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Deep Learning Global Glomerulosclerosis in
Transplant Kidney Frozen Sections

Jon N. Marsh, Matthew K. Matlock, Satoru Kudose, Ta-Chiang Liu, Thaddeus S. Stappenbeck, Joseph P. Gaut,
and S. Joshua Swamidass

Abstract—Transplantable kidneys are in very limited supply.
Accurate viability assessment prior to transplantation could
minimize organ discard. Rapid and accurate evaluation of intra-
operative donor kidney biopsies is essential for determining
which kidneys are eligible for transplantation. The criteria for
accepting or rejecting donor kidneys relies heavily on pathologist
determination of the percent of glomeruli (determined from a
frozen section) that are normal and sclerotic. This percentage is
a critical measurement that correlates with transplant outcome.
Inter- and intra-observer variability in donor biopsy evaluation is,
however, significant. An automated method for determination of
percent global glomerulosclerosis could prove useful in decreasing
evaluation variability, increasing throughput, and easing the
burden on pathologists. Here, we describe the development of
a deep learning model that identifies and classifies non-sclerosed
and sclerosed glomeruli in whole-slide images of donor kidney
frozen section biopsies. This model extends a convolutional neural
network (CNN) pre-trained on a large database of digital images.
The extended model, when trained on just 48 whole slide images,
exhibits slide-level evaluation performance on par with expert
renal pathologists. The model substantially outperforms a model
trained on image patches of isolated glomeruli. Encouragingly,
the model’s performance is robust to slide preparation artifacts
associated with frozen section preparation. As the first model re-
ported that identifies and classifies normal and sclerotic glomeruli
in frozen kidney sections, and thus the first model reported in
the literature relevant to kidney transplantation, it may become
an essential part of donor kidney biopsy evaluation in the clinical
setting.

Index Terms—kidney, glomerulosclerosis, digital pathology,
fully convolutional network, donor organ evaluation.

I. INTRODUCTION

THERE is a global shortage of donor kidneys suitable
for transplantation exacerbated by an unacceptably high

discard rate of recovered organs. Intra-operative examination
of donor kidney biopsy frozen sections is essential to assess
organ viability prior to transplantation. Many evaluation met-
rics are utilized, including percent global glomerulosclerosis,
interstitial fibrosis, arteriosclerosis, and arteriolar hyalinosis
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[1]. The increased use of “expanded criteria donors” who are
older and/or have comorbidities renders accurate evaluation
of these pathologic findings increasingly important [1]–[4].
However, variability in biopsy evaluation between observers
and institutions is distressingly large [1], [5]–[7], which may
explain why these histologic features do not consistently corre-
late with outcome [1], [7]. Such variability may be heightened
in the time-sensitive context of daily practice, where biopsies
are often read by non-specialist pathologists at odd hours using
frozen sections. Poor reproducibility amongst pathologists
minimizes the utility of intraoperative organ assessment and
may contribute to unnecessary organ discard. There is thus a
need for new objective techniques to assist pathologists with
rapid intraoperative donor kidney biopsy interpretation.

Identification of non-sclerotic and sclerotic glomeruli is
an essential task that is required to compute percent global
glomerulosclerosis, a critical feature that correlates with graft
outcome [3], [7]–[9]. The United Network for Organ Shar-
ing (UNOS) guidelines emphasize percent global glomeru-
losclerosis as a key factor in determining organ acceptance.
While a variety of approaches have been described for au-
tomatic identification of glomeruli, none to our knowledge
have addressed the challenges associated with intraoperative
biopsy assessment for organ transplant. Logistical and time
constraints in this setting often necessitate the use of frozen
sections and their concomitant artifacts (e.g. cracking, holes),
and H&E stains that are not optimized for visual differentiation
of glomeruli from interstitial tissue (e.g. Figure 1 and Figure
2). These difficulties are compounded by the sheer volume of
data present in gigapixel whole-slide images, which necessi-
tate highly optimized algorithms to yield results in a timely
fashion.

The remarkable success of convolutional neural nets
(CNNs) in generalized image recognition tasks suggests path-
ways to solving this seemingly intractable problem [10]–[13].
CNNs’ primary advantage is that the models automatically
learn salient features from the data alone, rather than re-
quiring a set of handcrafted parameters and extensive input
normalization. The increasingly widespread use of CNNs has
been facilitated by the concept of transfer learning, in which
deep learning models, previously trained to categorize or
identify objects in images from one domain, are repurposed
for application in another. This is typically accomplished by
freezing most, if not all, of an image-recognition network’s
learned weights (which presumably encode a large number
of generalized image features) below the classification layer,
and then training the remaining layers to recognize features
specific to the new domain. This leverages the vast amount
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Fig. 1. Example whole-slide image (WSI) of H&E-stained human renal
frozen wedge biopsy scanned at 20X, with inset showing normal (yellow) and
sclerosed (cyan) glomeruli as labeled by trained observers. Note the variability
of appearance of glomeruli between and within categories.

Frozen Fixed

Fig. 2. Example image patches (at 20X magnification) of globally sclerosed
glomeruli from frozen (left) and formalin-fixed (right) H&E slide preparations.
Variability in glomerular appearance and stain intensity is greater in frozen
preparations. Also note variability in stain intensity in frozen samples, typical
of the dataset used in this study.

of computational resources needed to train the model from
scratch using randomly initialized weights on millions of input
images; furthermore, fewer training examples are typically
required for the repurposed model to converge on an optimized
set of model weights, and training time can be significantly
shortened. Often, investigators have adapted one of several
CNNs trained on the ImageNet database [14] as the basis
for medical image recognition algorithms. In the realm of
histopathology, CNNs have been most commonly applied to
cancer detection and classification [15]–[21]. More recently,
several studies have employed CNNs for glomerulus identifi-
cation in renal biopsies [22]–[25].

However, none of these studies describes the use of frozen
sections as input to detection algorithms, nor are they capa-
ble of differentiating normal from sclerotic glomeruli after
detection without the use of special stains. These studies,
consequently, fall short of addressing the combination of issues
associated with transplant evaluation.

In this study, we sought to evaluate the performance of CNN

variants derived from a pre-trained image recognition network
applied to the problem of glomerular identification and classifi-
cation in renal preimplantation frozen section wedge biopsies.
We compared a conventional patch-based CNN model with
a fully convolutional CNN model. We show that the fully
convolutional CNN model is superior and can be quickly
trained on a relatively small dataset to yield results on par
with expert renal pathologist interpretation.

II. RELATED WORK

Detection of glomeruli in digitized histological images has
been approached using a variety of methods. A summary of
relevant details of recent work is shown in Table I.

The majority of studies incorporate domain-specific mor-
phometric or texture-based techniques to search for and define
glomerular boundaries. Many of these have demonstrated
boundary detection for small image patches containing iso-
lated glomeruli [31]–[33], [36]–[38]. Translating detection
techniques to whole-slide images (WSI) containing numerous
glomeruli is a necessary but more difficult undertaking. The
task of detection over large image regions can be facilitated
using immunohistochemical stains such as nestin [28] and
desmin [26], [27] to highlight glomerular podocytes and
enhance the utility of segmentation algorithms. However, the
immunohistological approach is less applicable for evaluation
of preimplantation biopsies. Other groups have used a variety
of techniques for glomerulus identification on routine stains
[10], [22], [29], [30], [34], [35], typically through the use of
some combination of colorspace transformation, thresholding,
and/or morphological descriptors alone or as input to support
vector machines or CNNs.

Most recently CNNs have been explored as primary tools
for glomeruli detection. Proof-of-concept classifiers adapted
from both the AlexNet [39] and GoogleNet [10] models were
shown to be able to differentiate image patches containing
isolated normal glomeruli from non-glomerular structures [24].
CNNs were also demonstrated to outperform HOG classifiers
in glomerulus detection accuracy when applied to random
image patches from kidney WSI [25]. Additional promising
results were demonstrated by cascading the output of one
CNN (optimized for glomerulus detection in downsampled
WSI) to another (adapted for precise segmentation at higher
resolutions) [23]. This combination outperformed single CNNs
in segmenting glomeruli; notably, the CNNs used a fully
convolutional model based on the U-Net architecture [40] to
yield pixel-mapped outputs, enabling “end-to-end” training on
image patches randomly sampled over WSI.

It should be noted that none of these studies describes
the use of frozen sections as input to detection algorithms.
Likewise, in studies that characterized pathologic kidney
samples [22], [26]–[29], [32], [33], only one method dif-
ferentiated normal from pathologic glomeruli after detection,
and this required the use of specialized immunostaining that
highlighted damaged glomeruli [26]. The remainder describe
differences in descriptors in glomeruli from normal and patho-
logic populations, rather than isolating and labeling different
glomeruli within the same wide image field. The current study
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TABLE I
SUMMARY OF RELATED WORK (THIS STUDY IS REPRESENTED IN THE TOP ROW). DASHES REPRESENT INSTANCES WHERE INFORMATION WAS

UNREPORTED.

Ref Imaging Species Task

* WSI, H&E, frozen human segmentation, classification (normal, sclerosed)

[26] WSI, anti-desmin, fixed rat segmentation, classification, characterization (normal, diabetic)
[27] WSI, anti-desmin, fixed rat segmentation (normal, diabetic)
[28] field, anti-nestin, fixed rat segmentation, characterization (normal, renal failure)
[23] WSI, PAS, fixed mouse segmentation (normal)
[25] WSI, Jones H&E/PAS/other, fixed human segmentation (normal)
[22] WSI, H&E/PAS/others human, mouse, rat segmentation, characterization (normal, diabetic)
[29] WSI, H&E primate segmentation, characterization (normal, diseased)
[30] WSI, Masson’s trichrome human segmentation -
[31] field, H&E mouse segmentation -
[24] patch, PAS human segmentation -
[32] patch rat segmentation, characterization (normal, hypertrophy)
[33] patch, H&E/PAS, fixed human segmentation, characterization (normal, proliferating)

[34], [35] patch, H&E/PAS, fixed mouse, rat segmentation, characterization (normal)
[36]–[38] patch - segmentation -

demonstrates the novel use of CNNs applied to frozen H&E
sections to detect non-sclerotic and sclerotic glomeruli to assist
pathologists in intra-operative interpretation of percent global
glomerulosclerosis.

III. METHODS

A. Data

WSIs were acquired from H&E-stained frozen wedge donor
biopsies retrieved between April 2015 and July 2017 using the
Washington University Digital Pathology Exchange (WUPAX)
laboratory information system. Sections were scanned at 20x
using an Aperio Scanscope CS scanner and stored in SVS
format, then converted to TIFF format at full resolution
(0.495 µm/pixel). 48 sample WSIs (ranging in size from
187 megapixels to 482 megapixels) were acquired from the
database and selected so as to exhibit a wide range of values
of percentage globally sclerosed glomeruli (1% to 72%). The
WSIs were obtained from a total of 20 kidneys recovered
from 17 donors. The average total number of glomeruli was
81±31 per WSI. Annotations used for training and testing the
CNNs were initially created by a senior resident (SK) and
subsequently amended by a board-certified renal pathologist
(JPG). Annotation was performed manually by outlining and
labeling all glomeruli (using elliptically shaped masks) in
each WSI using an in-house plugin written for Fiji [41],
in order to generate pixel-wise label masks of glomerulus
regions at the same resolution as the parent WSI. All glomeruli
were categorized into globally sclerotic (defined as sclerosis
involving the entire glomerular tuft) or non-sclerotic (de-
fined as any glomeruli that did not show global sclerosis).
The globally sclerotic category included all types of global
sclerosis: obsolescent, solidified and disappearing [42]. All
non-glomerular areas (including tubules, vessels, inflammatory
cells, and interstitium) were labeled as tubulo-interstitium. A
total of 870 sclerosed and 2997 non-sclerosed glomeruli were
labeled. Model training and testing was performed by grouping
slides and their associated data into training and validation sets
in a 6-fold cross-validation scheme. No image preprocessing
was performed prior to training or testing.
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Fig. 3. Data path used for computation of sclerosed glomeruli fraction.
Both patch-based and fully-convolutional models utilize pretrained VGG16
architecture with frozen weights, truncated before bottleneck.

B. Models

Two models and training methodologies were used for
glomeruli detection in WSI (see Figure 3):

1) Patch-Based Model: A patch-based CNN training ap-
proach was employed as a proof-of-concept to first demon-
strate glomerulus differentiation in frozen H&E sections, but
also to illustrate the pitfalls of applying this type of model
to detect glomeruli in WSI. Image patches (448×448 pixels)
centered on each labeled sclerotic and non-sclerotic glomeru-
lus were cropped out of WSI for training. An additional 1932
randomly selected regions containing no glomeruli but at least
a small fraction of non-whitespace were extracted for training
on tubulointerstitial areas. Interstitial areas included tubules,
vessels, inflammatory cells, and tubulointerstitium. The train-
ing set was augmented with random image flipping, 90◦

rotations, and small translations (0%—5% of image size). The
pre-trained VGG16 CNN model [11] was adapted by removing
the final fully-connected layers and replacing them with two
32-node fully-connected layers (with ReLU activation) and a
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3-node classification layer with softmax activation; all weights
in the lower convolutional layers were frozen and unmodified
during training. The model was trained by minimizing the
categorical cross-entropy loss using the Adam optimizer [43]
with a batch size of 16 and a learning rate of 1e−4. The
CNN was constructed using the Keras framework in Python
and trained and tested using 6-fold cross-validation. Prior
exploration using a test set indicated that stopping training
at 5 epochs prevented overfitting while yielding satisfactory
categorical accuracy, so this value was used in all cross-
validation folds. The trained model from each fold was next
applied to each of the associated WSIs withheld from training
by sampling image patches from a window moved across the
image in a raster pattern (448×448-pixels, 64-pixel stride),
yielding a set of categorical probability values associated with
each respective image patch. These values were assembled
to yield a categorical probability map of the parent image
downsampled by a factor of 64. Although it would have been
preferable to use a 32-pixel stride in order to exactly match the
output resolution of the fully convolutional model described
below, the time required to generate the probability maps was
prohibitive.

2) Fully Convolutional Model: In addition to the patch-
based model, we also trained a fully convolutional model
based on VGG16 to label WSIs at higher resolution. Starting
with the pre-trained VGG16 CNN with weights frozen below
the bottleneck, we replaced the final fully-connected layers
with two 1×1 convolutional layers (256 and 128 nodes, respec-
tively), followed by a 64-node 3×3 dilated convolution layer
[44], [45] (dilation rate=4) and another 64-node 5×5 convo-
lutional layer. All convolutional layers used ReLU activation.
Output was fed to a 3-node layer with softmax activation for
classification into tubulo-interstitium, non-sclerosed glomeru-
lus, and sclerosed glomerulus categories. Storing the activa-
tions of a fully convolutional network over an entire WSI is
not feasible due to excessive memory requirements, therefore
we adopted a sampling approach to training the model. For
each training image, 1024×1024-pixel partially-overlapping
image patches (stride=448) were extracted and presented to
the model by weighted sampling. Classes were weighted in
a ratio of 10:5:1 for sclerosed:non-sclerosed:tubulo-interstitial
categories to approximately account for the relative incidence
of pixel area represented by each class. The task of the
CNN was to assign labels to individual pixels in the WSI to
match the provided annotations. Because the model’s output
was downsampled by a factor of 32 relative to the original
image, the CNN was trained against a similarly downsampled
annotation map (accomplished by nearest-neighbor sampling).
The fully convolutional CNN was trained by minimizing the
categorical cross entropy loss using the Adam optimizer with
a batch size of 25 and learning rate of 1e−4 for 5 epochs.
The model was trained and tested in a 6-fold cross-validation
scheme. Prior exploration using a test set indicated that stop-
ping training at 5 epochs prevented overfitting while yielding
satisfactory categorical accuracy, so this value was used in all
cross-validation folds. For each fold, the corresponding trained
model was applied to the withheld set of WSIs by sampling
image patches in a raster pattern from a sliding window

TABLE II
PATCH-BASED MODEL PERFORMANCE WHEN CATEGORIZING ISOLATED

GLOMERULI

Precision Recall F1-score

Tubulointerstitial 0.932 0.898 0.915
Non-sclerosed 0.932 0.962 0.947

Sclerosed 0.893 0.865 0.879

TABLE III
NORMALIZED CONFUSION MATRIX FOR PATCH-BASED MODEL WHEN

CATEGORIZING ISOLATED GLOMERULI

Predicted\True Tubulo-interstitial Non-sclerosed Sclerosed

Tubulointerstitial 0.898 0.077 0.025
Non-sclerosed 0.024 0.962 0.014
Sclerosed 0.062 0.073 0.865

(1024×1024-pixels) with a stride of 448 pixels, yielding a
32×32-pixel categorical probability map associated with each
respective image patch. These patches were stitched together
to yield a categorical probability map of the complete WSI,
downsampled by a factor of 32.

IV. RESULTS

A. Performance on Patches

The patch-based model’s performance in predicting image
patch category was evaluated in terms of precision, recall,
and F1-score averages over cross-validation runs. Results are
shown in Table II. A normalized confusion matrix derived is
shown in Table III. F1-score (the harmonic mean of preci-
sion and recall) for the non-sclerosed category is somewhat
higher than for tubulo-interstium and sclerosed. This may
be anticipated, given the greater variability in appearance
associated with both the bulk tissue and the pathology (e.g.,
left panel of Figure 2). Examples of correctly and incorrectly
identified glomeruli are shown in Figure 4. Note that the model
correctly classifies non-sclerotic and sclerotic glomeruli even
in the presence of preparation artifacts, staining variations,
indeterminate Bowman’s space, and significant background
whitespace within the image patch. While the patch-based
model performed well in this proof-of-concept scenario, it is
ultimately more important to gauge performance on WSI.

B. Performance on WSI: Pixelwise Results

Selected WSIs are shown with their associated annotations
and predicted probability maps for examples having large
numbers of sclerosed glomeruli (Figure 5), small numbers of
sclerosed glomeruli along with visible section folding artifact
(Figure 6), and large regions of renal capsule (Figure 7), for
both the patch-based and fully convolutional models. Proba-
bility magnitude is indicated by the brightness of color asso-
ciated with each label (blue→non-sclerosed, red→sclerosed,
tubulointerstitium not shown). The patch-based model does
not generalize well to the task of segmenting glomeruli in
WSI, especially in instances with small numbers of sclerosed
glomeruli and prominent renal capsule. The fully convolutional
model predictions, however, appear faithful in position and
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Fig. 4. Examples of patch-based model predictions on image patches
containing isolated glomeruli. Top: Highest scored correctly identified patches.
The model correctly identified sclerosed and non-sclerosed glomeruli, even in
the presence of variable stain intensity and glomerular appearance. Bottom:
Lowest scored incorrectly labeled patches; predicted label is shown in quotes
beneath each image.

A B

C D

Fig. 5. A: WSI exhibiting a large number of sclerosed glomeruli. B: Ground
truth annotations indicating positions and shapes of non-sclerosed (blue) and
sclerosed (red) glomeruli. C: Patch-based model prediction probability map.
D: Fully convolutional model prediction probability map.

shape to the majority of annotated glomeruli. Additionally,
the fully convolutional model’s glomerular labeling is much
more focal in nature, whereas the patch-based model is often
characterized by diffuse regions of positive labeling. It is also
noteworthy that folding artifacts (see Figure 6a) have no ap-
parent effect on the fully convolutional model’s performance.

To quantify agreement between model predictions and
pathologist annotations on a pixel-by-pixel basis, each pixel

A B

C D

Fig. 6. A: WSI exhibiting very few sclerosed glomeruli, as well as folding
artifacts. B: Ground truth annotations indicating positions and shapes of non-
sclerosed (blue) and sclerosed (red) glomeruli. C: Patch-based model pre-
diction probability map. D: Fully convolutional model prediction probability
map.

in the probability maps was assigned the categorical label
associated with the highest probability at that point. Percent
area fraction (Table IV) and intersection-over-union (IOU)
(Table V) metrics were computed from the predicted label
maps for all WSIs in each cross-validation fold. The IOU
(also known as the Jaccard index) is computed by comparing
the number of pixels in each category in which the predicted
and annotated labels agree (intersection) divided by the total
number of predicted and annotated pixels assigned a label
for that category (union). These quantities were computed
in aggregate for all pixels in the WSI predictions. Both
models have high concurrence for tubulointerstitial pixels
(Tables IV and V). Non-sclerosed areas were more reliably
labeled by the fully convolutional compared to the patch-based
model, as measured by area fraction. The fully convolutional
model’s score was higher than the pathologists’ assessment by
28%, whereas the patch-based model overestimated by 58%.
Model differences are most stark in the sclerosed category.
The patch-based model drastically overestimates the sclerosed
area (6.0x), compared to 1.7x overprediction for the fully
convolutional model. IOU scores are even more telling, with
the fully convolutional model having respectable scores of 0.59
and 0.36 for non-sclerosed and sclerosed areas, respectively,
while the patch-based model returns IOU values of only 0.20
and 0.07, respectively.

Kidney preimplantation biopsy evaluation requires the deter-
mination of the fraction of the number of sclerosed glomeruli
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A B

C D

Fig. 7. A: WSI exhibiting large region of renal capsule. B: Ground truth
annotations indicating positions and shapes of non-sclerosed (blue) and
sclerosed (red) glomeruli. C: Patch-based model prediction probability map.
D: Fully convolutional model prediction probability map.

TABLE IV
PIXEL AREA FRACTION

Tubulointerstitial Non-sclerosed Sclerosed

Pathologist 0.9639 0.0327 0.0033
Fully conv. model 0.9526 0.0418 0.0057

Patch-based model 0.9285 0.0518 0.0197

in a WSI (given by F = nS/(nS+nN )). An equivalent, pixel-
based surrogate measure was computed for comparison using
the predicted label maps given by each model. The sclerosed
fraction was computed as Fpixel = nS,pixel/(nS,pixel +

TABLE V
IOU (BY PIXEL) PREDICTED BY EACH MODEL, REFERENCED TO

PATHOLOGIST ANNOTATIONS

Tubulointerstitial Non-sclerosed Sclerosed

Fully conv. model 0.9766 0.5949 0.3560
Patch-based model 0.9160 0.2017 0.0713

nN,pixel), where nS,pixel and nN,pixel are the number of pixels
labeled as sclerosed and non-sclerosed, respectively. To assess
the models’ accuracy in estimating the sclerosed fraction, we
trained zero-intercept linear regression models. These linear
models took Fpixel as input to be fit to F , as determined by
pathologist annotations. The models were evaluated by R2 and
root mean square error (RMSE) on the cross-validation test set.

The fully convolutional model showed greater correlation
with percent global glomerulosclerosis (R2 = 0.828) com-
pared with the patch-based model (R2 = −0.491). The mean
slope of regression (averaged over cross-validation folds) for
the patch-based model was 0.640, and 0.581 for the fully
convolutional model. The resulting output is shown in Figure
8A. Error bars indicate the 95% confidence interval, assuming
the sclerosed population fraction is characterized by a beta
distribution. In practice, prior results have indicated poorer
clinical outcome for donor kidneys with greater than 20%
global glomerulosclerosis. Gray dotted lines are plotted at the
20% point on each axis, dividing the plot into quadrants. In this
way, the plot can be read as showing that the model agrees with
trained observers for samples lying in the lower left quadrant
(organ more acceptable) and upper right quadrant (organ less
acceptable). It can be clearly seen that the fully convolutional
model output agrees with the pathologists’ assessments to a
far greater degree than the patch-based model in this regard.

C. Performance on WSI: Segmenting Glomeruli with Blob
Detection Post-Processing

While the fully convolutional model’s pixelwise perfor-
mance described above shows significant promise for eval-
uating slides in a global sense, identification of individual
glomeruli is an important additional step for pathologists’ vi-
sual confirmation. In addition, identifying individual glomeruli
enables the model to generate position and shape information
for input to other glomerulus image characterization proce-
dures. Only the fully convolutional model was utilized in this
procedure, because of its superior performance and resolution
relative to the patch-based model. A conventional Laplacian-
of-Gaussian (LoG) blob-detection algorithm [46] was used
to process the fully convolutional model’s probability map
predictions for identification of the locations of sclerosed and
non-sclerosed glomeruli. The LoG algorithm (implemented
in the scikit-image Python library [47]) outputs position and
approximate radius of detected objects. Examples of output
from blob detection are shown in Figure 9 for the previously
depicted WSIs in Figures 5-7. In the panels showing glomeru-
lus detections, solid circles indicate confirmed matches to an-
notations, X’s mark incorrect glomerulus detections, and open
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Fig. 8. A: Pixel-wise model predictions of sclerosed glomerulus fraction vs.
pathologists’ assessment for patch-based model (left) and fully convolutional
model (right). Horizontal error bars indicate 95% confidence level for pathol-
ogist assessments. Dotted grey lines indicate a hypothetical clinical cutoff
for rejection at 20% sclerosed. B: Receptive field intensity map for fully
convolutionall model without dilated convolution layer (left) and with dilated
convolution layer (right). Receptive field extent for both models are drawn
to scale on image of normal glomerulus extracted from a WSI (center). C:
Predictions of sclerosed glomerulus fraction vs pathologists assessment for
fully convolutional model without dilated convolution layer (left) and with
dilated convolution layer (right) after blob-detection postprocessing. Error
bars indicate 95% confidence level, assuming the sclerosed and non-sclerosed
glomeruli population is characterized by a beta distribution. Dotted grey lines
indicate a hypothetical clinical cutoff for rejection at 20% sclerosed.

rectangles indicate annotated glomeruli that were overlooked
by the model.

Accuracy metrics for the predictions are given in Table
VI. A detected blob was considered positively identified
if its center was located within the area of a region in
the annotation map, and if it had the same label as that
annotated region. The total number of detected sclerosed
and non-sclerosed glomeruli were modestly higher than the
pathologists’ assessments, differing by 14.9% and 8.9%, re-
spectively. Precision and recall were higher for non-sclerosed
glomeruli than for sclerosed, reflected in F1 scores of 0.8475
and 0.6492, respectively. Linear regression of the sclerosed
fraction Fblob = nS,blob/(nS,blob+nN,blob) (where nS,blob and
nN,blob are number of sclerosed and non-sclerosed glomeruli
obtained from the blob-detected probability maps) versus the
pathologists’ assessment for each WSI in the training set was
computed and used to regress the blob-detected probability
maps in the cross-validation test set (Figure 8C, right). The
mean coefficient of regression (averaged over cross-validation
folds) was 0.978. Both R2 and RMSE were improved versus
the equivalent pixel-based metrics for this model (R2: 0.863
vs. 0.828, RMSE: 0.061 vs. 0.079). Note that the fully convo-

A B B

Annotation Model Output

C D

E F
Fig. 9. Panels A, C, E: WSI annotations indicating positions and shapes
of non-sclerosed (blue) and sclerosed (red) glomeruli. Panels B, D, F:
Corresponding blob detection results using fully convolutional model pre-
diction label maps as input. Solid circles indicate confirmed matches with
annotations, X’s mark incorrect glomerulus detections, and open rectangles
indicate annotated glomeruli that were overlooked by the model.

lutional model’s RMSE value approached the intrinsic error of
the pathologists assessment (0.043), computed from the square
root of the mean value of sclerosed fraction variance.

D. Misclassified Glomeruli

A list of misclassified glomeruli images from the test set
were submitted to the pathologists responsible for the ground
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TABLE VI
ACCURACY METRICS COMPUTED FROM THE FULLY CONVOLUTIONAL

MODEL’S PROBABILITY MAPS OF WSIS AFTER BLOB DETECTION.

Non-sclerosed Sclerosed

Pathologists’ count 2997 870
Predicted count 3264 1000

Correct (true positive) 2653 607
Incorrect (false positive) 611 393

Missed (false negative) 344 263

Precision 0.8128 0.6070
Recall 0.8852 0.6977

F1-score 0.8475 0.6492

truth annotations in order to determine the rate of actual
misclassified glomeruli, and also to gauge the incidence of
glomeruli that may have escaped initial inspection. Of the false
positive predictions represented in Table VI, 34 glomeruli were
determined to have been overlooked in the annotation process,
7 were judged to be misidentified by the pathologists, and
13 were correctly identified by the fully convolutional model
but positioned immediately adjacent to (rather than atop) the
annotated glomeruli. Of the false positive predictions that
were not tubulointerstitium, 199 were areas of cyst or tattered
regions associated with frozen artifact, 83 were vessels, 6 were
areas of thick or folded tissue, 3 were instances of hyaline or
atrophied tubules, 7 were borderline cases not clearly normal
or sclerosed, and 13 were areas of where the detected blob
encompassed multiple glomeruli.

V. DISCUSSION

Several factors were key to the success of the fully con-
volutional model relative to patch-based model. Because the
fully convolutional network’s output maintained pixel-wise
fidelity to the downsampled annotation map, network training
and prediction occurred at a higher resolution than the patch-
based approach. In particular, the fully convolutional model
was exposed to a far greater variety of tissue configurations,
in which all areas of the input image patches were able to
inform the model during training.

The use of a dilated convolutional layer [44], [45] also
increased the receptive field of the network. In order to
illustrate the effect of the dilated convolution, we constructed
and trained a model that replicated the same structure as the
fully convolutional model, but replaced the dilated convolu-
tion layer with a normal convolution layer. Additionally, we
implemented linearized versions of both fully convolutional
models with all weights set to unity, biases set to zero, max
pooling layers replaced with average pooling, and activations
set to the identity function. An “image” array initialized to
zero, except for a single point set to a constant nonzero RGB
value, was used as input to the linearized models. The central
value of each linearized model’s output array was stored in
a result array at the same position as the nonzero point in
the input array. Linearized model outputs were computed for
each realization of the input as the nonzero point was moved
over every position in the array. The extent of the receptive
field was determined by the nonzero points in the result array.

The results are shown in Figure 8B, and can be interpreted
as idealized “point spread functions” that map the relative
contribution of nearby input pixels to an individual output
point (ignoring learned weights in this illustration). Regression
plots for sclerosed glomerulus fraction using blob detection
post-processing for both models show the improvement in pre-
diction agreement with pathologist assessments enabled by the
dilated convolution layer (Figure 8C). The two-tailed p-value
for the difference between the correlation coefficients of the
two models was 0.056, approaching significance at the 95%
level. The difference in prediction between the models was
most evident for samples with large capsule areas, in which
the model without the dilated convolution layer erroneously
inferred sclerosed glomeruli adjacent to fibrous regions. We
speculate that the model utilizing dilated convolution was
better able to infer regional context because of its larger
receptive field.

Although the size of the final model’s receptive field was
increased, we found that, for a given input image patch, the
central area of the model prediction output array typically
exhibited higher correlation with the corresponding annotation
region than areas closer to the output array’s perimeter. Thus,
the stride used in selecting image patches for training and
prediction was chosen to be 448 pixels so as to enable sample
overlap of 576 pixels (56% overlap for 1024-pixel square
arrays). Only the central, non-overlapping portions of the
prediction patches were used to assemble the final probability
maps, which markedly improved results when compared to the
use of, for instance, an 896-pixel stride.

Of the glomeruli misidentified by the fully convolutional
model that were not associated with generic tubulointerstitium,
by far the largest number occurred in areas centered on cysts,
vessels, or holes. Many of these regions included somewhat
circular features similar in scale to glomeruli, which may have
led to the misclassification. It is possible that the model’s per-
formance could be further enhanced by labeling and training
on WSIs annotated with these categories. Very few instances of
misclassification occurred because of tissue folding, however,
suggesting that the model was insensitive to this artifact.

Using blob detection to infer glomerulus presence from
the pixel map incurs the same potential drawbacks as those
found in other morphological detection methods, namely the
need to determine appropriate input parameters based on
domain knowledge. In this case, parameters for minimum and
maximum radius and minimum intensity threshold were fixed
at levels which yielded reasonable discrimination between
closely spaced glomeruli, and which excluded low-intensity
regions or objects too small to be glomeruli. In making these
choices, however, it is possible that additional errors may arise
that can obscure the quality of the underlying data. Figure
10 highlights one type of error in which adjacent predicted
glomerular regions are not resolved by the LoG algorithm,
leading to a false negative result for one of the adjoining
glomeruli in spite of qualitatively correct labeling displayed by
the fully convolutional model’s probability map. Nevertheless,
this post-processing step allows glomerulus-level estimation
of the model’s fitness for slide evaluation through direct
comparison with the pathologists’ estimates of glomerulus
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A B C

Fig. 10. An example blob detection error highlighted within dotted cyan
circle. A: Image patch extracted from WSI annotation map, indicating
positions and shapes of non-sclerosed (blue) and sclerosed (red) glomeruli.
B: Probability map for the same image patch. C: Blob detection results using
fully convolutional model prediction label map as input. Solid circles indicate
confirmed matches with annotations, X’s mark incorrect glomerulus detec-
tions, and open rectangles indicate annotated glomeruli that were overlooked
by the model. The blob detection algorithm fails to differentiate the model’s
correctly-identified adjoining sclerosed glomeruli in this instance.

TABLE VII
% GLOBAL GLOMERULOSCLEROSIS ESTIMATES FOR KIDNEYS WITH

WELL-CONTROLLED TECHNICAL REPLICATES (5 OR MORE SECTIONS).

Pathologist Model

mean SD mean SD

Case 1 24.2 5.2 25.5 4.8
Case 2 2.6 1.7 2.7 0.3

populations. We anticipate that future work will include means
of accounting for and training to glomerulus population in the
network architecture.

In the long run, we aim to measure the extent to which
this model reduces the inter-observer variability of pathologist
assessments, and the intrinsic error associated with assessing
percent globular sclerosis off of a single WSI. Though very
preliminary, it appears that the variability of the model’s output
is lower across technical replicates (Table VII). Two of the
kidneys associated with this study had five or more associated
WSIs, and were, therefore, well-controlled technical replicates.
In both series, the average value of the model prediction
was in close agreement with the pathologists’ determination;
moreover, the standard deviation of the model output was
lower than for the pathologist assessment, suggesting that the
model may be able to decrease evaluation variability.

VI. CONCLUSION

Two deep-learning models were adapted from a pretrained
CNN for the purpose of glomerular segmentation and clas-
sification of glomeruli in frozen-section whole-slide images.
This task is critical for the time-sensitive evaluation of donor
kidneys before transplantation. The initial patch-based archi-
tecture was able to robustly categorize sclerosed glomerular
image patches from non-sclerosed after training with a rel-
atively small set of samples, showing the utility of transfer
learning with a general-purpose image classification CNN.
Applied to whole-slide images, the patch-based model was
outperformed by a fully convolutional model based on the
same pretrained CNN. A blob detection post-processing step
was used to generate discrete maps of glomeruli and their
associated class (sclerosed or non-sclerosed). Percent global
glomerulosclerosis, a key metric used in grading kidneys for

transplant suitability, indicated performance for the fully con-
volutional CNN nearly equivalent to that of a board-certified
clinical pathologist. We are optimistic that the methodology
described here has the potential to be an essential part of the
workflow for transplant evaluation in the clinical setting.
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