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Abstract

Imputation has been widely utilized to aid and interpret the results of Genome-Wide As-
sociation Studies(GWAS). Imputation can increase the power to identify associations when the
causal variant was not directly observed or typed in the GWAS. There are two broad classes of
methods for imputation. The first class imputes the genotypes at the untyped variants given
the genotypes at the typed variants and then performs a statistical test of association at the
imputed variants. The second class of methods, summary statistic imputation, directly imputes
the association statics at the untyped variants given the association statistics observed at the
typed variants. This second class of methods is appealing as it tends to be computationally
efficient while only requiring the summary statistics from a study while the former class re-
quires access to individual-level data that can be difficult to obtain. The statistical properties
of these two classes of imputation methods have not been fully understood. In this paper, we
show that the two classes of imputation methods are equivalent, i.e., have identical asymptotic
multivariate normal distributions with zero mean and minor variations in the covariance matrix,
under some reasonable assumptions. Using this equivalence, we can understand the effect of
imputation methods on power. We show that a commonly employed modification of summary
statistic imputation that we term summary statistic imputation with variance re-weighting gen-
erally leads to a loss in power. On the other hand, our proposed method, summary statistic
imputation without performing variance re-weighting, fully accounts for imputation uncertainty
while achieving better power.

1 Introduction

Genome-Wide Association Studies(GWAS) has been successfully used to discover genetic variants,
typically single nucleotide polymorphisms (SNPs), that affect the trait of interest [1–7]. GWAS
measure or type the genotypes of individuals at a chosen set of SNPs and, then, perform a statistical
test of association between a given SNP and the trait of interest. SNPs at which the null hypothesis
of no association between the genotype and the trait can be rejected are said to be associated with
the trait. The threshold that the absolute value of association statistics pass to reject null hypothesis
is also referred as significance level.

In a typical GWAS, due to the cost considerations, only a subset of SNPs are genotyped (typed
SNPs). Thus, a direct analyses of typed SNPs is likely to have reduced power to detect associations
between untyped SNPs and the trait. Thus, imputation methods, that aim to fill in “data” at the
untyped SNPs, have emerged as a powerful strategy to increase the power of GWAS. These methods
all rely on the correlation or linkage disequilibrium (LD) [8, 9]. between genotypes at untyped SNPs
and those at typed SNPs [10–16] Initial work on imputation focused on the problem of genotype
imputation, i.e., inferring the genotypes at untyped SNPs given the genotypes at typed SNPs.
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Genotype imputation methods rely a reference panel in which individuals are typed at all SNPs
of interest to learn the LD patterns across SNPs. Given a target dataset in which genotypes are
typed at a subset of the SNPs, these methods rely on the LD patterns learned from the reference
panel to infer the genotypes at the remaining untyped SNPs.

In the context of GWAS, there are two broad classes of imputation methods to estimate the
association statistics at untyped SNPs. The first class relies on genotype imputation to infer
the genotypes at the untyped SNPs followed by computing association statistics at the imputed
genotypes [10–14, 16]. We refer to this class of imputation methods as Two-step imputation
methods. In practice, the most successful methods for the first step of genotype imputation are
based on discrete Hidden Markov Models (HMM) [10, 16]. The second class of methods directly
imputes the association statistics at the untyped SNPs given the association statistics at the typed
SNPs. As shown in previous work [17, 18], the joint distribution of marginal statistics at the typed
SNPs and untyped SNPs follow a multivariate normal distribution (MVN) [17–21]. This class of
methods utilizes the correlation between the association statistics induced by their dependence on
the underlying genotypes [22, 23]. This class of methods is termed summary statistic imputation
(SSI). Summary statistic imputation is appealing as it tends to be computationally efficient while
only requiring the summary statistics from a study while the first class requires access to individual-
level data which can be difficult to obtain in practice. Current summary-statistic based imputation
methods calibrate the imputed statistics using a technique we call variance re-weighting (SSI-
VR). Despite recent progress, the statistical properties of summary statistic imputation methods
(including the impact of variance re-weighting) and the connection between the two classes of
summary statistic imputation methods has not been adequately understood.

In this paper, we show that the two classes of imputation methods, Two-step imputation
and SSI are asymptotically multivariate normal with small differences in the underlying covariance
matrix. Using this asymptotic equivalence, we can understand the effect of the imputation method
on power. Our new method, SSI, perfoms summary statistic imputation without variance re-
weighting. The resulting statistics do not then have unit variance as in traditional summary statistic
imputation but instead correctly take into account the ambiguity of the imputation process.

We compared the peroformance of the imputations methods on the Northern Finland Birth
Cohort (NFBC) data set [24] to show that SSI increases power over no imputation while SSI-VR
can sometimes lead to lower power. Finally, we ran SSI, SSI-VR and Two-step imputation on the
NFBC dataset and show that the resulting statistics are close thereby justifying the theory.

2 Results

2.1 Overview of Summary Statistics

Assume we have a total of M = (U + O) SNPs that are partitioned into O observed (or tag)
SNPs {snp1, snp2, snp3...snpO} and U missing SNPs {snp1, snp2, snp3, ...snpU} for N individuals.
For the O tag SNPs, let sO be a vector of association statistics of length O, λO be a vector of
non-centrality (NCP) parameters of length O, and let ΣO be a O ×O matrix of their pairwise
correlation coefficients. For the U missing SNPs, let sU be a vector of association statistics of
length U , λU be a vector of NCP parameters also of length U , and let ΣU be a U × U matrix of
their pairwise correlation coefficients.

Let ΣUO be a U ×O matrix of the pairwise correlation, i.e., linkage disequilibrium (LD),
between missing SNPs and observed SNPs. Thus, we have a M × M LD matrix, ΣLD. We

can partition the LD matrix as: ΣLD =

[
ΣU ΣUO

ΣOU ΣO

]
. For large sample sizes, the association
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statistics follow a multivariate normal distribution,[
sU
sO

]
∼ N

([
λU
λO

]
,

[
ΣU ΣUO

ΣOU ΣO

])
(1)

Under the null where we assume that none of the SNPs is causal, λU and λO are equal to 0.

2.2 Example

(a) (b)

(c) (d)

Figure 1: The effect of imputation on the rejection boundary: This figure shows rejection boundary
with no imputation, with imputation (SSI), and variance re-weighted imputation (SSI-VR) for an example
containing two observed SNPs snp1, snp2 and an unobserved SNP snp3. The contours represent the prob-
ability density of the statistics for the observed SNPs: s1 and s2 projected in the plane. In Figure 1a, the
blue box is the rejection boundary with FWER 0.05 for snp1 and snp2 before imputation. The polygon
with red and green colored boundaries is the rejection boundary after imputation. Figure 1b and Figure 1c
are a zoomed in version of Figure 1a to show the rejection boundaries changes. Figure 1b shows the power
change on two observed SNPs. Figure 1c shows the power change on the imputed SNP and has 3 points
corresponding to different scenarios. Figure 1d shows the rejection boundary of imputation with SSI-VRin
cyan color in addition to the rejection boundaries seen in Figure 1a.

We consider a simple example to illustrate how imputation affects the rejection threshold at a
given set of SNPs. We consider three SNPs: snp1, snp2, and snp3. In this example, snp1, snp2

are observed, and snp3 is imputed. We assume the statistics of the tag SNPs (snp1, snp2),

[
s1

s2

]
follows N

([
0
0

]
,

[
1 ρ
ρ 1

])
where |ρ| ≤ 1 and we use π(s1, s2) to denote this distribution. We

also assume that the statistics of the tag SNPs snp1, snp2 and the unobserved SNP snp3 jointly

follow the distribution N

 0
0
0

 ,
 1 ρ α
ρ 1 α
α α 1

 where |ρ| ≤ 1, |α| ≤ 1.
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Thus having the joint distribution of the statistics s1, s2, and s3, we can compute the conditional
distribution of the untyped SNP conditioned on the marginal statistics of the typed SNPs s1 and
s2:

P (s3|s1, s2) ∼ N

([
α
α

]T [
1 ρ
ρ 1

]−1 [
s1

s2

]
, 1−

[
α
α

]T [
1 ρ
ρ 1

]−1 [
α
α

])
Typically, summary statistic imputation uses the posterior mean of the statistic s3 given the ob-
served values of ŝ1 and ŝ2 to estimate s3. In our example, this leads to the statistic s3 for snp3

being imputed as a function of ŝ1, ŝ2:

ŝ3(ŝ1, ŝ2) =
α

1 + ρ
(ŝ1 + ŝ2)

.
We choose thresholds t for rejecting each of the statistics (ŝ1, ŝ2, ŝ3) such that the family-wise

error rate, i.e., the probability of at least one false positive, is controlled at a level 0.05 . For each
tested SNP, we choose the threshold to be the same.

In the case where no imputation is performed, we only test two SNPs. We use the same threshold
t for SNPs snp1 and snp2. Figure 1a shows the rejection boundary (the blue box) for two SNPs
with correlation ρ = 0.36 where the region outside this box corresponding to the rejection region.
Given the joint density π(s1, s2) of the association statistics (s1, s2), we determined the rejection
boundary by computing the length of the side of the blue box such that the cumulative density
in the rejection area, i.e., the area under the density π(s1, s2) outside the box is equal to 0.05.
Mathematically, we need to find t such that FWER(t) = 0.05 where:

FWER(t) ≡ 1−
∫
π(s1, s2)1 {s1 ∈ −[t, t]}1 {s2 ∈ [−t, t]} ds1ds2

Here 1 {s1 ∈ −[t, t]}1 {s2 ∈ [−t, t]} defines the acceptance region, i.e., the set of points (s1, s2) ∈ R2

where the null hypothesis at both SNPs are accepted.
We now consider the effect of testing imputed SNPs in addition to the tag SNPs. The rejection

region for snp1, snp2, snp3 are the regions outside the intervals R1 = [−t, t], R2 = [−t, t], R3 = [−t, t]
respectively. We can compute the FWER for a given t by determining the probability mass outside
the rejection region. To do this, we note that the joint sampling distribution of (s1, s2, ŝ3) is
determined only by the distribution of (s1, s2) since ŝ3 is a deterministic function of s1 and s2.

FWER(t) ≡ 1−
∫
π(s1, s2)1 {s1 ∈ −[−t, t]}1 {s2 ∈ [−t, t]}1 {s3 ∈ [−t, t]} ds1ds2ds3

= 1−
∫
π(s1, s2)1 {s1 ∈ [−t, t]}1 {s2 ∈ [−t, t]}1

{
α

1 + ρ
(s1 + s2) ∈ [−t, t]

}
ds1ds2

Notice that, in the setting with imputation, the acceptance region 1 {s1 ∈ [−t, t]}1 {s2 ∈ [−t, t]}
1
{

α
1+ρ(s1 + s2) ∈ [−t, t]

}
can never increase relative to the setting where only the tag SNPs are

tested. Now consider the case where the null hypothesis at both the observed SNPs is accepted.
This happens when |ŝ1| ≤ t and |ŝ2| ≤ t. Then the statistic at the imputed SNP:

|ŝ3(ŝ1, ŝ2)| = | α

1 + ρ
(ŝ1 + ŝ2)|

≤ | α

1 + ρ
| (|ŝ1|+ |ŝ2|) (triangle inequality)

≤ 2| α

1 + ρ
|t
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Thus, if 2| α1+ρ | ≤ 1, then we have |ŝ3(ŝ1 + ŝ2)| ≤ t. Thus, the imputed SNP will never be rejected
when neither of the observed SNPs is rejected. Thus, the acceptance region remains the same as
the setting when only the tag SNPs are tested. In other words, imputation does not change the
rejection boundary.

On the other hand, when α
1+ρ >

1
2 , then imputation will change the rejection region. Figure 1

shows the effect of imputation with α = 0.80 and ρ = 0.36 so that ŝ3(ŝ1, ŝ2) = 0.5882(ŝ1 + ŝ2).
The rejection boundary of the observed SNPs snp1 and snp2 after imputation are shown by the
red lines. The rejection region for snp3 corresponds to the region where |0.5882(s1 + s2)| > t which
corresponds to the green line. Thus the cumulative density outside the polygon of red and green
lines is the same as the rejection area outside the blue box. In Figure 1b, the shaded area indicates
the power loss on the observed SNPs, and in Figure 1c the shaded area is the power gained from
imputation.

Thus assume we have three points, p1, p2 and p3 in Figure 1c, which are three different pairs of
association statistics of observed SNPs snp1 and snp2. The first point is in both the blue rectangle
and the polygon, which means we will accept null with or without imputation. The second point
p2 is the case that, without imputation we will reject null, and after imputation we will accept
null because of the change of boundary on observed SNPs. The third point p3 is the special case.
In this case, the observed SNPs don’t have significant association because it lies inside the blue
box, but after imputation, the imputed SNP has a significant association since it lies outside the
polygon and thus we reject the null.

2.3 Simulation Results

As shown in previous work on summary statistics [22], the marginal statistics at typed SNPs and
untyped SNPs follow a multivariate normal distribution. With the assumption that none of the
SNP is significantly associated with train, the mean of the multivariate normal distribution is 0.

As in the previous simple case having 3 SNPs, snp1, snp2 and snp3, under the null hypothesis

of no association, the summary statistics follow the distribution N

 0
0
0

 ,
 1 ρ α
ρ 1 α
α α 1

.

Thus having the joint distribution of the statistics s1, s2, and s3, we can compute the conditional
distribution of the untyped SNP conditioned on the marginal statistics of the typed SNPs s1 and
s2:

P (s3|s1, s2) ∼ N

([
α
α

]T [
1 ρ
ρ 1

]−1 [
s1

s2

]
, 1−

[
α
α

]T [
1 ρ
ρ 1

]−1 [
α
α

])
(2)

Summary statistic imputation estimates s3 using the mean of the above distribution ŝ3. The

variance of the imputed statistic: var(ŝ3) =

[
α
α

]T [
1 ρ
ρ 1

]−1 [
α
α

]
is smaller than 1 (since

Equation 2 shows that the variance of s3|s1, s2 is 1 −
[
α
α

]T [
1 ρ
ρ 1

]−1 [
α
α

]
and the variance

is non-negative). Thus, in most summary statistics imputation [22, 23], snp3 is imputed as ẑ3 =
ŝ3√
var(ŝ3)

so that all the association statistics have variance 1. Since the variance of ŝ3 is ≤ 1, the

new statistic |ẑ3| ≥ |ŝ3|. As a result, for a given threshold, the acceptance region in SSI-VR is
never greater than with SSI. In other words, to achieve a given FWER, the threshold t needs to be
larger for SSI-VR than without as shown in Figure 1d.

Now having snp3 imputed using summary statistics, we want to find out how power is affected
by SSI and SSI-VR. In section 3 of the Supplementary Information, we analytically compute the
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average marginal power function for both methods. In order to assess power, we assume that 3
SNPs, snp1, snp2 and snp3 are drawn from a region associated with a trait. We assume that the
untagged variant, snp3, is causal with non-centrality parameter (NCP) so that (s1, s2, s3) follow a

non-zero mean multivariate normal distribution: N

2.31α
2.31α
2.31

,

1 ρ α
ρ 1 α
α α 1

. We choose the NCP to

be 2.31 so that the maximum power of no imputation will be around 0.5, which will happen when
both α and ρ are 1. We let the correlation between untagged and tag SNPs α and the correlation
between tag SNPs ρ vary across: [0.1, 0.2, . . . , 0.9, 1].

For each combination of [α, ρ], we determined a set of 3 thresholds i) for no imputation, ii)
for imputation, and iii) imputation with variance correction. We drew 108 samples from each
distribution, and the power is defined as the the probability that we reject the null hypothesis
based on thresholds for each method.

In all the combinations except the cases that the LD matrix is no longer positive definite, we
find the power of no imputation, SSI and SSI-VR (Figure 2). In Figure 2a, we compared SSI versus
no imputation, and we show that SSI always increases power when α

1+ρ >
1
2 as the ratio is always

larger in 1. Since the power of no imputation depend more on the correlation between tagged and
untagged SNP, we see the power being sensitive to α. For instance, if α = 0.7 and ρ = 0.3, the
average power of no imputation is 0.4918 while the average of the power of imputation with no
correction is 0.6614. In figure 2(b), we compared SSI-VR versus no imputation. We see comparing
to 2(a), the power increasing much less significant. In fact, in some cases, we observe SSI-VR has
less power than no imputation. For example, when α = 0.7 and ρ = 0.1, the average power of
imputation with variance correction is 0.4639, and null has an average power of 0.5154.

Then, we compare imputation and imputation with variance re-weighting in Figure 2c and we
notice that SSI-VR will always cause power loss and in figure the value of ratio are all larger than
1. For instance, when α = 0.7 and ρ = 0.3, the average power of imputation is 0.6614, and the
average power of imputation with variance correction is 0.5403.

(a) (b) (c)

Figure 2: A comparison of the power of imputation (SSI) v.s. no imputation(a), SSI-VR v.s.
no imputation(b), and SSI v.s. SSI-VR in a simple example consisting of three SNPs of which
only two are observed. In each panel, we plot the ratio of the power of the two methods under all
configurations of α and ρ. In each figure, the configuration of α and ρ that results in a covariance matrix
that is not positive definite, e.g. α = 1, ρ = 0.1, is left empty. Figure 2a shows that for values of α ≤ 1+ρ

2 ,
the ratio is near one since the rejection boundary is unchanged (as predicted by our theory) while for values
of α > 1+ρ

2 , the power of SSI is greater than that of no imputation. Figure 2b and 2c show that SSI-VR
can lose power relative to both no imputation as well as SSI for a range of configurations of LD.
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2.4 SSI achieves better power compared to existing methods in Northern Fin-
land Birth Cohort (NFBC)

In order to assess the power of imputation and the effect of SSI-VR on imputation in a real dataset,
we simulated marginal statistics utilizing the Northern Finland Birth Cohort (NFBC) dataset.

We assume that every other SNP on chromosome 22 is missing. Thus, we observe half of
SNPs on chromosome 22 and perform imputation on the rest. We find the per-SNP threshold
for only observed SNPs (i.e. no imputation), for SSI and for SSI-VR with the constraint that
FWER is controlled at 0.05. We sampled association statics from the multivariate distribution on
the observed SNPs from the genome. Then we used the sampled statistics to find the per-SNP
significance threshold on the observed SNPs. We found the threshold to be 4.59705. Having this
threshold, we then assume that there are causal SNPs in the genome, i.e. the mean of statistics on
these SNPs are not 0, and assess the power with no imputation. For no imputation, we found an
average power of 0.4946.

For the imputation methods, SSI and SSI-VR we impute the association statistics using the
samples statistics. We impute in two ways, one utilizing the MVN of equation(4), and the other one
use variance re-weighting technique as equation(5). Under the null, we found per-SNP thresholds
for SSI and SSI-VR to be 4.5977 and 4.6891. We then assume that there are causal SNPs,
and used the thresholds to compute the power of each of the imputation methods. We found the
average power to be 0.50124 for SSI and 0.4346 for SSI-VR. Notice that the threshold we found
for no imputation, SSI, and SSI-VR are more accurate than Bonferroni correction and thus less
conservative.

In the Table 1, we also impute the most significantly associated SNPs reported in previous stud-
ies using SSI, SSI-VR and a Two-step imputationusing IMPUTE2 to perform genotype imputation.
We find the association statistics are similar across the three methods validating our theoretical
results.

Table 1: We show that the two classes of imputation method, SSI and Two-step imputation have similar
imputation statistics on the NFBC data set. We consider SNPs that were reported significant in a previous
study [24]. Then, we treat these SNPs as untyped and impute the marginal statistics using SSI, SSI-VR,
and Two-step imputation using IMPUTE2 to impute genotype of untyped SNPs.

Phenotype chr rsID True Statistics SSI | True - SSI| SSI-VR | True -SSI-VR| IMPUTE2 | True - IMPUTE2|

TG
2 rs673548 -5.444 -5.37 0.074 -5.37 0.074 -4.46 0.984
8 rs10096633 -5.679 -5.63 0.049 -5.76 0.082 -5.17 0.509
15 rs2624265 4.22 3.55 0.67 -3.85 0.37 3.60 0.62

HDL

15 rs1532085 7.13 5.59 1.54 6.33 0.8 6.47 0.66
16 rs3764261 12.01 8.23 3.78 10.19 1.82 6.47 5.54
16 rs255049 6.06 5.11 0.95 5.5 0.56 5.70 0.36
17 rs9891572 4.25 3.99 0.26 4.02 0.23 4.40 0.15

LDL

1 rs646776 -7.70 -7.7 0 -7.81 0.11 -6.96 0.74
2 rs693 6.81 6.27 0.54 6.34 0.47 5.91 0.9
11 rs102275 -4.51 -4.43 0.08 -4.45 0.06 -4.54 0.03
11 rs174546 -4.52 -4.43 0.09 -4.45 0.07 -4.58 0.06
11 rs174556 -4.69 -4.73 0.04 -4.85 0.16 -4.62 0.07
11 rs1535 -4.43 -4.46 0.03 -4.66 0.23 -4.45 0.02
19 rs11668477 -5.96 -3.78 2.18 -4.4 1.56 -5.33 0.63
19 rs157580 -5.161 -2.6 2.561 -3.11 2.051 -4.20 0.961

CRP 12 rs2650000 -7.08 -5.25 1.83 -6.54 0.54 -6.05 1.03

GLU

2 rs560887 -6.97 -6.21 0.76 -6.3 0.67 -5.69 1.28
7 rs10244051 5.31 4.34 0.97 4.45 0.86 4.97 0.34
7 rs2191348 5.30 4.33 0.97 4.47 0.83 4.97 0.33
11 rs1447352 -6.35 -5.08 1.27 -5.21 1.14 -4.75 1.6
11 rs7121092 -5.50 -4.93 0.57 -5.31 0.19 -4.60 0.9
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3 Methods

3.1 Summary Statistics

Under the null hypothesis, the joint distribution of the association statistics of the U untagged SNP
sU and the O tag SNPs sO follows a multivariate normal distribution:[

sU
sO

]
∼ N

([
λU
λO

]
,

[
ΣU ΣUO

ΣT
UO ΣO

])
= N

([
0
0

]
,

[
ΣU ΣUO

ΣT
UO ΣO

])
(3)

Since none of the M = (U +O) SNPs are associated, the non-centrality parameters of both λU and
λO are 0. Further, the statistics are standardized so that the diagonal elements of the covariance
matrix are 1, i.e., ΣUi,i = ΣOj,j = 1.

3.1.1 Summary statistic imputation

Under the null assumption where sO and sU are not associated, λU and λO are each 0. Using the
joint distribution, we can compute the distribution of the true statistics at the untagged SNPs, sU
conditioned on the statistics observed at the tag SNPs, sO. The conditional distribution follows a
multivariate normal distribution, which is computed as follows,

P (sU |sO) ∼ N
(
ΣUOΣ−1

O sO,ΣU −ΣUOΣO
−1ΣOU

)
(4)

The observed statistics are denoted ŝO.Thus sU is imputed using a function of observed statistics:

ŝU (ŝO) = ΣUOΣ−1
O ŝO (5)

Let A = ΣUOΣO
−1 and thus ŝU (ŝO) = AŝO.

3.1.2 Summary statistic imputation with variance re-weighting (SSI)

From the previous result, we have ŝU (ŝO) = AŝO. Notice that the underlying joint distribution
over the test statistics assumes that each of the statistics at the observed as well as unobserved
SNPs has variance one. On the other hand, Equation 5 shows that the variance of the imputed
statistic is less than 1. Variance re-weighting proposes standardizing the statistics at the untagged
SNPs.

Let si be the statistic at the ith untagged SNP. Thus, instead of imputing si using ŝi, we
impute using ẑi = ŝi√

var(ŝi)
, so that all the imputed ẑi have variance equal to 1.We have: var(ŝi) =

E[ΣUi,OΣO,O
−1ŝOŝO

TΣO
−1ΣOUi ] = ΣUi,OΣO

−1ΣO,Ui . Thus we have:

ẑi(ŝO) =
ΣUOΣO

−1ŝO√
ΣUi,OΣO

−1ΣO,Ui

(6)

3.2 The impact of imputation on the rejection boundary

SSIuses the following function to impute statistics at the unobserved statistics: ŝU (ŝO) = AŝO.
Let Ai be the ith row of matrix A, Ai = ΣUiO

TΣO
−1, where ΣT

UiO
is the correlation vector between

untagged variant snpi and all the observed SNPs. We choose thresholds t for rejecting statistics
at each of the observed and imputed SNP, i.e., we reject the null hypothesis at observed SNP Oj
if |ŝOj | > t while we reject the null hypothesis at unobserved SNP Ui if |ŝUi | > t where t is chosen
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to control the FWER. We would like to understand the conditions the threshold t for SSIrelative
to the threshold t when no imputation was performed, i.e., we want to provide conditions when
imputation changes the rejection boundary.

Theorem 1. The imputed statistic at snpi computed using SSI will change the rejection boundary
iff the sum of the absolute values of all the entries of Ai,

∑
j |Aij | > 1.

Proof. See Section 2 in Supplementary Information.

In SSI-VR, instead of using ŝi as the imputed statistic for variant i, we use

ẑi =
ŝi√

var(ŝi)
=

∑
j Aij ŝOj√∑

j A
2
ij + 2

∑
j 6=k AijAikΣOj ,Ok

(7)

In SSI-VR, untagged variant i will effect the rejection boundary iff
∑

j |Aij |√∑
j A

2
ij+2

∑
j 6=k AijAjkΣOj,Ok

> 1.

3.3 Two-step imputation

The two-step approach to summary statistic imputation first performs genotype imputation followed
by testing for association using the imputed genotypes. Genotype imputation fills in the genotypes
at the unobserved SNPs, GU given the genotypes at observed SNPs GO [15]. Typically, this
involves defining a probability distribution for the missing genotypes given the observed genotypes
P (Gu|GO). Let pi(g) = P (GUi = g|GO) denote the posterior probability at unobserved SNP
i. Given a vector g of N genotypes at a SNP, let the association statistic s(g) be a function
of the genotypes g. We can then compute the association statistic at unobserved SNP i as the
posterior mean of the association statistic: E [s(GUi)|GO] =

∑
g s(g)pi(g). In practice, instead of

the posterior mean, association statistics are restricted to imputed SNPs at which the imputation is
confident (e.g. using the INFO score reported by software such as IMPUTE2 [16]) followed by using
the maximum a posteriori estimate of the genotype at each SNP. We focus on the posterior mean
as it accounts for the uncertainty in imputation and is easier to analyze. We first consider a simple
genotype imputation strategy that uses the pairwise correlation among SNPs in a multivariate
normal distribution [25] (Section 3.3.1). In Section 3.3.2, we consider the use of hidden Markov
Models (HMMs) for genotype imputation.

3.3.1 Genotype imputation using multivariate normal distribution

First, we consider a multivariate normal distribution with mean zero and covariance matrix given
by the LD matrix to model the distribution of the genotype vector at the observed and unobserved
SNPs for each individual [25]. We can then impute the genotypes for missing SNPs ĜU as a function
of observed genotypes GO using the conditional mean for the multivariate normal distribution
(Equation 4). Denoting the N × O matrix of standardized genotypes as XO and the imputed
genotype vector across N individuals at unobserved SNP i as x̂Ui , we have:

x̂Ui(XO) = (ΣUiOΣO
−1XO

T)
T

= XOΣO
−1ΣOUi (8)

where ΣUiO is the ith row of matrix ΣUO.
Given a vector of continuous phenotypes y ∈ RN measured across N individuals, the effect

size β̂j for observed SNP j can be estimated by a linear regression of y on the genotypes at SNP

9
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j: β̂j =
xOj

Ty

N so that the association statistic sj at this SNP j: ŝj =
β̂j√
var(β̂j)

=
xOj

Ty

σ
√
N

. Here

σ denotes the standard deviation of the phenotype. Analogously, the association statistic ŝi at

unobserved SNP i is ŝi =
x̂T
Ui

y√
var(x̂T

Ui
y)

. From Equation 8, we have:

ŝi =
ΣUiOΣO

−1XO
Ty

σ
√

ΣUiOΣO
−1XT

OXOΣO
−1ΣOUi

=
ΣUiOΣO

−1sO√
ΣUiOΣO

−1ΣOUi

(9)

Here we used
XT

OXO

N = ΣO.
This function is identical to SSI-VR as seen in Equation 7. Thus, applying the imputation

function in Equation 8 to directly impute genotypes is equivalent to SSI-VR.

3.3.2 Genotype imputation using hidden Markov models

We consider the use of a hidden Markov model (HMM) for genotype imputation. These models
assume that a reference panel M is available that contains genotype data across M = (U + O)
SNPs [26, 16, 10, 14]. The HMM models the conditional distribution of each of the pair of haplotypes

(h
(1)
n ,h

(2)
n ) in each of the N individuals in the study at the O observed and U unobserved SNPs

by the conditional distribution P (h|M). Specifically, h
(a)
n

iid∼ P (h|M) for n ∈ {1, . . . , N}, h(a)
n ∈

{0, 1}M a ∈ {1, 2}.
The effect size estimate for SNP j: β̂j =

cov(hj ,y)
var(hj) and the association statistic sj =

cov(hj ,y)

σ
√
var(hj)

.

We show (in Supplementary Information Section 1) that the vector of association statistics
asymptotically follows a multivariate normal distribution:

s
d−→ N (0,ΣS) (10)

The asymptotic covariance matrix of the association statistics ΣS depends on the specific HMM
used. Under the commonly used Li-Stephens model [27], this covariance matrix is:

ΣS,ij =

{
(1− θ)2 + θ

2

(
1− θ

2

)
1
σ2
i
, i = j

exp(− ρij
2N )Σij

, i 6= j (11)

Here Σij is the LD or the correlation between SNPs i and j, θ is a parameter related to the
mutation rate, and ρij is an estimate of the population-scaled recombination rate between SNPs i
and j . Thus, the association statistics computed using genotypes imputed using a HMM follows a
multivariate normal distribution with mean zero and covariance matrix equal to a LD matrix with
shrinkage applied according to the recombination rate between SNPs.

4 Discussion

In this paper, we showed the connection between the two broad classes of imputation, Two-step
imputation and SSI. We also showed that a commonly employed modification of SSI, variance re-
weighting, will cause power loss using simulation and real data. Thus, this leads us to conclude
that SSI (with no variance re-weighting) is more powerful.

Summary statistic imputation assumes that statistics follow multivariate normal distribution:
this assumption breaks down for small sample sizes and for rare SNPs. Compared to summary
statistics, current HMM methods are likely to be more accurate for rare variation. A possible
future direction is to improve accuracy on rare variants and small sample sizes.
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Supplementary Information: A unifying framework for summary

statistic imputation

Yue Wu1, Eleazar Eskin1,2, and Sriram Sankararaman∗1,2

1Department of Computer Science, UCLA
2Department of Human Genetics, UCLA

1 Genotype Imputation using a hidden Markov model

We assume a hidden Markov model for genotype imputation. These models assume that a reference
panel M is available that contains genotype data across (U+O) SNPs [1–4]. The HMM models the

conditional distribution of each of the pair of haplotypes (h
(1)
n ,h

(2)
n ) in each of the N individuals

in the study at the O observed and U unobserved SNPs by the conditional distribution P (h|M).

Specifically, h
(a)
n

iid∼ P (h|M) for n ∈ {1, . . . , N},, h(a)
n ∈ {0, 1}U+O a ∈ {1, 2}.

In GWAS, given a vector of continuous phenotypes y ∈ RN measured across N individuals, the
effect size β̂j for an observed SNP j can be estimated by a linear regression of y on the genotypes at

SNP j to obtain an estimate of the effect size. The effect size for SNP j is estimated as β̂j =
cov(hj ,y)
var(hj)

and the association statistic sj =
√

2N
cov(hj ,y)

σ
√
var(hj)

.

Let p =
∑N

n=1(h
(1)
n +h

(2)
n )

2N . For large sample sizes N , p is asymptotically distributed as a mul-
tivariate normal distribution with mean µ = E [h|M ] and covariance matrix Σ = 1

2NVar [h|M ].
The specific form for the mean and the covariance matrix depends on the form of the HMM used.
For example, in the Li-Stephens HMM [5], [6] showed that

µLS = f(1− θ) +
θ

2
1 (1)

ΣLS = S(1− θ)2 +
θ

2
(1− θ

2
)I (2)

Here f is the mean allele frequency in a panel, θ is a parameter related to the mutation rate, and
S is an estimator of the covariance

Sij =

{
Dij , i = j
exp(− ρij

2N )Dij , i 6= j
(3)

Here ρij is an estimate of the population-scaled recombination rate between SNPs i and j while
Dij is an estimate of the empirical covariance between SNPs i and j in a reference panel.

∗Corresponding author:sriram@cs.ucla.edu, eeskin@cs.ucla.edu
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Under the null, we have yn
iid∼ N (µy, σ

2
y) where yn is independent of the haplotype (h

(1)
n ,h

(2)
n ).

Let

aN =
√
N

(∑N
n=1(h

(1)
n + h

(2)
n )yn

N
−
∑N

n=1(h
(1)
n + h

(2)
n )

N

∑N
n=1 yn
N

)

=
√
N

(∑N
n=1(h̃

(1)
n + h̃

(2)
n )ỹn

N
−
∑N

n=1(h̃
(1)
n + h̃

(2)
n )

N

∑N
n=1 ỹn
N

)
(4)

Here h̃
(a)
n = h

(a)
n − µ and ỹn = yn − µy, n ∈ {1, . . . , N}, a ∈ {1, 2}.

Now using the Central Limit Theorem and the fact that under the null, the phenotype yn and

the haplotypes (h
(1)
n ,h

(2)
n ) are independent:

√
N

∑N
n=1(h̃

(1)
n + h̃

(2)
n )ỹn

N

d−→ N (0, 2σ2yΣ) (5)

√
N

∑N
n=1 ỹn
N

d−→ N (0, σ2y) (6)∑N
n=1(h̃

(1)
n + h̃

(2)
n )

N

p−→ 0 (7)

(8)

√
N

∑N
n=1(h̃

(1)
n + h̃

(2)
n )

N

∑N
n=1 ỹn
N

p−→ 0 (9)

This follows from Equations 6 and 7 by application of Slutsky’s lemma and the continuous mapping
theorem [7].

Thus, again applying Slutsky’s lemma to Equations 5 and 9, we can write aN as (Equation 4):

aN
d−→ N (0, 2σ2yΣ) (10)

√
2N

∑N
n=1(h

(1)
n + h

(2)
n )yn

2N

d−→ N (µyµ, σ
2
yΣ) (11)

(12)

Let σ̂2y be a consistent estimator of σ2y . Similarly σ̂2j =

∑N
n=1

(
h
(1)
n,j+h

(2)
n,j−2hj

)2
2N is a consistent

estimator of Σjj .

Let Λ = diag
(

1
σ̂1
, . . . , 1

σ̂(U+O)

)
be a diagonal matrix with diagonal entries corresponding to the

inverse of the standard deviation of the genotype at each SNP. We can then derive the asymptotic
distribution of the asymptotic statistics as :

s =
1√
2σ̂y

ΛaN

(13)
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The entry corresponding to SNP j is the association statistic for SNP j:

sj =
√

2N

∑N
n=1(h

(1)
n,j+h

(2)
n,j)yn

2N −
∑N

n=1(h
(1)
n,j+h

(2)
n,j)

2N

∑N
n=1 yn
N∑N

n=1(h
(1)
n,j

2
+h

(2)
n,j

2
)

2N −
(∑N

n=1(h
(1)
n,j+h

(2)
n,j)

2N

)2 (14)

We then have

s
d−→ N (0,ΣS)

= N (0,ΛΣΛ) (15)

The asymptotic covariance matrix of the association statistics s under the Li-Stephens model is
given by

ΣS,ij =

{
(1− θ)2 + θ

2

(
1− θ

2

)
1
σ2
i
, i = j

exp(− ρij
2N )Σij

, i 6= j (16)

Here Σij is the LD or the correlation between SNPs i and j. Thus, the association statistics
computed using genotypes imputed using a HMM follows a multivariate normal distribution with
mean zero and covariance matrix equal to a LD matrix with shrinkage applied according to the
recombination rate between SNPs.
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2 Impact of summary statistic imputation on the rejection bound-
ary

In general, summary statistic imputation uses a linear function of the observed statistics sO to
impute the statistic at the unobserved SNP Ui: ŝi(ŝO) = wTŝO for some weight vector w.

We choose thresholds t for rejecting statistics at each of the observed and imputed SNP, i.e.,
we reject the null hypothesis at observed SNP Oj if |sOj | > t while we reject the null hypothesis
at unobserved SNP Ui if |sUi | > t where t is chosen to control the FWER. The acceptance region
(the region where all statistics are accepted so that there are no false positives) is the vector of O
values of the observed statistics that satisfies the following constraints:

|sOj | ≤ t j ∈ {1, . . . , O} (17)

|wsO| − t ≤ 0 (18)

Equations 17 together define a O-dimensional hyper-cube with vertices defined by (±t, . . . ,±t)
while equation 18 defines two hyperplanes wTsO − t = 0 and wTsO + t = 0.

Theorem 1. Unobserved SNP Ui that is imputed using the linear function ŝi(ŝO) = wTŝO will
alter the rejection boundary iff

∑
j |wj | > 1.

Proof. For an untagged variant snpi to have an effect on the rejection boundary, the two hyperplanes
that define the imputed statistic at SNP i : |wTsO| − t ≤ 0 must intersect the O-dimensional
hypercube with vertices defined by (±t,±t, . . . ,±t). This occurs iff there exists a vertex of the
hypercube and the origin lie on different sides of the hyperplane. Given a hyperplane defined by
the equation h(x)) = 0 and a point x0, h(x0) is proportional to the signed distance of x0 from the
hyperplane. Denoting a vertex of the hypercube as tx where x ∈ {−1,+1}O, the above condition
is equivalent to the product of signed distances of the origin and one of the vertices being negative,
i.e., there exists a x ∈ {−1,+1}O such that(

wT(tx)− t
) (
wT(0)− t

)
< 0

⇒ −
(
wTx− 1

)
t2 < 0

⇒
(
wTx− 1

)
> 0 (19)

Equation 19 holds iff
∑

j |wj | > 1.
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3 A comparison of the power of summary statistic imputation
methods

Consider three SNPs, snp1, snp2, snp3 where SNPS snp1 and snp2 are observed while snp3 is
unobserved. Assuming that SNP snp3 is the causal SNP with non-centrality parameter λ, the
summary statistics at the three SNPs (s1, s2, s3)) follow the distribution:

N

 λα
λα
λ

 ,
 1 ρ α
ρ 1 α
α α 1

 (20)

For this distribution to be well-defined, the covariance matrix must be positive-definite. A
necessary condition for this is that the determinant of the covariance matrix (which is equal to the
product of the eigenvalues) must be positive. Thus, we require the determinant (1−ρ)(1+ρ−2α2) >
0. |ρ| < 1 for the marginal distribution over SNPs 1 and 2 to represent a valid distribution. Further,
we require α2 < 1+ρ

2 .
Consider the case of SSI, i.e., summary statistic imputation (with no variance re-weighting). In

this case,

ŝ3 =
α

1 + ρ
(s1 + s2)

(21)

The mean, the variance and the coefficient of variation of ŝ3 can be computed under the distribution
(Equation 20):

µ1 = λ
2α2

1 + ρ

σ21 =
2α2

1 + ρ

cv,1 =
µ1
σ1

= λα

√
2

(1 + ρ)
(22)

Now consider the case of SSI-VR, i.e., summary statistic imputation (with variance re-weighting).
In this case,

ẑ3 =
1√

2(1 + ρ)
(s1 + s2)

(23)

The mean, the variance and the coefficient of variation of ẑ3 can be computed under the distribution
(Equation 20):

µ2 = λ

√
2α√

(1 + ρ)

σ22 = 1

cv,2 =
µ2
σ2

= λα

√
2

(1 + ρ)
(24)
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The power to reject the null hypothesis at a threshold t is

β1(t) = P (|s1| > t ∪ |s2| > t ∪ |ŝ3| > t) (25)

The power function depends on the joint distribution of s1, s2, and ŝ3. To simplify this expres-
sion, we will analyze the average power, a notion that is easier to analyze than the power as defined
in Equation 25:

γ1(t) =
P (|s1| > t) + P (|s2| > t) + P (|ŝ3| > t)

3

=
2f(λα, t) + f(λα

√
2

(1+ρ) , t
√

1+ρ
2α2 )

3
(26)

Here f is the power function defined in Section A.
Analogously, we can compute the average power γ2 for SSI-VR.

γ2(t) =
P (|s1| > t) + P (|s2| > t) + P (|ẑ3| > t)

3

=
2f(λα, t) + f(λα

√
2

(1+ρ) , t)

3
(27)

Comparing γ1(t) and γ2(t) allows us to understand the power of the two imputation methods.
To analyze the power of each method, we need to do so at a threshold t such that each method
attains the same FWER.

If t1 and t2 are the thresholds for SSI and SSI-VR, we have t1 ≤ t2. Thus, comparing Equa-
tions 26 and 27, we see that the first term for γ(t1) is greater than the first term for γ(t2). The

second term for γ(t1) will be greater than or equal to the second term for γ(t2) if t1

√
1+ρ
2α2 < t2.

Thus, when the correlation between the unobserved and observed SNPs is close to its maximum
possible value, i.e., 2α2

1+ρ ≈ 1, then SSI-VR has lower power than SSI.

A Power function

Given a normal random variable X ∼ N (µ, σ2), the probability that the absolute value of X exceeds
a given threshold t:

P (|X| > t) = Φ(−cv −
t

σ
) + Φ(cv −

t

σ
)

≡ f(cv,
t

σ
) (28)

where cv = µ
σ is the coefficient of variation and Φ is the normal CDF.

Note that f increases with cv and σ and decreases with t.
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