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Abstract11

Integration of genome-wide association studies (GWAS) and expression quantitative trait loci (eQTL)12

studies is needed to improve our understanding of the biological mechanisms underlying GWAS hits, and13

our ability to identify therapeutic targets. Gene-level association test methods such as PrediXcan can14

prioritize candidate targets. However, limited eQTL sample sizes and absence of relevant developmental15

and disease context restricts our ability to detect associations. Here we propose an efficient statistical16

method that leverages the substantial sharing of eQTLs across tissues and contexts to improve our ability17

to identify potential target genes: MulTiXcan. MulTiXcan integrates evidence across multiple panels18

while taking into account their correlation. We apply our method to a broad set of complex traits available19

from the UK Biobank and show that we can detect a larger set of significantly associated genes than20

using each panel separately. To improve applicability, we developed an extension to work on summary21

statistics: S-MulTiXcan, which we show yields highly concordant results with the individual level version.22

Results from our analysis as well as software and necessary resources to apply our method are publicly23

available.24
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Introduction25

Recent technological advances allow interrogation of the genome to a high level of coverage and precision,26

enabling experimental studies that query the effect of genotype on both complex and molecular traits.27

Among these, GWAS have successfully associated genetic loci to human complex traits. GWAS meta-28

analyses with ever increasing sample sizes allow the detection of associated variants with smaller effect29

sizes [1–3]. However, understanding the mechanism underlying these associations remains a challenging30

problem, requiring follow-up studies and a wide array of techniques such as prioritization [4] and pathway31

analysis [5].32

Another approach is the study of quantitative trait loci (eQTLs), measuring association between33

genotype and gene expression. These studies provide a wealth of biological information but tend to have34

smaller sample sizes. A similar observation applies to QTL studies of other traits such methylation,35

metabolites, or protein levels.36

The importance of gene expression regulation in complex traits [6–9] has motivated the integration37

of eQTL studies and GWAS. To examine these mechanisms we developed PrediXcan [10], a method that38

tests the mediating role of gene expression variation in complex traits. We also developed an extension39

that accurately infers its gene-level association results using summary statistics data: S-PrediXcan [11].40

This allows the rapid exploration of information available in publicly available GWAS summary statistics41

results, at a dramatically reduced computational burden.42

Due to sharing of eQTLs across multiple tissues, we have shown the benefits of an agnostic scanning43

across all available tissues [11]. Despite the increased multiple testing burden (for Bonferroni correction,44

the total number of gene-tissue pairs must be used when determining the threshold) we gain considerably45

in number of significant genes. However, given the substantial correlation between different tissues [12],46

Bonferroni correction can be too stringent increasing the false negative rate.47

In order to aggregate evidence more efficiently, here we present a method termed MultiXcan that48

tests the joint effects of gene expression variation from different tissues. Furthermore, we develop49

and implement a method that only needs summary statistics from a GWAS: Summary-MulTiXcan (S-50

MulTiXcan for short). We make our implementation publicly available to the research community in51

https://github.com/hakyimlab/MetaXcan. We apply this method to traits from the UK Biobank52

study and over a hundred public GWAS, and publish the results in http://gene2pheno.org.53
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Results54

Combining Information Across Tissues Through Multivariate Regression55

To combine information across tissues, we regress the phenotype of interest on the predicted expression56

of the gene in multiple tissues as follows:57

Y = µ + t1g1 + t2g2 + · · ·+ tpgp + e (1)

where Y is the phenotype, µ is an intercept term, ti is predicted expression for a model trained on tissue58

study i, gi is its effect size, and e an error term.59

Expression predictions from many of these tissues are highly correlated. To avoid numerical issues60

caused by collinearity, we compute the principal components of the predicted expression matrix and61

discard the axes of smallest variation. Additional covariates can be added to the regression seamlessly.62

Fig. 1-a displays an overview of the method; see further details in the Methods section. We illustrate63

prediction correlation across models in Supp. Fig. 1.64

MulTiXcan Detects More Associations Than Single-Tissue PrediXcan65

We applied our method to 222 traits from UK Biobank [13]. We used prediction models for 44 tissues66

trained with Genotype-Tissue Expression (GTEx) samples [12]. We found that it can detect many more67

associations than PrediXcan using a specific tissue or even when aggregating results from all tissues68

(Bonferroni-corrected for all gene-tissue pairs tested).69

More specifically, we compared three approaches for assessing the significance of a gene jointly across70

all tissues: 1) running PrediXcan using the most relevant tissue; 2) running PrediXcan using all tissues,71

one tissue at a time; 3) running MulTiXcan. Fig. 1-b illustrates a schematic representation of the results72

from each approach. Overall, MulTiXcan detects more associations than PrediXcan, as shown in Fig.73

2-c. Supplementary Data 1 contains a summary of associations per trait. See Supplementary Data 2 and74

3 for the list of significant MulTiXcan and PrediXcan results respectively.75

We examined the High-Cholesterol trait results in closer detail. We used 50,497 cases and 100,99476

controls. After Bonferroni correction, MulTiXcan was able to detect a larger number of significantly77

associated genes (251) than PrediXcan using all tissues (196) or only a single tissue (whole blood, 33). 17278
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genes were detected by both PrediXcan and MulTiXcan. Fig. 2-a compares the number of significantly79

associated genes in MulTiXcan, and PrediXcan both for a single tissue (whole blood) and all tissues.80

Fig. 2-b shows the QQ-plot for associations in these three approaches. There are 79 genes associated to81

high cholesterol via MulTiXcan and not PrediXcan. Among them, we find many genes related to lipid82

metabolism (APOM [14], PAFAH1B2 [15]), glucose transport(SLC5A6 [16]), and vascular processes83

(NOTCH4 [17]).84

MulTiXcan Results Can Be Inferred From GWAS Summary Results85

To expand the applicability of our method to massive sample sizes and to studies where individual86

level data are not available, we have extended our method to use GWAS summary results rather than87

individual-level data.88

We call this extension Summary-MulTiXcan (S-MulTiXcan). Here we derive an analytic expression89

that relates the joint regression estimates (gj) to the marginal regression estimates (γj as obtained from90

S-PrediXcan), assuming a known LD structure from a reference panel. We display a conceptual overview91

of the method in Fig. 4-a. See details in the Methods Section.92

Figure 3 displays a few examples of the general agreement between the individual-level MulTiXcan and93

S-MulTiXcan. The summary-based version’s results tend to be slightly less significant than MulTiXcan,94

as illustrated in Supplementary Figure 2.95

To reduce false positives due to LD misspecification, we discard any significant association result96

for a gene when the best single tissue result has p-value greater than 10−4. This is rather conservative97

since it is possible that evidence with modest significance from weakly correlated tissues can lead to very98

significant combined association. We have, in fact, found several such instances using individual level99

data.100

Application to a broad set of complex traits101

We applied S-MulTiXcan to over a 100 traits on publicly available GWAS. As with the individual level102

method, we observed that S-MulTiXcan detects more associations than S-PrediXcan in most cases, as103

shown in figure 4-b, after discarding suspicious associations. We also show the QQ-plots and total number104

of detected association for a sample trait (Schizophrenia) on Figure 4-c and 4-d.105

These results have been incorporated into the publicly available catalog at http://gene2pheno.org.106
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The list of analyzed traits can be found in Supplementary Data 4. Supplementary Data 5 contains a107

summary of significant associations for each trait. Supplementary Data 6 lists the significant S-MulTiXcan108

results for each trait.109

Highlight Of Associations Identified By Summary-MulTiXcan110

We examined the biological relevance of some of the genes detected by our new method that was missed111

by looking at one tissue at a time (S-PrediXcan).112

For example, in the Early Growth Genetics (EGG) Consortium’s Body-Mass Index (BMI) study,113

S-MulTiXcan detects three genes not significant in S-PrediXcan: POMC (p-value=1.4 × 10−6, tied to114

childhood obesity [18]); RACGAP1 (p-value= 1.2×10−10; embryogenesis [19], cell growth and differentia-115

tion, [20]); and TUBA1B (p-value=1.23×10−09, circadian cycle processes and psychological disorders [21],116

suggesting a behavioral pathway).117

In the CARDIoGRAM+C4D Coronary Artery Disease (CAD) study, S-MulTiXcan detected 12 as-118

sociations not significant in S-PrediXcan. The top result was AS3MT (p-value=4.3 × 10−9), related119

to arsenic metabolism; interestingly, environmental and toxicological studies link arsenic exposure and120

AS3MT polymorphisms with cardiovascular disease [22, 23]. Associations previously linked to CAD in-121

cluded CDKN2B (p-value< 1.0 × 10−6, [24]) HECTD4 (p-value< 2.3 × 10−6, [25]). Other interesting122

S-MulTiXcan findings were CLCC1 (pvalue=1.2 × 10−7, a gene for chloride channel activity); IREB2123

(p-value=2.1×10−7, recently linked to pulmonary conditions, [26]), and ADAM15 (p-value=2.5×10−07,124

from the disintegrin and metalloproteinase family, linked to atherosclerosis [27], atrial fibrillation [28],125

and other vascular processes [29,30]).126

The list of significant S-MulTiXcan and S-PrediXcan results for all traits can be found in Supplemen-127

tary Data 6 and 7.128

Discussion129

Motivated by the widespread sharing of regulatory processes across tissues [12], we propose here a method130

(MulTiXcan) that aggregates information across multiple tissues and improves the identification of genes131

significantly associated with complex traits. To expand the applicability of our approach we have extended132

the method to accommodate GWAS studies where only summary results are available (S-MulTiXcan).133
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We show through applications to hundreds of traits the performance of both individual and summary134

based methods. We also show that the summary based method provides a reasonably good approximation135

to the individual level results.136

As any method relying on a reference panel, S-MulTiXcan might be inaccurate when the study137

population has a different Linkage Disequilibrium (LD) structure than the reference panel. For example,138

should two models for a gene yield predicted expressions that are lowly correlated in the reference panel139

but highly correlated in the study population, then this method underestimates their correlation. To avoid140

this misspecification, a reference panel matching the study population should be used when available (i.e.141

using East Asian population from 1000 Genomes if the study set is composed of East Asian individuals).142

A limitation of PrediXcan and S-PrediXcan is LD contamination, i.e. when causal loci for the trait143

and expression are different but in LD. We have addressed this in S-PrediXcan through an additional144

colocalization filtering step. For MulTiXcan, this could be avoided by restricting the analysis to gene-145

tissue pairs with high colocalization probability.146

Here we showed the advantages of our joint estimation method through application to multiple traits147

with publicly available GWAS results as well as the ones available in the UK Biobank. These results148

include many novel associations of interest, which we make publicly available to the research community149

in http://gene2pheno.org.150

Software And Resources151

We make our software publicly available on a GitHub repository: https://github.com/hakyimlab/152

MetaXcan. Prediction model weights and covariances for different tissues can be downloaded from Pre-153

dictDB.org. A short working example can be found on the GitHub page; more extensive documentation154

can be found on the project’s wiki. The results of S-MulTiXcan applied to the 44 human tissues and a155

broad set of phenotypes can be queried on http://gene2pheno.org.156

Methods157

Definitions, Notation And Preliminaries158

Let us consider a GWAS study of n samples, and assume availability of prediction models in p different159

tissues. Each model j is a collection of prediction weights wji .160
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Let:161

• y be an n-vector of phenotypes, assumed to be centered for convenience.162

• X the genotype matrix, where each column Xl is the n-vector genotype for SNP l. We assume it163

coded in the range [0,2] but it can be defined in another range, or normalized.164

• Let t̃j =
∑
i∈modelj w

j
iXi be the predicted expression for model j. Let tj be the standardization of165

t̃j .166

In our application, we will consider p = 44 models for a given gene’s expression, trained on GTEx167

data. This method is easily extensible to support incorporation of other covariates, or correction by them.168

MulTiXcan169

MulTiXcan consists of fitting a linear regression of the phenotype on predicted expression from multiple170

tissue models jointly:171

y =

p∑
j=1

tjgj + e

= Tg + e, (2)

where y is a vector of phenotypes for n individuals, tj is an n-vector of normalized predicted gene172

expression for model j, gj is the effect size for the predicted gene expression j, e is an error term, and p173

is the number of tissues; thus T is a data matrix where each column j contains the values from tj , and174

g is the p-vector of effect sizes gj . One of this columns is a constant intercept term.175

The high degree of eQTL sharing between different tissues induces a high correlation between pre-176

dicted expression levels. In order to avoid collinearity issues and numerical instability, we decompose the177

predicted expression matrix into principal components and keep only the eigenvectors of non negligible178

variance. To select the number of components, we used a condition number threshold of λmax
λi

< 30, where179

λi is an eigenvalue of the matrix TtT. A range of values between 10 and 100 yielded similar results. We180

use an F-test to quantify the significance of the joint fit.181
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We use Bonferroni correction to determine the significance threshold. For MulTiXcan, we use the total182

number of genes with a prediction model in at least one tissue, which yields a threshold approximately at183

0.05/17500 ∼ 2.9× 10−6. For PrediXcan across all tissues, we use the total number of gene-tissue pairs,184

which yields a threshold approximately at 0.05/200, 000 ∼ 2.5× 10−7.185

Application To UK Biobank Data186

We used the same covariates reported in [31], which include the first ten genotype principal components,187

sex, age, genotyping array, and depending on the trait others such as body mass index (BMI), weight188

or height. We used 44 models trained on GTEx tissues from release version v6p. For diseases, we used189

twice as many healthy individuals as controls, selected at random.190

Summary-MulTiXcan191

We have demonstrated that S-PrediXcan can accurately infer PrediXcan results from GWAS Summary192

Statistics and LD information from a reference panel [11], with the added benefits of reduced computa-193

tional and regulatory burden. Here we extend MulTiXcan in a similar fashion.194

Summary-MulTiXcan (S-MulTiXcan) infers the individual-level MulTiXcan results, using univariate195

S-PrediXcan results and LD information from a reference panel. It consists of the following steps:196

• Computation of single tissue association results with S-PrediXcan.197

• Estimation of the correlation matrix of predicted gene expression for the models using the Linkage198

Disequilibrium (LD) information from a reference panel (typically GTEx or 1000 Genomes [32])199

• Discarding components of smallest variation from this correlation matrix to avert collinearity and200

numerical problems (Singular Value Decomposition, analogue to PC analysis in individual-level201

data).202

• Estimation of joint effects from the univariate (single-tissue) results and expression correlation.203

• Discarding suspicious results, suspect to be false positives arising from LD-structure mismatch.204
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Joint Analysis Estimation From Marginal Effects205

To derive the multivariate regression (2) effect sizes and variances using the marginal regression (3)206

estimates, we employ a technique presented in [33]. We use the phenotype variance as a conservative207

approximation to the residual variance σe.208

More specifically, we want to obtain the multivariate regression coefficient estimates for gj (2) using209

the estimates from the marginal regression:210

y = tjγj + ε. (3)

where we assume y centered for convenience.211

First, notice that the solution to the multivariate regression in eq. (2) is

ĝ =
(
TtT

)−1
Tty (4)

var(ĝ) = σ2
e(TtT)−1 (5)

, whereas the solution to the marginal regression in eq. (3) is:

γ̂ = D−1Tty (6)

var(γ̂) = σ2
εD
−1 with D = diag(TtT) (7)

From (6) we get Tty = Dγ̂, which we replace in (4) and obtain the relationship between marginal212

and joint estimates:213

ĝ =
(
TtT

)−1
Dγ̂ (8)

To compute the variance of the estimated effect sizes (5) we use the variance of the phenotype as a214

conservative estimate of σ2
e and LD information from reference samples as described next.215

Estimating Expression Correlation From A Reference Panel216

As the genotypes from most GWAS are typically unavailable, we must use a reference panel to compute217

TtT, using only those SNPS available in the GWAS results. To do so, notice that:218
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(TtT)ij = Cor(ti, tj)

= Cov(ti, tj)

= Cor(t̃i, t̃j)

=
Cov

(
t̃i, t̃j

)√
v̂ar(t̃i)v̂ar(t̃j)

=
Cov

(∑
a∈modeli w

i
aXa,

∑
b∈modelj w

j
bXb

)
√

v̂ar(t̃i)v̂ar(t̃j)

=

∑
a∈modeli
b∈modelj

wiaw
j
bCov (Xa, Xb)√

v̂ar(t̃i)v̂ar(t̃j)

=

∑
a∈modeli
b∈modelj

wiaw
j
bΓab√

v̂ar(t̃i)v̂ar(t̃j)
, (9)

where Γij are the elements of the covariance matrix Γ = v̂ar (X) = (X− X̄)t(X− X̄)/n. We compute

the variances as in the S-PrediXcan analysis:

v̂ar(t̃j) = σ̂2
j

= (Wj)t Γj Wj

=
∑

a∈modelj
b∈modelj

wjaw
j
bΓab (10)

Addressing Singularity Of The Correlation Matrix219

Given the high degree of correlation among many of the prediction models, TtT is close to singular220

and its inverse cannot be reliably calculated for many genes. To address this problem, we compute the221

pseudo-inverse via Singular Value Decomposition, decomposing the covariance matrix into its principal222

components and removing those with small eigenvalues. In other terms, we will restrict the analysis to223

axes or largest variation of the expression data. This is analogous to the principal components-based224

approach used with individual level data. We denote with Σ+ the pseudo-inverse for any matrix S. We225

use the same condition number from individual-level MultiXcan (λmax
λi

< 30) as threshold.226
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Estimating Significance227

To quantify significance, we use the fact that the regression coefficient estimates follow a (approximate)

multivariate normal distribution: ĝ ∼ N (ĝ, σ2 (TtT)
−1

). Under the null hypothesis of no association, it

follows that ĝtT
tT
σ2 ĝ ∼ χ2

p. We can then replace ĝ with its estimate from the marginal regression:

ĝt(TtT)ĝ

σ2
e

=
γ̂tD (TtT)

−1
TtT (TtT)

−1
Dγ̂

σ2
e

=
γ̂tD

σe

(
TtT

)−1 Dγt

σe

≈ ẑt
(
TtT

)−1
ẑ,

where z is the p-vector of marginal analysis z-scores, γj/se(γj). We have used σ2
Y ≈ σ2

e ≈ σ2
εj in the228

last step as an approximation. This simplification is conservative, and based on our comparison to the229

individual multivariate results we consider the loss of efficiency acceptable.230

Implementation And Computation231

Prediction Models were obtained from PredictDB.org resource. These models were trained using Elastic232

Net as implemented in R’s package glmnet [34], with a mixing parameter α = 0.5, over 44 tissue studies233

from GTEx’ release version 6p. The underlying GTEx study data was obtained from dbGaP with accesion234

number phs000424.v6.p1. Please see [11] for details. We implemented MulTiXcan and S-MulTiXcan235

working up from existing software in the MetaXcan package.236

UK Biobank genotype data for 487, 409 individuals was downloaded and processed in the Bionimbus237

Protected Data Cloud (PDC), a secure biomedical cloud operated at FISMA moderate as IaaS with an238

NIH Trusted Partner status for analyzing and sharing protected datasets. We computed GWAS results239

using BGENIE, a program for efficient GWAS for multiple continuous traits [35]. We selected 222 traits240

available for these individuals, covering continuous phenotypes such as height and self reported diseases241

such as asthma. We used different covariate groups for these phenotypes as in [31]. Age, sex and the242

top ten principal components were used in all cases. For diseases, we randomly sampled twice as many243

healthy controls as there were cases. Gene expression prediction was computed on the genotype data244

using the 44 GTEx models.245

When running MulTiXcan, we used the same covariates and data as in the GWAS. On most continuous246
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phenotypes, there were between 300, 000 and 400, 000 individuals with available data determined by the247

intersection of covariates and traits. For the case of self reported diseases, we found a number of cases248

ranging from a few hundreds (i.e. Acne) to 50, 000 (i.e. High Cholesterol). We also ran S-PrediXcan on249

105 public GWAS traits (the same analyzed in [11], see Supplementary Data 4 for details).250
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Figure 1. MulTiXcan method.
Panel a illustrates MulTiXcan method. Predicted expression from all available tissue models are used
as explanatory variables. To avoid multicolinearity, we use the first k Principal Components of the
predicted expression. y is a vector of phenotypes for n individuals, ttissue j

g is the normalized predicted
gene expression for tissue j, gj is its effect size, a is an intercept and e is an error term.
Panel b shows a schematic representation of MulTiXcan results compared to classical PrediXcan, both
for a single relevant tissue and all available tissues in agnostic scanning. y is a vector of phenotypes for
n individuals, tj is the standardized predicted gene expression for model j, gj is its effect size in the
joint regression, γj is its effect size in the marginal regression using only prediction j, e and εj are error
terms.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2018. ; https://doi.org/10.1101/292649doi: bioRxiv preprint 

https://doi.org/10.1101/292649
http://creativecommons.org/licenses/by-nc-nd/4.0/


15

Figure 2. Joint testing across all tissues increases number of significant genes.
Panel a shows the number of discoveries in each method for Cholesterol trait. MulTiXcan is able to
detect more findings (251 significant associations) than either of PrediXcan approaches (33 using only
Whole Blood and 196 using all 44 GTEx tissues).
Panel b compares the distribution of MulTiXcan’s p-values to PrediXcan’s p-values for the Cholesterol
trait in the UK Biobank cohort. Both PrediXcan with a single tissue model (GTEx Whole Blood) and
44 models (GTEx v6p models) are shown. Notice that Bonferroni-significance levels are different for
each case, since 6588 genes were tested in PrediXcan for Whole Blood, 195532 gene-tissue pairs for all
GTEx tissues, and 17434 genes in MulTiXcan. P-values were truncated at 10−30 for visualization
convenience.
Panel c compares the number of significant associations discovered by MulTiXcan and PrediXcan for
222 traits from UK Biobank. These numbers were thresholded at 800 for visualization purposes.
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Figure 3. MulTiXcan results can be inferred from GWAS summary statistics and a
reference panel. This figure compares S-MulTiXcan to MulTiXcan in three UK Biobank phenotypes.
GTEx individuals were used as a reference panel for estimating expression correlation in the study
population. The summary data-based method shows a good level of agreement with the
individual-based method. In cases where the LD-structure between reference and study cohorts is
mismatched, the summary-based method becomes less accurate. For example in Asthma, two genes are
significantly overestimated; however it tends to be conservative for most genes.
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Figure 4. Comparison between S-PrediXcan and S-MulTiXcan.
Panel a illustrates the S-MulTiXcan method: the marginal univariate S-PrediXcan effect sizes are
computed, then the joint effect sizes are estimated from them. The significance is quantified through an
omnibus test.
Panel b compares the number of associations significant via S-MulTiXcan versus those significant via
S-PrediXcan, for the same GWAS Studies. In most cases, S-MulTiXcan detects a larger number of
exclusive significant associations. The number of discoveries was thresholded at 200 for visualization
purposes.
Panel c displays QQ-Plots for the association p-values from S-MulTiXcan and S-PrediXcan in
Schizophrenia, using a model trained on brain’s cerebellum, and S-PrediXcan associations for all 44
GTEx tissues.
Panel d shows the number of significant associations in Schizophrenia for each method as a bar plot.
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Supplementary Data399

Supplementary Data 1. Summary statistics for UK Biobank traits used in the MulTiXcan400

analysis. MulTiXcan was run for 222 traits on UK Biobank. Summary statistics for significant results401

included in supp-data-ukb-multixcan-stats.txt. Columns are: tag: trait, gene2pheno.org display402

name; n_predixcan_significant: Number of Bonferroni-significant PrediXcan results; n_MulTiXcan_significant403

number of Bonferroni-significant results for MulTiXcan; n_predixcan_only number of results only sig-404

nificant in PrediXcan; n_MulTiXcan_only number of results only significant in MulTiXcan.405

Supplementary Data 2. Significant associations for MulTiXcan on UK Biobank. Signifi-406

cant results included in supp-data-ukb-multixcan-significant.txt. Columns are: phenotype: trait,407

gene2pheno.org display name; gene: Ensembl id; gene_name: HUGO name; pvalue: p-value of the408

S-MulTiXcan association; n_models number of prediction models available for the gene; n_used num-409

ber of independent components surviving PCA selection; n_samples: number of individuals available.410

411

Supplementary Data 3. Significant associations for PrediXcan on UK Biobank. Significant412

results included in supp-data-ukb-p-significant.txt. Columns are: Phenotype: trait, gene2pheno.org413

display name; model: GTEx tissue where the model was trained; gene: Ensembl Id; gene_name:414

HUGO name; model GTEx tissue where model was trained; zscore PrediXcan association Z-score,415

pvalue PrediXcan association p-value; n_samples: number of individuals available.416

Supplementary Data 4. List of Genome-wide Association Meta Analysis (GWAMA) Con-417

sortia and phenotypes. Data included in supp-data-gwas-traits.txt. Columns are consortium418

name, study name, gene2pheno.org display name, study sample size, study population, URL of portal419

where data was downloaded from, link to pubmed entry if available.420

Supplementary Data 5. Summary statistics for traits used in the MulTiXcan analysis.421

MulTiXcan was run for 105 public GWAS. Summary statistics for significant results included in supp-422

data-gwas-smultixcan-stats.txt. Columns are: tag: gene2pheno.org display name; consortium:423

Consortium Name; name: study name; n_spredixcan_significant: Number of Bonferroni-significant424

S-PrediXcan results; n_sMulTiXcan_significant number of Bonferroni-significant results for MulTi-425
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Xcan; n_spredixcan_only number of results only significant in S-PrediXcan; n_sMulTiXcan_only426

number of results only significant in S-MulTiXcan.427

Supplementary Data 6. Significant associations for Summary-MulTiXcan on public GWAS.428

Significant results included in supp-data-gwas-smultixcan-significant.txt. Columns are: tag: gene2pheno.org429

display name; consortium: Consortium Name; name: study name; gene: Ensembl id; gene_name:430

HUGO name; pvalue: p-value of the S-MulTiXcan association; n number of S-PrediXcan results avail-431

able for the gene; n_indep number of independent components surviving SVD; p_i_best best p-value432

of S-PrediXcan;t_i_best tissue that presented best S-PrediXcan result; p_i_worst worst p-value of S-433

PrediXcan; t_i_worst tissue that presented worst S-PrediXcan result; suspicious: whether the result434

was discarded as a potential false positive.435

Supplementary Data 7. Significant associations for Summary-PrediXcan on public GWAS.436

Significant results included in supp-data-gwas-sp-significant.txt. Columns are: consortium: Con-437

sortium Name; name: study name; tag: gene2pheno.org display name; gene: Ensembl Id; gene_name:438

HUGO name; model GTEx tissue where model was trained; zscore S-PrediXcan association Z-score,439

pvalue S-PrediXcan association p-value.440
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Supplementary Figure 1. Predicted expression correlation for gene SLC5A6. We observe a
high degree of predicted expression correlation, in agreement with recent publications on the high
degree of mechanism sharing across tissues [12]. This behavior is exhibited in most genes.
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Supplementary Figure 2. Summary-MulTiXcan vs MulTiXcan for Miscellaneous Traits.
There is a satisfactory agreement between the individual-level and the summary-level versions of
MulTiXcan in UK Biobank traits.
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