10, 22, 23) and may vary with species and external milieu. In 21 

Mycobacterium tuberculosis, for example, there is indirect but abundant data that suggest that 22 

there is substantial cell envelope remodeling during infection when growth and peptidoglycan 23 

synthesis are presumed to be slow or nonexistent (7). 24 

 25 

An intracellular metabolic tagging method for the cell wall would be an ideal tool for determining 26 
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whether tip-extending mycobacteria can synthesize peptidoglycan along their lateral surfaces. 1 

At least two pieces of evidence suggest that D-alanine-D-alanine dipeptide probes are 2 

incorporated into peptidoglycan via the cytoplasmic MurF ligase (24, 25). First, derivatives of D-3 

alanine-D-alanine rescue the growth of Chlamydia trachomatis treated with D-cycloserine, an 4 

antibiotic that inhibits peptidoglycan synthesis by inhibiting the production and self-ligation of D-5 

alanine in the cytoplasm (24). Second, B. subtilis cells stripped of mature peptidoglycan by 6 

lysozyme treatment retain a small amount of dipeptide-derived fluorescence (25). While these 7 

data are suggestive, formal demonstration of intracellular incorporation requires direct evidence 8 

that the probe labels peptidoglycan precursors. More broadly, better characterization of the 9 

metabolic fate of probes would increase the precision of conclusions that can be drawn from 10 

labeling experiments (26, 27). 11 

 12 

Here we sought to delineate cell wall synthesis from remodeling in Mycobacterium smegmatis 13 

and M. tuberculosis. Monopeptide D-amino acid probes chiefly reported peptidoglycan 14 

remodeling by L,D-transpeptidases while dipeptides marked lipid-linked peptidoglycan 15 

precursors. All of the probes tested labeled the poles and sidewall of mycobacteria, indicating 16 

that cell wall metabolism in these regions comprises both synthetic and remodeling reactions. 17 

While peptidoglycan assembly along the mycobacterial periphery did not support obvious 18 

surface expansion, it was greatly enhanced by cell wall damage. Such activity may allow editing 19 

of a complex, essential structure at timescales faster than those permitted by polar growth. 20 

 21 

Results 22 

 23 

Metabolic labeling of mycobacterial envelope comprises asymmetric polar gradients. 24 

Mycobacteria have been shown to expand from their poles (3-9) but published micrographs 25 

suggest that D-amino acid probes may label both the poles and sidewall of these organisms (5, 26 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 27, 2018. ; https://doi.org/10.1101/292607doi: bioRxiv preprint 

https://doi.org/10.1101/292607
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

13-17). Metabolic labeling can be achieved by a one-step process, in which the fluorophore is 1 

directly appended to the probe, or a two-step process in which a small chemical tag on the D-2 

amino acid is detected by subsequent reaction with a fluorescent reactive partner ((21), Figure 3 

1A). We first reexamined the localization of various D-amino acid probes reported in the 4 

literature, including RADA (11), which is directly conjugated to 5-carboxytetramethylrhodamine, 5 

and the two-step alkyne-D-alanine (alkDA or EDA, (11, 13)), and alkyne-D-alanine-D-alanine 6 

(alkDADA or EDA-DA, (24); we use the metabolic labeling nomenclature originally adopted in 7 

(28)) which we detected by copper-catalyzed azide-alkyne cycloaddition (CuAAC) after fixation 8 

(Figures 1B, 1C). After M. smegmatis cells were incubated for ~10% generation in probe, high 9 

resolution and quantitative microscopy revealed that they had asymmetric, bidirectional 10 

gradients of fluorescence that emanated from the poles and continued along the sidewall 11 

(Figure 2A). Polar gradients of dipeptide labeling were also apparent in live cells when we 12 

detected azido-D-alanine-D-alanine (azDADA or ADA-DA, (24)) incorporation by either CuAAC 13 

(using low copper, bio-friendly reaction conditions ((29), Figure 2—figure supplement 1A) or 14 

by copper-free, strain-promoted azide-alkyne cycloaddition (SPAAC, Figure 2—figure 15 

supplement 1B).  16 

 17 

The mycobacterial cell envelope is comprised of covalently-bound peptidoglycan, 18 

arabinogalactan and mycolic acids, as well as intercalated glycolipids and a thick capsule ((30), 19 

Figure 1B). Assembly of the envelope layers has long been presumed to be spatially 20 

coincident. This is largely based on biochemical data suggesting that ligation of arabinogalactan 21 

to peptidoglycan occurs concurrently with crosslinking of the latter by transpeptidases (31). We 22 

and others have found that cytoplasmic enzymes that mediate arabinogalactan and 23 

mycomembrane synthesis are enriched at the poles but also present along the periphery of the 24 

cell (5, 32, 33), as is metabolic labeling by OalkTMM and NalkTMM ((34-36), Figure 2A). 25 

OalkTMM and NalkTMM are trehalose monomycolate derivatives that predominantly mark 26 
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covalent mycolates and trehalose dimycolate, respectively, in the mycomembrane (Figure 1B, 1 

(36)). Since the azido and alkynyl groups on the different probes are not orthogonal to each 2 

other (Figure 1C), we opted to compare peptidoglycan and mycomembrane labeling patterns by 3 

using RADA as a fiducial marker. The cell pole with brighter RADA fluorescence also had more 4 

alkDADA or OalkTMM labeling (Figure 2B), suggesting that the polar orientation of 5 

peptidoglycan and mycomembrane metabolism is coincident. We then compared the 6 

fluorescence intensity profiles of cells that had been individually labeled with the probes, and 7 

found similar, average distributions of RADA, alkDADA and OalkTMM at the poles and 8 

peripheries of the cells (Figure 2C).  9 

  10 

We next sought to address whether the cell envelope of the related M. tuberculosis is also 11 

labeled in polar gradients. We previously showed that alkDA incorporates into the cell surface of 12 

the organism (13) but were unable to stain the entire population of bacteria. To investigate the 13 

origin of labeling heterogeneity, we first tested whether the structure of fluorophore (Figure 1B) 14 

influenced probe incorporation by incubating M. tuberculosis in HADA, NADA or RADA and 15 

assessing population fluorescence by flow cytometry. HADA and NADA incubation yielded well-16 

defined fluorescent populations (Figure 2—figure supplement 2A). RADA also labeled the 17 

entire M. tuberculosis population, albeit with greater cell-to-cell variability in fluorescence 18 

intensity. Given that M. tuberculosis incorporates fluorescent probes HADA and NADA relatively 19 

evenly across the population, we hypothesized that the apparent heterogeneity that we 20 

previously observed for alkDA labeling (13) was the result of an inefficient CuAAC ligation. We 21 

obtained modest improvements by changing the reaction conditions, more specifically, by 22 

swapping the BTTP ligand (29, 37) for the TBTA ligand, altering the ratio of ligand:Cu(I) and 23 

increasing the azide label concentration. We also switched our detection moiety to an azide 24 

appended to hydroxycoumarin, the same small, uncharged fluorophore as the one-step HADA 25 

probe (Figure 1B). Under our optimized conditions we detected azido-coumarin fluorescence 26 
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from ~15-20% of cells that had been incubated in alkDA, alkDADA or OalkTMM (Figure 2—1 

figure supplements 2B, 2C).  2 

 3 

Although unable to achieve homogenous M. tuberculosis labeling with two-step envelope 4 

probes, we decided to test whether the sites of envelope labeling in the limited fluorescent 5 

subpopulation resemble those of M. smegmatis. HADA, alkDADA and OalkTMM tagging all 6 

produced cells that had a mixture of sidewall and polar fluorescence (Figure 2—figure 7 

supplement 2C) but exhibited a higher degree of cell-to-cell variability compared to M. 8 

smegmatis. Quantitation of HADA fluorescence showed that peptidoglycan metabolism 9 

comprised asymmetric polar gradients when averaged across the population (Figure 2D). We 10 

next asked whether there was a cell-wide difference in labeling distribution in M. tuberculosis 11 

compared to M. smegmatis. We arbitrarily defined the dimmer polar region as the first 25% of 12 

the cell length, the sidewall as the middle 50%, and the brighter polar region as the final 25%. In 13 

a cell with perfect, circumferential labeling, the ratio of dim pole:sidewall:fast pole in a cell would 14 

be 25:50:25. Since HADA labeled a large proportion of M. tuberculosis (Figure 2—figure 15 

supplement 2A) and was more resistant to photobleaching than NADA, we compared these 16 

ratios for HADA in septating and non-septating M. smegmatis and M. tuberculosis labeled for 17 

~10% generation time (Figure 2D). For M. smegmatis, the ratios were 15:38:47 for non-18 

septating cells and 17:39:43 for septating cells, while for M. tuberculosis, they were 21:47:32 19 

and 17:56:27 for M. tuberculosis. These data suggest that a greater proportion of peptidoglycan 20 

labeling in M. tuberculosis likely occurs along the cell periphery than in M. smegmatis, although 21 

we cannot rule out a differential contribution of cyan autofluorescence in the two species (38). 22 

 23 

Intracellular and extracellular pathways of D-amino acid probe incorporation in 24 

mycobacteria. Since the cell periphery is not known to support surface expansion in 25 

mycobacteria (3-9), we sought to characterize the molecular processes that underlie D-amino 26 
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acid labeling patterns. OalkTMM and NalkTMM are inserted directly by the extracellular Antigen 1 

85 complex into the mycomembrane (36). However, there are three potential pathways by which 2 

D-amino acid probes might incorporate into mycobacterial peptidoglycan (21, 39, 40): an 3 

intracellular, biosynthetic route and two extracellular routes, mediated by D,D-transpeptidase or 4 

L,D-transpeptidase remodeling enzymes (Figure 3A). Peptidoglycan remodeling, particularly by 5 

the L,D-transpeptidases abundantly encoded in the mycobacterial genome, may not strictly 6 

correlate with synthesis of the biopolymer (10, 11, 22, 23). Therefore, we sought to distinguish 7 

the different routes of incorporation for D-amino acid probes in mycobacteria. 8 

 9 

It seemed possible that the chemical structure of the derivative (Figure 1B) and/or number of 10 

labeling steps (Figure 1A) might influence probe uptake, so we first tested the labeling 11 

sensitivity of a panel of D-amino acid derivatives to antibiotics that inhibit potential incorporation 12 

routes (Figure 3A). We also assessed OalkTMM and the D-alanine-D-alanine dipeptide probe, 13 

the latter of which has been proposed to tag the peptidoglycan of other species via the 14 

cytoplasmic MurF ligase (Figures 3A, figure supplement 1, (24, 25)). D-cycloserine is a cyclic 15 

analog of D-alanine that inhibits the D-alanine racemase (Alr) and ligase (DdlA) in mycobacteria 16 

(41). Together with the β-lactamase inhibitor clavulanate, β-lactams like ampicillin block D,D-17 

transpeptidases and D,D-carboxypeptidases. Broader-spectrum carbapenems such as 18 

imipenem additionally inhibit L,D-transpeptidases (42). We also included vancomycin, an 19 

antibiotic that interferes with transpeptidation and transglycosylation by steric occlusion, to 20 

control for general defects in periplasmic peptidoglycan assembly. We empirically determined a 21 

time frame of drug treatment that did not compromise M. smegmatis viability (Figure 3—figure 22 

supplement 2). Within this time frame, labeling for all single residue D-amino acid probes 23 

decreased significantly in response to imipenem or D-cycloserine treatment (Figure 3B). By 24 

contrast, labeling by the dipeptide probe was relatively resistant to these antibiotics. Neither 25 

vancomycin nor ampicillin had a clear effect on labeling by any of the probes, indicating that cell 26 
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death, disruption of peptidoglycan polymerization, and abrogration of D,D-transpeptidation do 1 

not explain the metabolic incorporation differences. OalkTMM labeling was sensitive to D-2 

cycloserine, but not to imipenem nor ampicillin, suggesting that transfer of mycolates to 3 

arabinogalactan may require peptidoglycan precursor synthesis but not transpeptidation. 4 

 5 

To test whether distinct mechanisms of probe incorporation were inhibited by D-cycloserine and 6 

imipenem, we performed a chemical epistasis experiment. We first examined the effect of 7 

different drug concentrations on alkDA incorporation (Figure 3C). Treatment with either D-8 

cycloserine or imipenem, but not ampicillin, resulted in dose-dependent inhibition of the probe-9 

derived fluorescence that plateaued at approximately half of untreated levels. We then 10 

assessed the combined effect of D-cycloserine and imipenem by Bliss independence (43), a 11 

commonly used reference model for predicting drug-drug interactions based on the dose 12 

response for the individual drugs. This method is most appropriate when dual inhibition 13 

proceeds via distinct mechanisms e.g. activity against different molecules, enzymes or 14 

pathways (44). The effects of D-cycloserine and imipenem on alkDA incorporation were the 15 

same or slightly greater than the potencies predicted by the antibiotics individually (Figure 3D). 16 

The primarily-additive nature of these antibiotics in the Bliss independence model is consistent 17 

with the idea that D-cycloserine and imipenem block distinct pathways of alkDA incorporation, 18 

and therefore that the probe incorporates into mycobacterial peptidoglycan via both cytoplasmic 19 

and L,D-transpeptidase routes. 20 

 21 

RADA and NADA labeling were more sensitive to imipenem than HADA and alkDA (Figure 3B), 22 

at multiple concentrations of drug (Figure 3E). To test whether the probes were differentially 23 

incorporated by L,D-transpeptidases, we knocked out three of the six enzymes encoded in the 24 

M. smegmatis genome. We chose to focus on LdtA, LdtB and LdtE since the M. tuberculosis 25 

homologs (LdtMT1, LdtMT2, and LdtMT4, respectively) have been shown in vitro to have both cross-26 
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linking and D-amino acid exchange activity and to be inhibited by imipenem (45). RADA and 1 

NADA fluorescence decreased by ~80-85% the absence of ldtABE, and this effect was 2 

complemented by the expression of ldtA alone (Figure 3F). We observed a more moderate 3 

effect on HADA and alkDA labeling, which were decreased by ~40-60%. Collectively these data 4 

suggest that: 1. RADA and NADA probes primarily report L,D-transpeptidase activity, 5 

tetrapeptide substrate, or both, and 2. HADA and alkDA likely label via both cytoplasmic and 6 

L,D-transpeptidase routes. 7 

 8 

Dipeptide D-amino acid probe incorporates into mycobacterial peptidoglycan precursors. 9 

Since RADA labeling in mycobacteria is largely indicative of L,D-transpeptidase activity (Figure 10 

3) and occurs at the poles and along the sidewall (Figure 2), we surmise that peptidoglycan is 11 

remodeled at both of these locations. We wished to determine whether remodeling was 12 

coincident with biopolymer synthesis but were limited by the multiple incorporation routes of 13 

alkDA and HADA (Figure 3). Dipeptide D-amino acid probes have been proposed to report 14 

peptidoglycan synthesis in other species via a cytoplasmic, MurF-dependent pathway (Figures 15 

3A, figure supplement 1, (24, 25)). Consistent with this notion, and in contrast to the 16 

monopeptide probes, alkDADA labeling was relatively stable to imipenem treatment (Figures 17 

3B, 3E) and inefficiently incorporated (Figure 4—supplement 1). Thus we were surprised to 18 

observe that overall labeling by alkDADA decreased in the absence of LdtA, LdtB, LdtE or 19 

combinations thereof (Figure 4—supplement 2A). The reduction in signal occurred primarily at 20 

the poles (Figure 4—supplement 2B) yet loss of the enzymes did not impair bacterial growth 21 

(Figure 4—supplement 3). As we do not yet understand the mechanistic basis for this 22 

observation, we sought to directly test the hypothesis that dipeptide probes incorporate into 23 

peptidoglycan precursors. 24 

 25 
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D-alanine is produced in mycobacteria by Alr, the D-alanine racemase (Figure 3—figure 1 

supplement 1). The molecule is linked to a second D-alanine by DdlA, the D-alanine ligase, and 2 

the resulting dipeptide is added to the UDP-MurNAc-tripeptide by MurF. If the alkDADA probe is 3 

able to label mycobacterial peptidoglycan via MurF, addition of the molecule to the growth 4 

medium should rescue a mutant that is unable to make D-alanine-D-alanine. We first 5 

constructed an alr deletion mutant in M. smegmatis and verified that growth is rescued by 6 

exogenous D-alanine but not by alkDA (Figure 4A). Although our antibiotic data suggest that 7 

alkDA is incorporated into peptidoglycan in part via a cytoplasmic pathway (Figure 3), the 8 

inability of this probe to rescue growth was not surprising given the substrate specificities of Ddl 9 

and MurF (46) and inefficient synthesis of UDP-MurNAc-pentapeptide with D-amino acids other 10 

than alanine (39). In contrast to the alkDA results, we were able to rescue alr with either D-11 

alanine-D-alanine or its alkynyl derivative (Figure 4A).  12 

 13 

We considered the possibility that alkDADA may be digested by a D,D-carboxypeptidase prior to 14 

incorporation. This would result in the release of both unlabeled D-alanine and alkDA, the first of 15 

which could account for alr growth rescue (Figure 4A). We reasoned that a more precise gauge 16 

for MurF-dependent incorporation of the intact probe would be whether it could support the 17 

replication of a strain unable to ligate D-alanine to itself. Therefore, we confirmed that alkDADA 18 

rescues the growth of a temperature-sensitive ddlA mutant (47) at the non-permissive 19 

temperature (Figure 4B). 20 

 21 

Our genetic data supported a MurF-dependent pathway of alkDADA incorporation into 22 

peptidoglycan. If true, the probe should be present in precursors such as lipid I and lipid II 23 

(Figure 3—figure supplement 1). To test this hypothesis, we first optimized for mycobacteria a 24 

recently-reported protocol for detecting lipid-linked precursors (48, 49). We extracted lipidic 25 

species from M. smegmatis and exchanged endogenous D-alanines for biotin-D-lysine (BDL) in 26 
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vitro using purified Staphylococcus aureus enzyme PBP4, a promiscuous D,D-transpeptidase 1 

(48). Biotinylated species were separated by SDS-PAGE and detected by horseradish 2 

peroxidase-conjugated streptavidin. We detected a biotin-linked, low molecular weight band that 3 

is reduced upon D-cycloserine treatment and accumulates when the lipid II flippase MurJ (MviN, 4 

(50)) is depleted or vancomycin is added (Figure 5A), conditions that have been shown to 5 

dramatically enhance precursor detection in other species (48, 49). These data strongly suggest 6 

that the BDL-marked species are lipid-linked peptidoglycan precursors. We next turned our 7 

attention to detecting lipid I/II from M. smegmatis incubated with alkDADA. Initially we were 8 

unable to identify alkDADA-labeled species from organic extracts of wildtype M. smegmatis that 9 

had been subjected to CuAAC ligation with picolyl azide biotin (Figure 5B). We reasoned that 10 

the proportion of labeled precursors might be below our limit of detection. Accordingly, we 11 

repeated the experiment in the Δalr background and found that we could clearly detect a low 12 

molecular-weight species band that accumulated with vancomycin treatment (Figure 5B, top) 13 

and that ran at the same size as BDL-labeled material (Figure 5B, bottom). We were also able 14 

to identify a low molecular weight species from Δalr incubated with azDADA that was revealed 15 

by either CuAAC or SPAAC ligation to alkyne- or cyclooctyne-biotin, respectively (Figure 5C). 16 

Taken together, our genetic and biochemical experiments show that the alkDADA and azDADA 17 

probes insert into mycobacterial peptidoglycan precursors by a MurF-dependent route. 18 

 19 

Fluorescent vancomycin and penicillin-binding proteins localize to the poles and 20 

sidewall in mycobacteria. The final, lipid-linked peptidoglycan precursor lipid II is synthesized 21 

by MurG on the cytoplasmic side of the plasma membrane then flipped to the periplasm and 22 

polymerized (Figure 3—figure supplement 1, (51)). We previously showed that MurG fused to 23 

two different fluorescent proteins and expressed under two different promoters is present at 24 

both the poles and periphery of M. smegmatis (5). Labeling by alkDADA marks similar 25 

subcellular locations even with pulses as short as ~1% generation time (Figure 5—figure 26 
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supplement 1). These data suggest that lipid-linked peptidoglycan precursors are synthesized 1 

at lateral sites in addition to their expected localization at the poles. However, our standard 2 

experimental protocol for detecting envelope labeling is to perform CuAAC on fixed cells. 3 

Because formaldehyde fixation can permeabilize the plasma membrane to small molecules, 4 

labeled material may be intracellular, extracellular or both. Dipeptide labeling could therefore 5 

read out lipid I/II on the cytoplasmic face of the plasma membrane, uncrosslinked lipid II on the 6 

periplasmic side, or polymerized peptidoglycan.  7 

 8 

To shed light on the potential fate(s) of peptidoglycan precursors made at different subcellular 9 

sites, we first stained live mycobacterial cells with fluorescent vancomycin. This reagent binds 10 

uncrosslinked peptidoglycan pentapeptides and does not normally cross the plasma membrane. 11 

Pentapeptide monomers are a low abundant species in M. tuberculosis, M. abscessus and M. 12 

leprae peptidoglycan (42, 52-54), suggesting that fluorescent vancomycin primarily reports 13 

extracellular, lipid-linked precursors in this genus. Labeling of M. smegmatis with this probe 14 

revealed both revealed both polar and lateral patches (Figure 5—figure supplement 2) as 15 

previously noted (8). This observation suggests that at least some of the peptidoglycan 16 

precursors present along the periphery of the mycobacterial cell are flipped to the periplasm.  17 

 18 

We next sought to address whether these molecules could be used to build the peptidoglycan 19 

polymer. Transglycosylases from both the PBP (penicillin-binding proteins) and SEDS (shape, 20 

elongation, division, and sporulation) families stitch peptidoglycan precursors into the existing 21 

meshwork (Figure 3—figure supplement 1, (14, 32, 51, 55-58)). If peptidoglycan precursors 22 

are polymerized along the lateral surface of the mycobacterial cell, at least a subset of these 23 

periplasmic enzymes must be present at the sidewall to assemble the biopolymer. Two 24 

conserved PBPs in mycobacteria are likely responsible for most of the peptidoglycan 25 

polymerization required for cell viability, PonA1 and PonA2 (7, 19, 59). Published images of 26 
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PonA1-mRFP and PonA1-mCherry localization suggested that the fusion proteins might 1 

decorate the mycobacterial sidewall in addition to the cell tips (9, 18, 19), but the resolution of 2 

the micrographs did not allow for definitive assignment. Therefore, we first verified the 3 

localization of PonA1-mRFP. We found that a subset of this fusion protein indeed homes to the 4 

lateral cell surface (Figure 5—figure supplement 3A). 5 

 6 

We were concerned that overexpression of PonA1-mRFP causes aberrant polar morphology 7 

and is toxic to M. smegmatis (18, 19) and about the propensity of mCherry to cluster (60). Since 8 

our attempts to produce PonA1 fusions with different fluorescent proteins were unsuccessful, 9 

we opted to take a complementary, activity-based approach. Fluorescent derivatives of β-lactam 10 

antibiotics bind specifically and covalently to PBPs, and therefore have been used to image 11 

active enzyme in both protein gels and intact cells (61). Our images of whole cells labeled with 12 

Bocillin, a BODIPY conjugate of penicillin, were in agreement with those from a previous 13 

publication (20), and seemed to indicate that Bocillin binds both the poles and sidewall of M. 14 

smegmatis (Figure 5—figure supplements 3B, 3C). However, given the hydrophobicity of the 15 

BODIPY dye, we considered the possibility that Bocillin might nonspecifically associate with the 16 

greasy mycomembrane. Fluorescence across the cell surface was diminished by pre-treating 17 

cells with the β-lactam ampicillin, which prevents peptidoglycan assembly by binding to PBPs, 18 

but not D-cycloserine, which inhibits peptidoglycan synthesis in a PBP-independent manner 19 

(Figure 5—figure supplements 3B, 3C). These experiments suggest that at least some of the 20 

sidewall labeling of Bocillin is specific, and therefore, that PBPs are present and active in these 21 

locations.  22 

 23 

Expansion of the mycobacterial envelope is concentrated at the poles. Our data indicate 24 

that peptidoglycan precursors are made and likely polymerized both at the poles and sidewall. 25 

Peptidoglycan synthesis is often presumed to mark sites of bacterial cell growth. However, 26 
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dispersed elongation has not been reported in mycobacteria. Accordingly we performed a pulse 1 

chase experiment to test whether cell expansion correlates with sites of metabolic labeling. After 2 

marking peptidoglycan with RADA, we tracked labeled and unlabeled cell surface during 15 min 3 

(~10% generation time) of outgrowth. While we cannot rule out sidewall expansion below our 4 

limit of detection, the fluorescence dilution in this experiment was consistent with previous 5 

reports ((3-5, 7, 14, 62) and restricted to the mycobacterial poles (Figure 5—figure 6 

supplement 4).  7 

 8 

Muramidase treatment increases peptidoglycan synthesis along the sidewall. What is the 9 

function of peptidoglycan assembly that does not directly contribute to physical expansion of the 10 

cell? We hypothesized that one role of growth-independent cell wall synthesis might be repair. 11 

More specifically, we reasoned that insertion of peptidoglycan building blocks directly along the 12 

cell periphery would enable a real-time, comprehensive response to damage (Figure 6A). Cell 13 

wall repair that is restricted to sites of mycobacterial growth, by contrast, would be confined to 14 

the poles and renew the cell surface only after several generations. Extended incubation of M. 15 

smegmatis (~48 hours) with the peptidoglycan-degrading enzyme lysozyme substantially 16 

decreases colony-forming units (63). We have also shown that spheroplasts generated by 17 

combined glycine and lysozyme treatment lack peptidoglycan (64). Together these data indicate 18 

that the enzyme is able to access and damage peptidoglycan in intact cells. We challenged M. 19 

smegmatis for 30 minutes in a mixture of lysozyme and mutanolysin, another enzyme that has 20 

been extensively used for in vitro digestion of peptidoglycan. After washing away the enzyme 21 

we assessed the sites of peptidoglycan synthesis by alkDADA labeling. Pre-treatment by the 22 

muramidases clearly shifted the fluorescence from the brighter pole towards the sidewall 23 

(Figure 6B). These data indicate that mycobacteria reallocate peptidoglycan assembly away 24 

from the faster-growing pole and towards the periphery upon damage to the cell wall (Figure 25 

6A). 26 
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 1 

Discussion  2 

 3 

In this work we aimed to address the seemingly discrepant observations that, on the one hand, 4 

mycobacteria expand from their tips (Figure 5—figure supplement 4, (3-5, 7, 14)), and on the 5 

other, metabolically-labeled cell wall and synthetic enzymes are detectable at both the poles 6 

and along the sidewall (Figures 2, 5—figure supplement 3, (5, 9, 18-20)). The first step to 7 

resolving this conundrum was to unambiguously identify sites of peptidoglycan synthesis. 8 

Although the D-amino acid probes that we and others have developed for peptidoglycan labeling 9 

have been extensively used for marking the cell wall (21), in most cases it has not been clear 10 

whether they report the location(s) of cytoplasmic synthesis, periplasmic exchange, or a 11 

combination of processes. Here we show that in M. smegmatis the metabolic fate of 12 

monopeptide probes is partially dependent on the substituent; whereas NBD and TAMRA-13 

conjugated D-amino acids are primarily exchanged into mycobacterial peptidoglycan by L,D-14 

transpeptidases, their alkyne and coumarin-conjugated counterparts appear to incorporate by 15 

both extracellular and intracellular pathways (Figure 3). In the future, biochemical analysis of 16 

peptidoglycan composition will allow better quantitation of probe incorporation via different 17 

uptake pathways (39). 18 

 19 

We show that dipeptide probes rescue the growth of a DdlA mutant (Figure 4B) and incorporate 20 

into lipid-linked peptidoglycan precursors (Figures 5B, 5C). To our knowledge, this is the first 21 

direct demonstration that peptidoglycan precursors can be metabolically labeled in vivo without 22 

radioactivity. Labeling by alkDADA unexpectedly decreased in the absence of L,D-23 

transpeptidases (Figure 4—figure supplement 2). Unlike the monopeptide probes, however, 24 

alkDADA-derived fluorescence was stable to pre-treatment with imipenem, an antibiotic that 25 

targets this class of enzymes (Figure 3, (42)). These data suggest that the dipeptide is unlikely 26 
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to be a direct substrate for L,D-transpeptidases. It is possible that D,D-carboxypeptidases cleave 1 

a small proportion of alkDADA prior to incorporation and release D-alanine and alkDA. In this 2 

scenario, apparent alkDADA labeling in M. smegmatis may be a combination of intracellular 3 

alkDADA incorporation via MurF (Figures 4, 5), extracellular alkDA incorporation by L,D-4 

transpeptidases (Figure 3), and more limited intracellular alkDA incorporation by DdlA/MurF 5 

(Figure 3). This model is consistent with the promiscuous targeting of mycobacterial D,D-6 

carboxypeptidases by carbapenems (42) and the ~2000-fold more efficient incorporation of 7 

alkDA compared to alkDADA (Figure 4—figure supplement 1). Alternatively or additionally, 8 

alkDADA may be degraded abiotically or by other enzymes such as L,D-carboxypeptidases. 9 

Finally, loss of L,D-transpeptidases may introduce global alterations in peptidoglycan 10 

metabolism. Importantly, despite differences in overall fluorescence between dipeptide-labeled 11 

wildtype and ΔldtABE (Figure 4—figure supplement 1A), sidewall fluorescence was preserved 12 

in the mutant (Figure 4—figure supplement 1B). In aggregate our data strongly suggest that 13 

the mycobacterial periphery is a site of active peptidoglycan synthesis. 14 

 15 

The lateral surface of mycobacteria does not appear to contribute to cell elongation under 16 

normal growth conditions (Figure 5—figure supplement 4, (3-5, 7, 14)) but nevertheless hosts 17 

a substantial portion of envelope synthesis and remodeling. The intracellular difference in signal 18 

between the poles reflected relative elongation rates, as the RADA-bright cell tip, which 19 

coincides with the alkDADA- and OalkTMM-bright cell tip (Figure 2B) grows faster than the 20 

RADA-dim cell tip (Figure 5—figure supplement 4). The 2-3-fold ratio of fast/bright:slow/dim 21 

pole fluorescence roughly corresponds to previous estimates of intracellular differences in polar 22 

elongation (3, 9). Compared to M. smegmatis, the distribution of HADA labeling in M. 23 

tuberculosis is shifted away from the fast pole towards the periphery (Figure 2D). Diminished 24 

polarity and asymmetry is also apparent in the sub-population of M. tuberculosis that is labeled 25 

by alkDADA and OalkTMM (Figure 2—figure supplement 2C). Our data are in agreement with 26 
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the heterogeneity in polar dominance observed previously for M. tuberculosis (15). Although we 1 

cannot rule out a contribution from cyan autofluorescence, these experiments also suggest that 2 

sidewall envelope metabolism may be even more prominent in M. tuberculosis than in M. 3 

smegmatis, comprising half of the total cell output. 4 

 5 

What is the physiological role for cell wall synthesis that does not directly contribute to growth or 6 

division? It is possible that peptidoglycan assembly along the lateral surface of the 7 

mycobacterial cell is simply a byproduct of synthetic enzymes that are en route to the polar 8 

elongasome or the divisome. Having active enzymes at the ready could enable efficient 9 

coordination between cell growth and septation. We think that this model is less likely, however, 10 

given the energetic cost of producing complex macromolecules and the known limits on the 11 

steady-state pools of lipid-linked peptidoglycan precursors (65). Instead we propose that cell 12 

wall synthesis along the periphery could allow mycobacteria to edit what would otherwise be an 13 

inert surface (Figure 6A). Peptidoglycan and mycomembrane metabolism in this region may 14 

thicken or fill in the gaps of envelope that was initially deposited at the poles or the septum and 15 

enable the bacterium to correct stochastic defects and repair damage. In support of this model, 16 

we find that cell wall synthesis along the sidewall is enhanced upon exposure to peptidoglycan-17 

degrading enzymes (Figure 6B). More broadly, the ability to tailor the entire cell surface, not 18 

just the ends, should enable rapid adaptation to external stimuli. Such activity may be 19 

particularly important for M. tuberculosis, a slow-growing organism that must survive a hostile, 20 

nutrient-poor environment. 21 

 22 

Materials and Methods 23 

 24 

Key Resources Table 25 
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Reagent type 
(species) or 
resource 

Desig-
nation 

Source or 
reference 

Identifier
s 

Additional information 

Strain (M. 
smegmatis 
mc2155) 

M. 
smeg
matis 

NC_0085
96 in 
GenBank 

  Wildtype M. smegmatis 

genetic reagent 
(M. smegmatis) 

∆alr This paper   The mutant was generated by 
recombineering protocols described in 
DOI: 10.1038/nmeth996 and DOI: 
10.1007/978-1-4939-2450-9_10; see the 
methods section for further detail. 

genetic reagent 
(M. smegmatis) 

ΔldtA doi:10.110
1/291823 

  Obtained from Dr. Eric Rubin (Harvard 
SPH) and Dr. Hesper Rego (Yale Med) 

genetic reagent 
(M. smegmatis) 

ΔldtB  doi:10.110
1/291823 

  Obtained from Dr. Eric Rubin (Harvard 
SPH) and Dr. Hesper Rego (Yale Med) 

genetic reagent 
(M. smegmatis) 

ΔldtE  doi:10.110
1/291823 

  Obtained from Dr. Eric Rubin (Harvard 
SPH) and Dr. Hesper Rego (Yale Med) 

genetic reagent 
(M. smegmatis) 

ΔldtAE doi:10.110
1/291823 

  Obtained from Dr. Eric Rubin (Harvard 
SPH) and Dr. Hesper Rego (Yale Med) 

genetic reagent 
(M. smegmatis) 

ΔldtBE doi:10.110
1/291823 

  Obtained from Dr. Eric Rubin (Harvard 
SPH) and Dr. Hesper Rego (Yale Med) 

genetic reagent 
(M. smegmatis) 

ΔldtBA doi:10.110
1/291823 

  Obtained from Dr. Eric Rubin (Harvard 
SPH) and Dr. Hesper Rego (Yale Med) 

genetic reagent 
(M. smegmatis) 

ΔldtAB
E 

doi:10.110
1/291823 

  Obtained from Dr. Eric Rubin (Harvard 
SPH) and Dr. Hesper Rego (Yale Med) 

genetic reagent 
(M. smegmatis) 

MurJ 
(MviN) 

 doi: 
10.1126/s
cisignal.20
02525. 

  Obtained from Dr. Chris Sassetti (U Mass 
Med) 

genetic reagent 
(M. smegmatis) 

ddlAts doi: 
10.1128/J
B.182.23.
6854-
6856.2000 

  Obtained from Dr. Graham Hatfull (U Pitt) 

genetic reagent 
(M. smegmatis) 

pTetOl
dtA 

doi: 
10.1101/2
91823 

  Obtained from Dr. Eric Rubin (Harvard 
SPH) and Dr. Hesper Rego (Yale Med) 

genetic reagent 
(M. 
tuberculosis) 

ΔRD1 
ΔpanC
D 

10.1016/j.
vaccine.2
006.05.09
7 

  Obtained from Dr. Bill Jacobs (Einstein 
Med) 

other (RADA) RADA doi: 
10.1002/a
nie.20120
6749; doi: 
10.1038/n
prot.2014.
197 

  Synthesized by Tocris Bioscience (Bristol, 
United Kingdom) following referenced 
protocols 

other (NADA) NADA doi: 
10.1002/a

  Synthesized by Tocris Bioscience (Bristol, 
United Kingdom) following referenced 
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nie.20120
6749; doi: 
10.1038/n
prot.2014.
197 

protocols 

other (HADA) HADA doi: 
10.1002/a
nie.20120
6749; doi: 
10.1038/n
prot.2014.
197 

  Synthesized by Tocris Bioscience (Bristol, 
United Kingdom) following referenced 
protocols 

other (alkyne-D-
alanine) 

alkDA 
(EDA) 

Thermo 
Fisher, 
Waltham, 
MA 

Cat # 
AC441225
000 

  

other (alkyne-D-
alanine-D-
alanine) 

alkDA
DA 
(EDA
DA) 

doi: 
10.1038/n
ature1289
2 

  Synthesized by the Chemical Synthesis 
Core Facility at Albert Einstein College of 
Medicine (NY, USA) following the 
referenced protocols 

other (azido-D-
alanine-D-
alanine) 

azDA
DA 
(ADA
DA) 

doi: 
10.1038/n
ature1289
2 

  Synthesized by the Chemical Synthesis 
Core Facility at Albert Einstein College of 
Medicine (NY, USA) following the 
referenced protocols 

other (O-alkyne-
trehalose 
monomycolate) 

OalkT
MM 

doi: 
10.1002/a
nie.20150
9216  

    

other (N-alkyne-
trehalose 
monomycolate) 

NalkT
MM 

doi: 
10.1002/a
nie.20150
9216  

    

software, 
algorithm 
(MATLAB 
codes) 

MATL
AB 
codes 

This paper   Scripts designed for MATLAB to analyze 
the fluorescence profiles along a cell body 
from data collected in Oufti (doi: 
10.1111/mmi.13264). 

Fmoc-D-
Lys(biotinyl)-OH 

BDL 
precur
sor 

Chem-
Impex 
Internation
al 

Cat # 
16192 

Deprotected as described in doi: 
10.1021/ja508147s to yield BDL 

PBP4 plasmid PBP4 doi: 
10.1021/ja
508147s 

  Obtained from Dr. Suzanne Walker 
(Harvard Med) 

 1 

Bacterial strains and culture conditions. mc2155 M. smegmatis and ΔRD1 ΔpanCD M. 2 

tuberculosis (66) were grown at 37 °C in Middlebrook 7H9 growth medium (BD Difco, Franklin 3 

Lakes, NJ) supplemented with glycerol, Tween 80 and ADC (M. smegmatis) or OADC and 50 4 
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µg/ml pantothenic acid (M. tuberculosis). The ∆alr strain was further supplemented with 1 mM D-1 

alanine. The ddlAts strain was grown in 7H9-ADC at 30 °C or 37 °C as specified.  2 

   3 

Cell envelope labeling. Probes used in this study include (i) fluorescent D-amino acids HADA, 4 

NADA and RADA (Tocris Bioscience, Bristol, United Kingdom) (ii) alkDA (R-propargylglycine, 5 

Thermo Fisher, Waltham, MA) (iii) alkDADA and azDADA (Chemical Synthesis Core Facility, 6 

Albert Einstein College of Medicine, Bronx, NY) and (iv) OalkTMM and NalkTMM, synthesized 7 

as described previously (36). The labeling procedures were performed with modifications from 8 

(11, 13, 36). Unless otherwise indicated, mid-log M. smegmatis or M. tuberculosis were labeled 9 

with 500 μM HADA, 25 μM NADA or RADA, 50 μM alkDA, 1 or 2 mM alkDADA, 50 μM 10 

OalkTMM or 250 μM NalkTMM for 15 min or 2 hours, respectively. In some cases M. smegmatis 11 

was preincubated +/- antibiotics at different fold-MIC (MICs = 80 μg/mL D-cycloserine, 8 μg/mL 12 

ampicillin (with 5 μg/mL clavulanate), 0.5 μg/mL imipenem (with 5 μg/mL clavulanate), 6 μg/mL 13 

vancomycin) or +/- 500 µg/mL lysozyme and 500 U/mL mutanolysin for 30 min then grown for 14 

an additional 15 min in the presence of the probes. Cultures were then centrifuged at 4 °C, 15 

washed in pre-chilled PBS containing 0.05% Tween 80 and 0.01% BSA (PBSTB) and fixed for 16 

10 min in 2% formaldehyde at room temperature (RT). After two washes in PBSTB, the bacterial 17 

pellets were resuspended in half of the original volume of freshly-prepared CuAAC solution in 18 

PBSTB (13) containing either AF488 picolyl azide or carboxyrhodamine 110 (CR110) azide 19 

(Click Chemistry Tools, Scottsdale, AZ) or 3-azido-7-hydroxycoumarin (Jena Biosciences, Jena, 20 

Germany). For M. tuberculosis experiments and in Figure 2—figure supplement 1A, we used 21 

a modified, low-copper CuAAC reaction protocol: 200 μM CuSO4 and 800 μM BTTP (Chemical 22 

Synthesis Core Facility, Albert Einstein College of Medicine, Bronx, NY) were pre-mixed then 23 

added to PBSTB. Immediately before resuspending the pellets, 2.5 mM freshly prepared sodium 24 

ascorbate and 300 μM 3-azido-7-hydroxycoumarin were added to the mixture. After 30-60 min 25 

gentle agitation at RT, cultures were washed once with PBSTB, once with PBS and 26 
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resuspended in PBS for imaging or flow cytometry analysis (FITC, BV510, and Texas Red 1 

channels on a BD DUAL LSRFortessa, UMass Amherst Flow Cytometry Core Facility). NHS 2 

ester dye labeling and fluorescent vancomycin labeling were performed as described (3, 6). M. 3 

tuberculosis was post-fixed with 4% formaldehyde overnight at RT prior to removing from the 4 

biosafety cabinet. For Bocillin labeling experiments, 500 μL of mid-log M. smegmatis was 5 

washed once in PBST and resuspended in PBST containing 5 μg/mL clavulanate. Bacteria were 6 

then pre-incubated or not with 50 μg/mL ampicillin or D-cycloserine at RT with gentle agitation. 7 

After 15 min, 50 μg/mL Bocillin FL (Thermo Fisher) was added and cultures were incubated for 8 

an additional 30 min. They were then washed three times in PBST and imaged live on agar 9 

pads. 10 

 11 

Genetic manipulation. The Δalr M. smegmatis strain was generated using standard 12 

recombineering methods (67, 68). 500 bp up and downstream of alr were cloned on either side 13 

of the hygR cassette flanked with loxP sites. After induction of recET, transformation and 14 

subsequent selection on hygromycin and 1 mM D-alanine, PCR was used to confirm the 15 

presence of the correct insert. Strains were then cured of the hygR cassette by transformation 16 

with an episomal plasmid carrying the Cre recombinase and a sucrose negative selection 17 

marker. Strains were cured of this plasmid by repeated passaging in the presence of sucrose.  18 

 19 

M. smegmatis lacking ldtA, ldtB and/or ldtE were generously provided by Dr. Kasia Baranowski, 20 

Dr. Eric Rubin and Dr. Hesper Rego and are described in bioRxiv 21 

https://doi.org/10.1101/291823. Briefly, strains were constructed by recombineering to replace 22 

the endogenous copies with zeocin or hygromycin resistance cassettes flanked by loxP sites as 23 

previously described above (14). Once the knock-outs were verified by PCR, the antibiotic 24 

resistance cassettes were removed by the expression of Cre recombinase. To complement 25 
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ΔldtABE, a copy of ldtA was under the constitutive TetO promoter on a kanamycin marked 1 

vector (CT94) that integrates at the L5 phage integration site of the chromosome. 2 

 3 

Microscopy. Fixed bacteria were imaged either by conventional fluorescence microscopy 4 

(Nikon Eclipse E600, Nikon Eclipse Ti or Zeiss Axioscope A1 with 100x objectives) or by 5 

structured illumination microscopy (Nikon SIM-E/A1R with SR Apo TIRF 100x objective).  6 

 7 

Microscopy analysis. Images were processed using FIJI (69) and cells were outlined and 8 

segmented using Oufti (70). Fluorescence signals of each cell were detected using Oufti and 9 

analyzed using custom-written MATLAB codes. The fluorescence intensities that we report here 10 

have been normalized by cell area. We distinguished septating from non-septating cells using 11 

the probe fluorescence profile along the long cell axis. We used the peakfinderprogram (71) to 12 

identify peaks in the labeling profile. Because our probes label both the cell poles as well as the 13 

septum, septating cells were those that had three peaks in their labeling profile, with the middle 14 

peak positioned between 30% and 70% along the normalized long cell axis. Non-septating cells 15 

were identified as having only two peaks.  16 

 17 

Detection of lipid-linked peptidoglycan precursors. To detect endogenous lipid-linked 18 

peptidoglycan precursors, we adopted the assay developed in (48) with some modifications. M. 19 

smegmatis was inoculated in 100 mL of 7H9 medium and grown to mid-log phase at 37 ºC. 20 

Where applicable, MurJ was depleted by 8 hours of anhydrotetracycline-induced protein 21 

degradation as described (50). The bacteria were then divided into 25 mL cultures that were 22 

subjected or not to freshly-prepared 80 µg/mL vancomycin and/or 10 µg/mL D-cycloserine. After 23 

one hour of incubation at 37 ºC, bacteria were collected by centrifugation and cell pellets were 24 

normalized by wet weight. 200-300 mg wet pellet was resuspended in 500 µL 1% glacial acetic 25 

acid in water. 500 µL of the resuspended pellet mixture was transferred into a vial containing 26 
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500 µL of chloroform and 1 mL of methanol and kept at room temperature (RT) for 1-2 hours 1 

with occasional vortexing. The mixture was then centrifuged at 21,000x g for 10 min at RT and 2 

the supernatant was transferred into a vial containing 500 µL of 1% glacial acetic acid in water 3 

and 500 µL chloroform, and vortexed for 1 min. After centrifugation at 900x g for 2 min at RT, 4 

three phases were distinguishable: aqueous, an interface, and organic. We collected the lipids 5 

from the organic phase and from the interface and concentrated it under nitrogen. Organic 6 

extracts were resuspended in 12 µL of DMSO and then incubated with purified S. aureus PBP4 7 

and biotin-D-lysine (BDL; deprotected from Fmoc-D-Lys(biotinyl)-OH; Chem-Impex 8 

International) as described (48). Upon completion of the BDL exchange reaction, 10 µL of 2X 9 

loading buffer was added to the vials. Contents were boiled at 95 ºC for 5 min then run on an 10 

18% SDS polyacrylamide gel. Biotinylated species were transferred to a PVDF membrane, 11 

blotted with streptavidin-HRP (diluted 1:10,000, Thermo-Fisher) and visualized in an 12 

ImageQuant system (GE Healthcare). 13 

 14 

To detect lipid-linked precursors that had been metabolically labeled with alkDADA or azDADA, 15 

growth of the Δalr strain was initially supported by the inclusion of 2 mM D-alanine-D-alanine 16 

(Sigma-Aldrich) in the 7H9 medium. Δalr bacteria were harvested and washed twice in sterile 17 

PBST prior to resuspension in 100 mL of pre-warmed medium. Both wildtype and Δalr M. 18 

smegmatis were incubated in 0.5-1 mM of alkDADA or azDADA for 1 hour then harvested as 19 

described above. Organic extracts from metabolically-labeled cultures were subjected to 20 

CuAAC reaction by adding, in order and in a non-stick vial: 2 µL of PBST, 1 µL of 5 mM CuSO4, 21 

1 µL of 20 mM BTTP, 1 µL of freshly-prepared 50 mM sodium ascorbate, 3 µL of 10 mM picolyl 22 

azide biotin or alkyne biotin (Click Chemistry Tools), and 2 µL of the organic extract. The 23 

reaction was incubated for one hour at RT with gentle shaking prior to detecting as above. 24 

 25 
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 4 

Figure Legends 5 

 6 

Figure 1. Cell envelope metabolic labeling in mycobacteria.  7 

 8 

A, Schematic of one and two step metabolic labeling. Top, a cell envelope precursor or ‘probe’ 9 

bearing a reactive group is incorporated into the envelope by the endogenous enzymatic 10 

machinery of the cell. The presence of the probe is then revealed by a chemical reaction with a 11 

label that bears a complementary reactive group. Bottom, in some cases the probe can be pre-12 

labeled, bypassing the chemical ligation step and embedding the detection moiety directly into 13 

the macromolecule. Yellow star, fluorophore. See (21) for more details. 14 

 15 

B, Probes used in this work to mark the mycobacterial envelope. See text for details. Colored 16 

and black chemical structures denote probes used in one and two step labeling, respectively. 17 

MM, mycomembrane; AG, arabinogalactan; PG, peptidoglycan; PM, plasma membrane. 18 

 19 

C, X and Y reactive partners used in this work for two step labeling as shown in A. CuAAC, 20 

copper-catalyzed azide-alkyne cycloaddition; SPAAC, strain-promoted azide-alkyne 21 

cycloaddition.  22 

 23 

Figure 2. Asymmetric polar gradients of cell envelope metabolic labeling in 24 

mycobacteria.  25 

 26 
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A, M. smegmatis was incubated for 15 min (~10% generation) in the indicated probe, then 1 

washed and fixed. Alkynyl probes were detected by CuAAC with azido-CR110 and cells were 2 

imaged by structured illumination microscopy. 3 

 4 

B, M. smegmatis dual labeled with RADA and alkDADA, left, or RADA and OalkTMM, right, and 5 

imaged by conventional fluorescence microscopy. 6 

 7 

C, M. smegmatis was labeled as in B and cellular fluorescence was quantitated for cells without 8 

(top; 77<n<85) or with (bottom; 9<n<51) visible septa for RADA, OalkTMM and alkDADA. Signal 9 

was normalized to cell length and to total fluorescence intensity. Cells were oriented such that 10 

the brighter pole is on the right hand side of the graph. 11 

 12 

D, M. smegmatis (Msm) and M. tuberculosis (Mtb) were labeled with HADA for 15 min and 2 13 

hours, respectively, then washed and fixed. Fluorescence was quantitated as in C for cells 14 

without (top; 34<n<42) and with (bottom; 9<n<31) visible septa. We defined the dim pole (dp; 15 

dark purple) as the sum of the fluorescence intensity over the first 25% of the cell; the sidewall 16 

(sw; medium purple) as the sum from 25% to 75%; and the bright pole (bp; light purple) as the 17 

sum over the final 25% of the cell. Fluor distrib, fluorescence distribution. AU, arbitrary units. 18 

 19 

Figure 3. Multiple pathways of D-amino acid probe incorporation in M. smegmatis.  20 

 21 

A, Schematic of the theoretical routes of D-amino acid (DA) and D-alanine D-alanine (DADA) 22 

probe incorporation. LDT, L,D-transeptidase, DDT, D,D-transpeptidase (DDTs). For more details 23 

on the peptidoglycan synthesis pathway, see Figure 3—figure supplement 1. 24 

 25 
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B, Sensitivity of HADA (blue), NADA (green), RADA (red), alkDA (light grey), alkDADA (dark 1 

grey) and OalkTMM (black) to antibiotics. Imi, imipenem + clavulanate; amp, ampicillin + 2 

clavulanate; dcs, D-cycloserine; vanc, vancomycin. M. smegmatis was pretreated or not with the 3 

indicated antibiotics at 2X MIC for 30 min then incubated an additional 15 min in the presence of 4 

probe. The bacteria were then washed and fixed. The alkyne-bearing probes were detected by 5 

CuAAC with azido-CR110 and quantitated by flow cytometry. Experiment was performed 3-4 6 

times in triplicate. For each biological replicate, the averaged median fluorescence intensities 7 

(MFI) of the drug-treated samples were divided by the MFI of untreated bacteria. Data are 8 

expressed as the average percentage of untreated labeling across the biological replicates. 9 

Error bars, +/- standard deviation. 10 

 11 

C, Effect of antibiotic dose on alkDA-derived fluorescence. M. smegmatis was pretreated or not 12 

with drugs at the fold-MIC indicated and labeled as in B. Experiment was performed 3 times in 13 

triplicate. For each biological replicate, the averaged MFI of the control (no drug, no alkDA but 14 

subjected to CuAAC) was subtracted from the averaged MFI of the drug-treated sample. This 15 

was then divided by the averaged MFI of untreated control (no drug but incubated in alkDA and 16 

subjected to CuAAC) from which the control MFI had also been subtracted. Data are expressed 17 

as the average percentage of untreated labeling across the biological replicates. Error bars, +/- 18 

standard deviation. 19 

 20 

D, Left, combined effects of imipenem and D-cycloserine on alkDA-derived fluorescence. M. 21 

smegmatis was pretreated or not with the drugs at the fold-MIC indicated and labeled as in B. 22 

Experiment was performed twice in triplicate with similar results. One data set is shown. The 23 

percent of untreated labeling was calculated as in C and subtracted from 100 to obtain the 24 

percent inhibition. Right, Bliss interaction scores for each pair of doses in left-hand graph were 25 

calculated as (EI+ED-EIED)/EI,D where EI is the effect of imipenem at dose i, ED is the effect of D-26 
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cycloserine at dose d and EI,D is the observed effect of the drugs at dose i and dose d. 1 

Combinations that produce Bliss scores greater than, equal to, or less than 1 are respectively 2 

interpreted as antagonistic, additive, or synergistic interactions. 3 

 4 

E, Dose-dependent effect of imipenem on alkDADA (grey), HADA (blue) and RADA (red) 5 

labeling. M. smegmatis was pretreated or not with imipenem at the fold-MIC indicated and 6 

labeled as in B. Experiment was performed 3 times in triplicate and one representative data set 7 

is shown. For each technical replicate, the averaged median fluorescence intensities (MFI) of 8 

the drug-treated samples were divided by the averaged MFI of untreated bacteria. Data are 9 

expressed as the average percentage of untreated labeling across the technical replicates. 10 

Error bars, +/- standard deviation.  11 

 12 

F, Wildtype M. smegmatis pre-treated or not with 2X MIC imipenem and untreated ΔldtABE and 13 

complement (c ldtABE) were labeled with alkDA (white), HADA (blue), NADA (green) or RADA 14 

(red) and processed as in B. Experiment was performed 2-10 times in triplicate. Representative 15 

data from one of the biological replicates is shown here. Error bars, +/- standard deviation.  16 

 17 

Figure 4. alkDADA rescues the growth of D-alanine racemase (Alr) and ligase (DdlA) 18 

mutants. 19 

 20 

alkDADA probe supports the growth of Δalr, A, or temperature-sensitive ddlAts, B. Wildtype 21 

(white bars) and Δalr (grey bars), B, or ddlAts (grey bars), were grown in the presence or 22 

absence of exogenous D-alanine, D-alanine- D-alanine or alkynyl derivatives thereof. Error bars, 23 

+/- standard deviation. Significant differences compared to Δalr no D-alanine (#, second bar 24 

from left), A, or ddlAts at 42 ˚C no D-alanine-D-alanine (#, fourth bar from left), B, One-way 25 
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ANOVA with Dunnett’s test, are shown for 3-4 biological replicates. ***, p < 0.005, ****, 1 

p<0.0005.  2 

 3 

Figure 5. alkDADA and azDADA incorporate into lipid-linked peptidoglycan precursors. 4 

 5 

A, Detection of lipid-linked peptidoglycan precursors from organic extracts of M. smegmatis. 6 

Endogenous D-alanines were exchanged for biotin-D-lysine (BDL) via purified S. aureus PBP4. 7 

Biotinylated species detected by blotting with streptavidin-HRP. MurJ (MviN) depletion strain 8 

was incubated in anhydrotetracycline (atc) to induce protein degradation. Other strains were 9 

treated with vancomycin (vanc), D-cycloserine (dcs) or a combination prior to harvesting. Wt, 10 

wildtype; blank, no sample run; no extract, BDL and PBP4 alone a, organic extract from MurJ- 11 

atc; b, organic extract from MurJ+atc; hk, heat-killed. 12 

 13 

B, Detection of lipid-linked peptidoglycan precursors labeled by alkDADA in vivo. Wildtype and 14 

Δalr strains were incubated in alkDADA and treated or not with the indicated antibiotics prior to 15 

harvest. Alkyne-tagged species from organic extracts were ligated to picolyl azide biotin via 16 

CuAAC then detected as in A. BDL/PBP4, endogenous precursors from MurJ+atc were 17 

subjected to in vitro exchange reaction as in A. 18 

 19 

C, Detection of lipid-linked peptidoglycan precursors labeled by azDADA in vivo. Δalr was 20 

incubated in azDADA. Azide-tagged species from organic extracts were ligated to DIFO-biotin 21 

via SPAAC or to alkyne biotin via CuAAC then detected as in A.  22 

 23 

Figure 6. Peptidoglycan synthesis is redistributed to the sidewall upon cell wall damage. 24 

 25 
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A, Model for the spatial organization of peptidoglycan (PG) synthesis and repair with respect to 1 

mycobacterial growth and division. Left, regions of cell surface that expand are highlighted in 2 

blue. Middle and right, areas of peptidoglycan precursor synthesis are highlighted in orange.  3 

 4 

B, M. smegmatis was pretreated or not with lysozyme and mutanolysin for 30 min then 5 

incubated an additional 15 min in the presence of alkDADA. The bacteria were then washed 6 

and fixed and subjected to CuAAC with azido-CR110. Images obtained by conventional 7 

fluorescence microscopy were quantified for 25<n<40 cells as in Figure 2 except that i. signal 8 

was not normalized to total fluorescence intensity, only to cell length, and ii. cells with and 9 

without visible septa were analyzed together. Experiment was performed twice with similar 10 

results. dp, dim pole (dark purple); sw, sidewall (medium purple); bp, bright pole (light purple). 11 

Fluor distrib, fluorescence distribution. AU, arbitrary units. 12 

 13 

Supplemental Figure Legends 14 

 15 

Figure 2—figure supplement 1. Metabolic labeling by azDADA comprises polar gradients 16 

in live M. smegmatis.  17 

 18 

Bacteria were labeled with azDADA for 15 min and subjected to either A, low copper CuAAC 19 

(with BTTP ligand), or B, SPAAC. Longer arrow, polar labeling. Short arrow, sidewall labeling. 20 

 21 

Figure 2—figure supplement 2. Heterogeneous envelope probe labeling in M. 22 

tuberculosis. 23 

 24 
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A, M. tuberculosis was incubated for 2 hrs in NADA (green), HADA (blue) or RADA (red), 1 

washed and fixed. Fluorescence was assessed by flow cytometry. Note the cyan 2 

autofluorescence in middle panel. 3 

 4 

B, M. tuberculosis was labeled with an amine-reactive dye (NHS488, black) then incubated or 5 

not for 2 hrs with HADA (dark blue), alkDA, alkDADA or OalkTMM. Alkynyl probes (light blue) 6 

and no probe control cells (grey) were detected by CuAAC with azido-coumarin. NHS488 7 

labeling is heterogeneous and results in two distinct populations. While HADA labels both 8 

NHS488-positive and -negative bacteria, the two-step envelope probes preferentially 9 

incorporate into NHS488-positive M. tuberculosis.  10 

 11 

C, Fluorescence microscopy of HADA, alkDADA and OalkTMM-labeled bacteria in B. Envelope 12 

labeling is apparent both along the sidewall, where it colocalizes with NHS488, as well as at the 13 

cell poles, where it does not. Dotted white lines highlight cell contours. 14 

 15 

Figure 3—figure supplement 1. Schematic of peptidoglycan synthesis in mycobacteria. 16 

TPase, transpeptidase.  17 

 18 

Figure 3—figure supplement 2. Antibiotics do not cause obvious cell death in 45 min.  19 

 20 

M. smegmatis cultures were treated with 2X MIC of indicated antibiotics for 45 min, washed, 21 

and 10-fold serial dilutions were spotted onto LB agar. 22 

 23 

Figure 4—figure supplement 1. alkDA labels at much lower concentrations than 24 

alkDADA. 25 

 26 
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M. smegmatis were labeled with 2 mM of alkDADA (dark grey) or different concentrations of 1 

alkDA (light grey) for 15 min then fixed and subjected to CuAAC. MFI, median fluorescence 2 

intensity from which the control (no probe but subjected to CuAAC) was subtracted. Error bars, 3 

+/- standard deviation. 4 

 5 

Figure 4—figure supplement 2. Loss of LdtA, LdtB and/or LdtE decreases both RADA 6 

and alkDADA labeling. 7 

 8 

 A, Wildtype and ldt strains were labeled with RADA (red) or alkDADA (grey) for 30 min, then 9 

washed and fixed. alkDADA detected by CuAAC with azido-CR 110. Fluorescence was 10 

quantitated by flow cytometry. Data are expressed as percentage of untreated wildtype labeling 11 

as in Figure 3B. Experiment was performed 4-11 times in triplicate. Error bars, +/- standard 12 

deviation. Differences within RADA- and alkDADA-labeled strains are significant at p < 0.005, 13 

one-way ANOVA comparison of log10 data for biological replicates. 14 

 15 

B, Wildtype (dark green) and ΔldtABE (light green) M. smegmatis were labeled with alkDADA for 16 

15 min, then washed, fixed and subjected to CuAAC with azido-CR110 prior to imaging. 17 

Fluorescence was quantitated for 40<n<70. Signal was normalized by cell length and brighter 18 

poles oriented to the right-hand side of the graph. AU, arbitrary units. Experiment repeated twice 19 

with similar results. Representative images at right. 20 

 21 

Figure 4—figure supplement 3. Loss of LdtA, LdtB and LdtE do not cause a growth 22 

defect in M. smegmatis.  23 

 24 

Culture turbidity increases at the same rate for wildtype and ΔldtABE growing in 7H9 medium.  25 

 26 
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Figure 5—figure supplement 1. Short incubation in alkDADA results in polar and sidewall 1 

labeling. 2 

 3 

Structured illumination microscopy of M. smegmatis incubated in alkDADA for 2 min then 4 

washed, fixed and subjected to CuAAC with azido-CR110. Arrows highlight sidewall signal. 5 

 6 

Figure 5—figure supplement 2. Fluorescent vancomycin (vanc-fl) labeling at poles and 7 

sidewall. 8 

 9 

M. smegmatis were incubated in the fluorescent antibiotic for 3 hrs or ~one doubling. Longer 10 

arrow, polar labeling. Short arrow, sidewall labeling. 11 

 12 

Figure 5—figure supplement 3. Penicillin-binding proteins are present along 13 

mycobacterial cell periphery. 14 

 15 

A, M. smegmatis merodiploid expressing PonA1-mRFP imaged by structured illumination 16 

microscopy. Arrows highlight sidewall signal. 17 

 18 

B, Bocillin labeling of live M. smegmatis pre-treated or not with ampicillin or D-cycloserine. No 19 

Boc, autofluorescence; no abx, no antibiotic. 20 

 21 

C, Quantitation of cellular fluorescence for B. 60<n<180. Signal was normalized by cell length 22 

and brighter poles oriented to the right-hand side of the graph. AU, arbitrary units. 23 

 24 

Figure 5—figure supplement 4. Physical expansion of the mycobacterial cell is confined 25 

to the poles and occurs more rapidly at the RADA-bright tip. 26 
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 1 

M. smegmatis were incubated in RADA for 15 min, washed and grown for 0 or 15 min in the 2 

absence of probe. Images obtained by conventional fluorescence microscopy, left, were 3 

quantified for 24<n<41 cells, right, as in Figure 5—figure supplement 3C. Magnification of the 4 

dim and bright pole quantitation are shown above the main graph. Distances between local 5 

maxima are expressed as percentage of total, normalized cell length. Experiment was 6 

performed twice with similar results. dp, dim pole; sw, sidewall; bp, bright pole. AU, arbitrary 7 

units.  8 
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Figure 1. Cell envelope metabolic labeling in mycobacteria. A, Schematic of one and two step metabolic labeling. Top, a cell 
envelope precursor or ‘probe’ bearing a reactive group is incorporated into the envelope by the endogenous enzymatic machinery of 
the cell. The presence of the probe is then revealed by a chemical reaction with a label that bears a complementary reactive group. 
Bottom, in some cases the probe can be pre-labeled, bypassing the chemical ligation step and embedding the detection moiety 
directly into the macromolecule. Yellow star, fluorophore. See (21) for more details. B, Probes used in this work to mark the 
mycobacterial envelope. See text for details. Colored and black chemical structures denote probes used in one and two step 
labeling, respectively. MM, mycomembrane; AG, arabinogalactan; PG, peptidoglycan; PM, plasma membrane. C, X and Y reactive 
partners used in this work for two step labeling as shown in A. CuAAC, copper-catalyzed azide-alkyne cycloaddition; SPAAC, strain-
promoted azide-alkyne cycloaddition.  
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Figure 2. Asymmetric polar gradients of cell envelope metabolic labeling in mycobacteria. A, M. smegmatis was incubated for 
15 min (~10% generation) in the indicated probe, then washed and fixed. Alkynyl probes were detected by CuAAC with azido-CR110 
and cells were imaged by structured illumination microscopy. B, M. smegmatis dual labeled with RADA and alkDADA, left, or RADA 
and OalkTMM, right, and imaged by conventional fluorescence microscopy. C, M. smegmatis was labeled as in B and cellular 
fluorescence was quantitated for cells without (top; 77<n<85) or with (bottom; 9<n<51) visible septa for RADA, OalkTMM and 
alkDADA. Signal was normalized to cell length and to total fluorescence intensity. Cells were oriented such that the brighter pole is 
on the right hand side of the graph. D, M. smegmatis (Msm) and M. tuberculosis (Mtb) were labeled with HADA for 15 min and 2 
hours, respectively, then washed and fixed. Fluorescence was quantitated as in C for cells without (top; 34<n<42) and with (bottom; 
9<n<31) visible septa. We defined the dim pole (dp; dark purple) as the sum of the fluorescence intensity over the first 25% of the 
cell; the sidewall (sw; medium purple) as the sum from 25% to 75%; and the bright pole (bp; light purple) as the sum over the final 
25% of the cell. Fluor distrib, fluorescence distribution. AU, arbitrary units. 
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Figure 3. Multiple pathways of D-amino acid probe incorporation in M. smegmatis.  
  
A, Schematic of the theoretical routes of D-amino acid (DA) and D-alanine D-alanine (DADA) probe incorporation. LDT, L,D-
transeptidase, DDT, D,D-transpeptidase (DDTs). For more details on the peptidoglycan synthesis pathway, see Fig. S3. 
  
B, Sensitivity of HADA (blue), NADA (green), RADA (red), alkDA (light grey), alkDADA (dark grey) and OalkTMM (black) to 
antibiotics. Imi, imipenem + clavulanate; amp, ampicillin + clavulanate; dcs, D-cycloserine; vanc, vancomycin. M. smegmatis was 
pretreated or not with the indicated antibiotics at 2X MIC for 30 min then incubated an additional 15 min in the presence of probe. 
The bacteria were then washed and fixed. The alkyne-bearing probes were detected by CuAAC with azido-CR110 and quantitated 
by flow cytometry. Experiment was performed 3-4 times in triplicate. For each biological replicate, the averaged median fluorescence 
intensities (MFI) of the drug-treated samples were divided by the MFI of untreated bacteria. Data are expressed as the average 
percentage of untreated labeling across the biological replicates. Error bars, +/- standard deviation. 
  
C, Effect of antibiotic dose on alkDA-derived fluorescence. M. smegmatis was pretreated or not with drugs at the fold-MIC indicated 
and labeled as in B. Experiment was performed 3 times in triplicate. For each biological replicate, the averaged MFI of the control 
(no drug, no alkDA but subjected to CuAAC) was subtracted from the averaged MFI of the drug-treated sample. This was then 
divided by the averaged MFI of untreated control (no drug but incubated in alkDA and subjected to CuAAC) from which the control 
MFI had also been subtracted. Data are expressed as the average percentage of untreated labeling across the biological replicates. 
Error bars, +/- standard deviation. 
  
D, Left, combined effects of imipenem and D-cycloserine on alkDA-derived fluorescence. M. smegmatis was pretreated or not with 
the drugs at the fold-MIC indicated and labeled as in B. Experiment was performed twice in triplicate with similar results. One data 
set is shown. The percent of untreated labeling was calculated as in C and subtracted from 100 to obtain the percent inhibition. 
Right, Bliss interaction scores for each pair of doses in left-hand graph were calculated as (EI+ED-EIED)/EI,D where EI is the effect of 
imipenem at dose i, ED is the effect of D-cycloserine at dose d and EI,D is the observed effect of the drugs at dose i and dose d. 
Combinations that produce Bliss scores greater than, equal to, or less than 1 are respectively interpreted as antagonistic, additive, or 
synergistic interactions. 
  
E, Dose-dependent effect of imipenem on alkDADA (grey), HADA (blue) and RADA (red) labeling. M. smegmatis was pretreated or 
not with imipenem at the fold-MIC indicated and labeled as in B. Experiment was performed 3 times in triplicate and one 
representative data set is shown. For each technical replicate, the averaged median fluorescence intensities (MFI) of the drug-
treated samples were divided by the averaged MFI of untreated bacteria. Data are expressed as the average percentage of 
untreated labeling across the technical replicates. Error bars, +/- standard deviation.  
  
F, Wildtype M. smegmatis pre-treated or not with 2X MIC imipenem and untreated ΔldtABE and complement (c ldtABE) were labeled 
with alkDA (white), HADA (blue), NADA (green) or RADA (red) and processed as in B. Experiment was performed 2-10 times in 
triplicate. Representative data from one of the biological replicates is shown here. Error bars, +/- standard deviation.  
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Figure 4. alkDADA rescues the growth of D-alanine racemase (Alr) and ligase (DdlA) mutants. 
 
alkDADA probe supports the growth of Δalr, A, or temperature-sensitive ddlAts, B. Wildtype (white bars) and Δalr (grey bars), B, or 
ddlAts (grey bars), were grown in the presence or absence of exogenous D-alanine, D-alanine- D-alanine or alkynyl derivatives 
thereof. Error bars, +/- standard deviation. Significant differences compared to Δalr no D-alanine (#, second bar from left), A, or ddlAts 
at 42 ˚C no D-alanine-D-alanine (#, fourth bar from left), B, One-way ANOVA with Dunnett’s test, are shown for 3-4 biological 
replicates. ***, p < 0.005, ****, p<0.0005.  
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Figure 5. alkDADA and azDADA incorporate into lipid-linked peptidoglycan precursors. 
  
A, Detection of lipid-linked peptidoglycan precursors from organic extracts of M. smegmatis. Endogenous D-alanines were exchanged 
for biotin-D-lysine (BDL) via purified S. aureus PBP4. Biotinylated species detected by blotting with streptavidin-HRP. MurJ (MviN) 
depletion strain was incubated in anhydrotetracycline (atc) to induce protein degradation. Other strains were treated with vancomycin 
(vanc), D-cycloserine (dcs) or a combination prior to harvesting. Wt, wildtype; blank, no sample run; no extract, BDL and PBP4 alone 
a, organic extract from MurJ- atc; b, organic extract from MurJ+atc; hk, heat-killed. 
  
B, Detection of lipid-linked peptidoglycan precursors labeled by alkDADA in vivo. Wildtype and Δalr strains were incubated in 
alkDADA and treated or not with the indicated antibiotics prior to harvest. Alkyne-tagged species from organic extracts were ligated to 
picolyl azide biotin via CuAAC then detected as in A. BDL/PBP4, endogenous precursors from MurJ+atc were subjected to in vitro 
exchange reaction as in A. 
  
C, Detection of lipid-linked peptidoglycan precursors labeled by azDADA in vivo. Δalr was incubated in azDADA. Azide-tagged 
species from organic extracts were ligated to DIFO-biotin via SPAAC or to alkyne biotin via CuAAC then detected as in A.  
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Figure 6. Peptidoglycan synthesis is redistributed to the sidewall upon cell wall damage. A, Model for the spatial organization 
of peptidoglycan (PG) synthesis and repair with respect to mycobacterial growth and division. B, M. smegmatis was pretreated or not 
with lysozyme and mutanolysin for 30 min then incubated an additional 15 min in the presence of alkDADA. The bacteria were then 
washed and fixed and subjected to CuAAC with azido-CR110. Images obtained by conventional fluorescence microscopy were 
quantified for 25<n<40 cells as in Fig. 2 except that i. signal was not normalized to total fluorescence intensity, only to cell length, 
and ii. cells with and without visible septa were analyzed together. Experiment was performed twice with similar results. dp, dim pole 
(dark purple); sw, sidewall (medium purple); bp, bright pole (light purple). Fluor distrib, fluorescence distribution. AU, arbitrary units. 


