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Microbial communities can evade competitive exclusion by diversifying into distinct
ecological niches. This spontaneous diversification often occurs amid a backdrop of di-
rectional selection on other microbial traits, where competitive exclusion would normally
apply. Yet despite their empirical relevance, little is known about how diversification
and directional selection combine to determine the ecological and evolutionary dynam-
ics within a community. To address this gap, we introduce a simple, empirically mo-
tivated model of eco-evolutionary feedback based on the competition for substitutable
resources. Individuals acquire heritable mutations that alter resource uptake rates, ei-
ther by shifting metabolic effort between resources or by increasing overall fitness. While
these constitutively beneficial mutations are trivially favored to invade, we show that
the accumulated fitness differences can dramatically influence the ecological structure
and evolutionary dynamics that emerge within the community. Competition between
ecological diversification and ongoing fitness evolution leads to a state of diversification-
selection balance, in which the number of extant ecotypes can be pinned below the
maximum capacity of the ecosystem, while the ecotype frequencies and genealogies are
constantly in flux. Interestingly, we find that fitness differences generate emergent selec-
tion pressures to shift metabolic effort toward resources with lower effective competition,
even in saturated ecosystems. We argue that similar dynamical features should emerge
in a wide range of models with a mixture of directional and diversifying selection.

Ecological diversification and competitive exclusion are
opposing evolutionary forces. Conventional wisdom sug-
gests that most new mutations are subject to competi-
tive exclusion, while ecological diversification occurs only
under highly specialized conditions (1). Recent empir-
ical evidence from microbial, plant, and animal popu-
lations has started to challenge this assumption, sug-
gesting that the breakdown of competitive exclusion is
a more common and malleable process than is often as-
sumed (2, 3, 4). Particularly striking examples have been
observed in laboratory evolution experiments, in which
primitive forms of ecology evolve from a single ancestor
over years (5), months (6), and even days (7).

In the simplest cases, the population splits into a pair
of lineages, or ecotypes, that stably coexist with each
other due to frequency-dependent selection, leading to a
breakdown of competitive exclusion (5, 6, 8, 9, 10). But
evolution does not cease after ecological diversification
occurs. Instead, recent sequencing studies have shown
that adaptive mutations continue to accumulate within
each ecotype, even when population-wide fixations are
rare (11, 12, 13). This additional evolution can cause the
ecological equilibrium to wander over longer timescales,
as observed in the shifting population frequencies of the
two ecotypes (5, 13). In certain cases, these evolutionary
perturbations can even drive one of the original lineages
to extinction, either through the outright elimination of
the niche (9), or by the invasion of individuals that mu-
tate from the opposing ecotype (12).
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Pairwise coexistence is the simplest form of commu-
nity structure, but similar dynamics have been observed
in more complex communities as well. Some labora-
tory experiments diversify into three or more ecotypes
(7, 14, 15), and it is likely that previously undetected
ecotypes may be present in existing experiments (13).
Moreover, many natural microbial populations evolve
in communities with tens or hundreds of ecotypes en-
gaged in various degrees of competition and coexis-
tence (16, 17, 18). Although the evolutionary dynamics
within these communities are less well-characterized, re-
cent work suggests that similar short-term evolutionary
processes can occur in these natural populations as well
(19, 20, 21).

While the interactions between microbial adaptation
and ecology are known to be important empirically, our
theoretical understanding of this process remains lim-
ited in comparison. Early work in the field of adap-
tive dynamics (22) showed how ecological diversifica-
tion emerges under very general models of frequency-
dependent trait evolution, which are thought to describe
the limiting behavior of a wide class of ecological in-
teractions near the point of diversification. Numer-
ous studies have also investigated the effects of evolu-
tion on ecological diversification and stability using com-
puter simulations, in which the parameters of a partic-
ular ecological model are allowed to evolve over time
(23, 24, 25, 26, 27, 28, 29). However, while both ap-
proaches can reproduce some of the qualitative behaviors
observed in experiments, it has been difficult to forge a
more quantitative connection between these models and
the large amount of molecular data that is now available.
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One of the main reasons why quantitative comparisons
have been difficult is that in many microbial populations
of interest, natural selection acts on a range of traits
in addition to those directly involved in diversification.
The mutations that influence ecological phenotypes must
therefore compete with constitutively beneficial muta-
tions at unrelated loci, which can often comprise the bulk
of the observed mutation events (12, 13). Although many
models exist for describing these constitutively beneficial
(or deleterious) mutations in the absence of ecology (30),
we have few quantitative predictions for how they be-
have when they are linked to ecological phenotypes, and
vice versa. This makes it difficult to draw any quantita-
tive inferences from the vast molecular data that is now
available.

To start to bridge this gap, we introduce a simple, em-
pirically motivated model that describes the interplay be-
tween ecological diversification and directional selection
at a large number of linked loci. The ecological inter-
actions derive from a well-studied class of consumer re-
source models (31, 32, 33, 34), in which individuals com-
pete for multiple substitutable resources (e.g. different
carbon sources) in a well-mixed environment. We extend
this ecological model to allow for heritable mutations in
resource uptake rates, which can either divert metabolic
effort between resources, or the increase overall fitness.
The latter class of mutations provides a natural way to
model adaptation at linked genomic loci.

These constitutively beneficial mutations might seem
like an ecologically trivial addition to the model, since
they are always favored to invade on short timescales. On
longer timescales, however, we will show that these ac-
cumulated fitness differences can dramatically influence
both the ecological structure and the evolutionary dy-
namics that take place within the community. By fo-
cusing on the weak mutation limit, we derive analytical
expressions for these dynamics in the two resource case,
and we show how our results extend to larger commu-
nities as well. These analytical results provide a gen-
eral framework for integrating ecological and population-
genetic processes in evolving microbial communities, and
suggest new ways in which these processes might be in-
ferred from time-resolved molecular data.

EVOLUTIONARY MODEL OF RESOURCE
COMPETITION

To investigate the interactions between ecological diver-
sification and directional selection, we focus on a simple
ecological model in which individuals compete for an as-
sortment of externally supplied resources in a well-mixed,
chemostat-like environment (Fig. 1). This resource-based
model aims to capture some of the key ecological fea-
tures observed in certain microbial evolution experiments
(5, 8), as well as more complex ecosystems such as the

gut microbiome (18), while remaining as analytically
tractable as possible.

In our idealized setting, individuals compete forR sub-
stitutable resources, which are supplied by the environ-
ment at a fixed rates (Fig. 1). Individuals are charac-
terized by a resource utilization vector ~r = (r1, . . . , rR),
which describes how well they can grow on each of the
resources. We assume that the resource utilization phe-
notypes are constitutively expressed, so that we may ne-
glect complicating factors like regulation. We will find
it useful to decompose the phenotype ~r into a normal-
ized portion αi = ri/

∑
j rj , and an overall magnitude

X = log(
∑
i ri/r̃), where r̃ is an arbitrary dimensionful

constant. The components of ~α can be interpreted as the
fractional effort devoted to growth on resource i, and we
will refer to this quantity as the resource strategy vector.
In contrast, the magnitude X resembles an environment-
independent measure of general fitness, an analogy that
we will make more precise below.

We assume that individuals reproduce asexually, so
that the state of the ecosystem can be described by the
number of individuals nµ with a given resource strategy
vector ~αµ and fitness Xµ. Under suitable assumptions,
the ecosystem can be described by the coarse-grained
Langevin dynamics,

∂fµ
∂t

=
R∑
i=1

αµ,i

[
eXµ−Xi(t) − 1

]
fµ +

ξµ(t)√
N

, (1)

where N is a fixed carrying capacity, fµ = nµ/N is the
relative frequency of strain µ, and ξµ(t) is a stochastic
noise term (SI Appendix A). The state of the environ-
ment is encoded by the set of resource-specific mean fit-
nesses,

Xi(t) = log

(∑
µ αµ,ie

Xµfµ

βi

)
, (2)

where βi denotes the fractional flux supplied by resource
i. Eq. (1) is an example of a more general and well-
studied class of consumer resource models introduced by
Refs. (31, 35), whose ecological properties have been ex-
plored in several recent works (32, 33, 34). The same
equation also describes a “bet-hedging” scenario in which
the population is periodically subdivided into different
environments (SI Appendix A). For a single resource,
Eq. (1) reduces to the standard Wright-Fisher model of
population genetics (36), with its logistic growth func-
tion, ∂t log fµ ≈ Xµ −X. The parameter Xµ can there-
fore be identified with the (log) fitness in these models. In
a multi-resource environment, the deterministic dynam-
ics become more complex, and do not generally admit
a closed form solution for fµ(t). However, Eq. (1) still
possesses a convex Lyapunov function (SI Appendix A),
which implies that fµ(t) must reach a unique and stable
equilibrium at long times.
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FIG. 1 Ecological and evolutionary dynamics in a simplified consumer-resource model. (a) Schematic depiction
of ecological dynamics. Substitutable resources are supplied to the chemostat at constant rates βi (i = 1, . . . ,R), measured
in units of biomass (

∑
i βi = 1). Cells import resources at genetically encoded rates, ri, which define a normalized resource

strategy αi = ri/
∑
j rj and general fitness X = log

∑
i ri. (b) Schematic depiction of evolutionary dynamics. Mutations that

alter resource strategies (~α) occur at rate Uα, while mutations that alter general fitness (X) occur at rate UX . (c-f) Simulated
ecological and evolutionary dynamics, starting from a clonal ancestor, in an environment with R = 2 resources. The four panels
represent independent populations evolved under different sets of parameters, which differ only in the mutation rates and fitness
benefits of pure fitness mutations (SI Appendix E). Lines denote the population frequency trajectories of all mutations that
reached fequency ≥ 10% in at least one timepoint. Resource strategy mutations are shown in red, while pure fitness mutations
are shown in blue.

The ecological model in Eq. (1) describes the competi-
tion between a fixed set of strains. To incorporate evolu-
tion, we also allow for new strains to be created through
the process of mutation. We will show that it is useful
to distinguish between two broad classes of mutations.
The first class, which we will refer to as strategy mu-
tations, alter the resource uptake strategy ~α, while for
simplicity, leave the general fitness X unchanged. We
assume that these mutations occur at a per genome rate
Uα and result in a new resource strategy ~α′ drawn from
some distribution ρα(~α′|~α). In addition to these strategy
mutations, we consider a second class of pure fitness mu-
tations, which alter the general fitness X but leave the
resource strategy ~α unchanged. These mutations cap-
ture the effects of directional selection at a large number
of other loci throughout the genome, which may only
be tangentially related to the resource utilization strat-
egy. We assume that these fitness mutations arise at
a per-genome rate UX , and that they increment X by
an amount s drawn from the distribution of fitness ef-
fects, ρX(s). For simplicity, we assume that there is no
macrosopic epistasis for fitness (37), so that ρX(s) re-

mains the same for all genetic backgrounds.

This division into fitness and strategy mutations is nei-
ther exhaustive nor unambiguous. Some changes in re-
source strategy may also incur a fitness cost, and one can
simulate a pure fitness mutation by shifting metabolic ef-
fort away from resources that are not present in the cur-
rent environment (i.e., those with βi = 0). Nevertheless,
by considering these as independent axes, we will show
that we can gain additional insight into the behavior of
our model.

Pure fitness mutations might seem like an ecologically
trivial addition to the model, because they are always
favored to invade. However, computer simulations show
that these accumulated fitness differences can still have a
dramatic influence on both the ecological structure and
the evolutionary dynamics that arise in a given popula-
tion. Figures 1C-F depict individual-based simulations
of four populations, which are subject to the same en-
vironmental conditions and the same supply of strategy
mutations, but have different values of UX and ρX(s) (SI
Appendix E). Depending on the supply of fitness muta-
tions, the behaviors range from rapid diversification and

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 31, 2018. ; https://doi.org/10.1101/292821doi: bioRxiv preprint 

https://doi.org/10.1101/292821


4

stasis (Fig. 1C) to unstable but continually renewed co-
existence (Fig. 1D), stable coexistence and rapid within-
clade evolution (Fig. 1E), and the permanent disruption
of coexistence (Fig. 1F).

To understand these different behaviors and their de-
pendence on the underlying parameters, we will start by
analyzing the simplest non-trivial scenario, in which the
strains evolve in an environment with just two resources.
In this case, the environmental supply rates and resource
uptake strategies can be described by scalar parameters
~β = (β, 1 − β) and ~α = (α, 1 − α), respectively. This
case will already be sufficient to elucidate many of the
key qualitative behaviors and fundamental timescales in-
volved, while maximizing analytical tractability. In the
second section, we will extend this analysis to larger num-
bers of resources, and comment on the additional features
that arise only in this more complicated scenario.

ANALYSIS

Selection for ecosystem to match environment, stable
coexistence

We will begin by considering the dynamics in the absence
of fitness differences (UX = 0, Xµ = 0). The ecological
dynamics in this “neutral” scenario have recently been
described by Ref. (32), and it will be useful to build on
these results in the sections that follow.

We begin by considering a single strategy mutation
that occurs in a clonal population of type α1, creating
a new strain of type α2. The initial dynamics of this
mutation can be described by a branching process with
growth rate Sinv = 〈∂tf〉/f (SI Appendix B), also known
as the invasion fitness. In this case, the invasion fitness
is given by

Sinv =
∆α(β − α1)

α1(1− α1)
, (3)

where ∆α = α2 − α1 is the difference between the mu-
tant and wildtype uptake rates. The invasion fitness is
positive whenever ∆α and β − α1 have the same sign: if
α1 < β, then selection will favor mutations that increase
α, while if α1 > β, selection will favor mutations that
decrease α. In this way, selection tries to tune the pop-
ulation uptake rate to match the environmental supply
rate. If α1 = β, then the invasion fitness vanishes for
all further strategy mutants. This constitutes a marginal
evolutionarily stable state (ESS). It will turn out that
many expressions simplify in a near-ESS limit, where the
uptake rates αi remain close to β. We will focus on this
regime for the expressions quoted in the remainder of
the main text, while the full expressions are derived in
SI Appendix.

Since all mutations start as a single copy in the pop-
ulation, many will be lost due to genetic drift, even

when they are favored by selection. With probability
∼Sinv, the mutant lineage will survive to reach frequency
f ∼ 1/NSinv, and will then start to increase determin-
istically; in large populations, this will typically occur
long before the mutant starts to influence its own growth
rate, so that the constant invasion fitness assumption is
justified (SI Appendix B).

At long times, the ecological dynamics will lead to one
of two final states: the mutant will either replace the
wildtype (competitive exclusion) or the two will coexist
at some intermediate frequency (Fig. 2A). The latter sce-
nario will occur if and only if the wildtype can re-invade
a population of mutants, which requires that the recip-
rocal invasion fitness, SRinv = ∆α(α2 − β)/α2(1 − α2), is
also positive. By examining this expression, we see that
the mutant will outcompete the wildtype if its strategy
lies between β and α1, while stable coexistence occurs
when α1 and α2 span β (i.e., α1 < β < α2 or vice versa).
When this condition for coexistence is met, Ref. (32) has
shown that the steady-state frequencies are determined
by the linear equation,

α ≡
∑
µ

αµf
∗
µ = β , (4)

whose solution is given by f∗/(1−f∗) = (β−α2)/(α1−β).
In other words, the relative frequencies of the strains are
inversely proportional to their distance from the environ-
mental supply rate. According to Eq. (4), these frequen-
cies are chosen such that the population-averaged uptake
rate α =

∑
µ αµf

∗
µ exactly balances the resource supply

rate β. This provides an intuitive explanation for the
cause of coexistence: by maintaining the strains at in-
termediate frequencies, the population is able to match
the environmental supply rate more closely than it could
with either strain on its own.

Once this ecological equilibrium is attained, num-
ber fluctuations will continuously perturb the true fre-
quency away from f∗ (Fig. 2A), subject to a linearized
restoring fitness ∼∆α2/β(1 − β) (SI Appendix B). The
restoring force is strong compared to genetic drift when
N∆α2/β(1 − β) � 1, which leads to linearized fluc-
tuations of order δf ∼

√
β(1− β)/N∆α2, and a life-

time for the stable state that is exponentially long in√
N∆α2. At this point, additional strategy mutants

are subject to very weak selection pressures: fluctua-
tions will induce momentary invasion fitnesses of order
δSinv ∼ |α3−α2|/

√
Nβ(1− β) (which can be large com-

pared to 1/N), but these fitness effects are quickly av-
eraged to zero during the ∼1/δSinv generations required
for such a mutation to establish (SI Appendix B). Thus,
once the population diversifies to fill the two niches, the
rate of evolution dramatically slows down (as, e.g. in
Fig. 1A), since the relevant timescales are controlled by
genetic drift. In this way, a large effect mutation can al-
low the ecosystem as a whole to reach an effective ESS,
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long before any of the constituent strains reach the ESS
on their own.

Diversification load

We are now in a position to analyze how fitness alters
the basic picture above. We begin by revisiting the inva-
sion of a mutant strain in an initially clonal population,
this time allowing for a fitness difference ∆X between
the mutant and wildtype. In this case, the new invasion
fitness is given by a simple linear combination,

Sinv(∆α,∆X) ≈ ∆X + Sinv(∆α) , (5)

where Sinv(∆α) is the invasion fitness for a pure strat-
egy mutation from Eq. (3). This result describes, in
quantitative terms, how selection balances its ecologi-
cal preferences (α → β) with its desire to maximize
fitness (X → ∞). When the uptake rate of the res-
ident population is far from the environment supply
rate [β − α1 ∼ O(1)], the ecological selection pressures
can be quite strong, with invasion fitnesses as high as
10%− 100%. This implies that strongly deleterious mu-
tations of order

∆Xmin ≈ −
∆α(β − α1)

β(1− β)
(6)

can hitchhike to fixation when the population colonizes
a new ecological niche (a form of diversification load).

Fitness differences perturb ecological equilibria

In addition to shifting the invasion fitness of a new mu-
tation, fitness differences can also alter the long-term
ecological equilibrium between mutant and wildtype in
Eq. (4). In the extreme limit, this can disrupt the sta-
ble coexistence altogether. If the mutant is less fit than
the wildtype (∆X < 0), this will occur whenever ∆X
is less than the maximum diversification load ∆Xmin in
Eq. (6). On the other hand, if ∆X > 0, extinction will
occur when the wildtype no longer has positive invasion
fitness, or when ∆X exceeds a threshold

∆Xmax ≈
∆α(α2 − β)

β(1− β)
. (7)

We note that the fitness differences in Eqs. (6) and (7)
are lower than the values required for the mutant or wild-
type to dominate in all environmental conditions (SI
Appendix B). Instead, the fitness thresholds strongly
depend on how the resource strategies differ from each
other, and from the environmental supply rate. When
∆α ∼ ε, even a small fitness difference (∆X ∼ ε2) can
disrupt the stable ecology, while for ∆α ∼ O(1), much
larger fitness differences (∆X & 100%) can be tolerated.
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FIG. 2 Schematic illustration of key eco-evolutionary
processes in a two-resource ecosystem. (a) Ecological
diversification from a clonal ancestor. In the absence of fitness
mutations, strains coexist at a stable equilibrium (f∗) with
fluctuations (δf) controlled by genetic drift. Further strategy
mutations are not favored to invade. (b) Pure fitness muta-
tions that sweep within an ecotype shift the stable equilibrium
by ∆f ; accumulated fitness differences can ultimately drive
ecotypes to extinction. Further strategy mutations allow the
winning clade to re-diversify at a later time. (c) Occupied
niches can also be invaded by strategy mutations that arise in
fitter genetic backgrounds. In this case, the original ecotype
lineage is driven to extinction while the ecological structure
of the community is preserved.

When ∆Xmin < ∆X < ∆Xmax, the two strains con-
tinue to coexist, but their equilibrium frequency is no
longer given by Eq. (4). In this case, the competing drive
to maximize fitness means that selection will no longer
favor an ecology that matches the environmental resource
distribution, at least not perfectly. In SI Appendix B, we
show that the new equilibrium frequency is given by

f∗(∆X) ≈ f∗0 +
β(1− β)

∆α2
·∆X , (8)

where f∗0 is the neutral ecological equilibrium from
Eq. (4). From this expression, we can read off the typ-
ical fitness differences required to perturb f∗ from its
present value. This fitness sensitivity is again determined
by the distance between the two resource strategies. If
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∆α ∼ O(1), large fitness differences (∆X & 100%) are
required to change the equilibrium frequency, while for
∆α ∼ ε, even very small fitness differences (∆X ∼ ε2)
can generate large changes in the equilibrium frequency.

Further fitness evolution and diversification-selection
balance

Once the population achieves the stable ecology in
Eq. (8), additional fitness mutations will occur in each
strain with probability proportional to the equilibrium
frequency f∗. In our model, the invasion fitness of such a
mutation is simply its fitness effect s, independent of the
ecological state of the population. With probability ∼s,
this mutation will sweep through its parent clade, chang-
ing the fitness difference between the clades by ±s and
the equilibrium frequency by ∆f = f∗(∆X±s)−f∗(∆X)
(Fig. 2B). In the linear regime of Eq. (8), the frequency
and fitness changes are directly related,

∆f ≈ ±
(
s

sc

)
(9)

where sc = ∆α2/β(1− β) is the fitness scale that deter-
mines changes in equilibrium frequency. If s� scf

∗(1−
f∗), then the stable coexistence will be di srupted, and
the mutant clade will take over the population. We will
refer to such a scenario as ecosystem collapse, since one
of the niches is no longer occupied.

Similar behavior can occur when s� sc as well, except
that now the ecosystem collapse occurs due to cumula-
tive effect of many general fitness mutations. When the
fitness mutations accumulate independently, this process
can be described by an effective diffusion model,

sc
∂f∗

∂t
≈ 2NUXs

2(2f∗ − 1) +
√

2NUXs3 · η(t) (10)

with a bias that reflects the higher probability of pro-
ducing a mutation in a larger clade (SI Appendix B).
Eq. (10) superficially resembles the drift-induced pertur-
bations at ecological equilibrium, except that the bias
is now unstable rather than restoring. When 2f∗ − 1�√
s/sc, the mutation bias is weak, and the clade frequen-

cies undergo a random walk (δf∗ ∼
√

NUXs3

s2c
· δt). But

after a time of order τdrift ∼ sc
NUXs2

, the frequency differ-
ential grows large enough that the more prevalent clade
will deterministically produce more beneficial mutations,
so that it is destined for fixation. After a time of order
τcollapse ∼ sc

NUXs2
log
(
sc
s

)
, the fitness difference between

the clades grows so large that the ecosystem finally col-
lapses (Fig. 2B). This timescale sets an upper limit on the
lifetime of the stable state when many fitness mutations
are available.

Once the ecosystem collapses, there will be a strong
selection pressure for the winning clade to re-diversify

through additional strategy mutations, and restart this
process from the beginning (Fig. 2B). To gain insight
into these dynamics, we first consider the case where the
resource strategies are controlled by a single genetic lo-
cus, with fixed phenotypes α1 and α2, and mutations
that alternate between the two states at rate Uα. After
an ecosystem collapse, Eq. (3) shows that the invasion
fitness for the opposite strategy is given by Sinv ∼ sc,
so the collapsed state will persist for a time of order
τdiversify ∼ 1/NUαsc, until the stable ecology is re-
established. If the two strategies are symmetric about
β, so that f∗(0) = 1/2, the new stable state will per-
sist for ∼τcollapse generations in the absence of additional
strategy mutations, and the process will then repeat it-
self. The relative probability of observing the population
in the collapsed (S = 1) or saturated (S = 2) states is
therefore given by

Pr[S = 2]

Pr[S = 1]
≈ τcollapse

τdiversify
∼
{
Uα
UX

(
sc
s

)
if s� sc,

Uα
UX

(
sc
s

)2
log
(
sc
s

)
if s� sc.

(11)

This expression shows the minimum amount of strategy
mutations, or the maximum amount of general fitness
mutations, that allow the population to maintain a sat-
urated ecosystem. We will refer to this dynamic steady
state as diversification-selection balance, in analogy to
mutation-selection balance in population genetics (38).
Note that this balance crucially depends on the state of
the ecosystem through sc ∼ ∆α2/β(1 − β). All else be-
ing equal, ecosystems with more similar resource uptake
strategies will be disrupted more easily than those with
a higher degree of specialization.

Invading ecotypes can delay ecosystem collapse

Strictly speaking, our derivation of Eq. (11) is only valid
in the limit that τcollapse � τdiversify, since we neglected
mutations between α1 and α2 when both niches were
filled. When τcollapse & τdiversify (i.e., when the ecosystem
spends an appreciable amount of time in the saturated
state), we must also account for mutations between the
two strategies that arise before the ecosystem collapses.
Those mutations that arise in the less-fit clade will have
little chance of invading. However, a mutation from the
more-fit to the less-fit strategy will establish with proba-
bility ∼|∆X|, where ∆X is the current fitness difference
between the two clades. If this mutation is successful,
it will outcompete the resident lineage with the corre-
sponding value of α, and reset the fitness difference to
∆X = 0 (Fig. 2C). In this way, invasion from one ecotype
to another can significantly delay the process of ecosys-
tem collapse, since it relieves the tension between fitness
maximization and (X → ∞) and selection to match the
environment (α→ β).
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To analyze this process, we note that successful in-
vasion events will occur as an inhomogeneous poisson
process with rate λ(t) ∼ NUαf

∗
argmax(Xi)

|∆X|, where

f∗(t) and ∆X(t) are again determined by the diffusion
model in Eq. (10). This leads to a characteristic invasion
timescale

τinvade ∼



1
NUXs

if Uα � UX ,

1
NUXs

(
UX
Uα

)2/3

if Uα � UX

(
s
sc

)3/2

,

sc
NUXs2

log
(
U2
Xs

3

U2
αs

3
c

)
if Uα � UX

(
s
sc

)2

,

∞ else.

(12)

which is derived in SI Appendix B. Each of these regimes
corresponds to a different intuitive picture of the dynam-
ics. In the first case, strategy mutations are frequent
compared to general fitness mutations, and invasion oc-
curs almost immediately after the first fitness mutation
arises. In the second case, invasion occurs after multiple
fitness mutations have accumulated, but when the fre-
quencies of the clades still wander diffusively relative to

each other [f∗ ≈ 1/2±O
(√

s/sc

)
]. In the third regime,

invasion occurs after one of the clades has grown to a
sufficiently large frequency that it would have determin-
istically led to ecosystem collapse. When the invading
mutant establishes, it will therefore cause a rapid shift
in the frequencies of the ecotypes as f∗(∆X) returns to
f∗(0).

Finally, when Us � UX

(
s
sc

)2

, strategy mutants are

sufficiently rare that the ecosystem will typically collapse
and re-diversify before invasion can occur. This sets the
region of validity of the diversification-selection balance
in Eq. (11). Interestingly, Eq. (11) shows that collapse
and re-diversification can still dominate over invasion
even when both niches are typically filled (Pr[S = 2] �
Pr[S = 1]). In this case, both the genealogical struc-
ture and the typical state of the ecosystem will resemble
the invasion regime, but the historical record would con-
tain a series of puncutated extinction and diversification
events, interspersed with long periods of gradual fitness
evolution.

Fitness differences create opportunities for ecological
tinkering

Our derivation of Eqs. (10) and (12) assumed that the
two ecotypes were fixed by the genetic architecture of
the organism. Individuals could mutate between α1 and
α2, but mutations to other points in strategy space were
forbidden. In the absence of fitness differences, we saw
that selection for these additional strategy mutants is
weak once both niches have been filled (Sinv . 1/N), po-
tentially justifying the single-locus assumption in terms

Sweeps out other niche,
coexists w/ parent

Selected 
against

Sweeps
out

parent

Selected againstSweeps out 
parent

Fi
tn

es
s,

Resource strategy,

X1

X2

↵1

↵2

�

↵

X

Full sweep

FIG. 3 Invasion fitness landscape for additional strat-
egy mutations in a two-resource ecosystem. The two
resident ecotypes are illustrated by blue circles, while red cir-
cles denote mutant strains created by strategy mutations on
one of the ecotype backgrounds. The solid black line denotes
the effective mean fitness,

∑
i αiXi, experienced by a given

resource strategy. Strains with general fitness (X) above this
line are favored to invade, while others are selected against.
If a mutant successfully invades, its effect on the ecosystem is
indicated by the text.

of a priority effect. However, the previous analysis shows
that there can be strong selection to switch strategies
once fitness mutations accumulate, so it is also plausible
that fitness differences could lead to selection for strategy
mutations more generally.

To investigate these selection pressures, we consider
a population that is currently described by the steady
state in Eq. (8). We then consider strategy mutations
that occur on the background of α2, altering its strategy
to α3 while leaving its fitness intact. The invasion fitness
for such a mutation is given by

Sinv ≈
(α2 − α3)∆X

∆α
, (13)

As anticipated, fitness differences create additional selec-
tion pressure for strategy mutations beyond the simple
switching behavior considered above.

The direction of selection is determined by the sign of
∆X. In the background of the fitter clade (∆X > 0),
selection favors mutations that increase the strategy in
the direction of β (a form of generalism), while simul-
taneously disfavoring mutations that lead to increased
specialization (Fig. 3). The opposite behavior occurs in
the less-fit background, with selection favoring mutations
that increase the distance from β, leading to increased
specialization. Both behaviors have an intuitive expla-
nation in terms of individuals preferring to allocate their
metabolic energy toward the resource with the least-fit
consumers, thereby minimizing the effective competition
that they experience.

Once a successful strategy mutation arises, it will
sweep through the population and alter the ecological
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equilibrium (Fig. 3). Mutations in the less-fit clade are
straightforward to analyze. Since these are always di-
rected away from both β and α1, these mutants will
sweep through their parent clade and increase the equi-
librium frequency according to Eq. (8). Successful muta-
tions in the fitter clade have a wider range of outcomes,
since these are always directed toward β and α1. If
α3 < β, the mutant lineage will outcompete the less-
fit strain α1, and will stably coexist with its parent clade
α2 at an equilibrium frequency f∗ = (β−α2)/(α3−α2).
On the other hand, if β < α3 < α2, the mutant lineage
will always sweep through its parent clade α2. If α3 is
sufficiently close to α2, this will simply lead to an increase
in frequency according to Eq. (8). However, if α3 is close
enough to β that ∆Xmax(α3) becomes less than the ac-
tual fitness difference, ∆X, then the mutant will sweep
out both clades and lead to an ecosystem collapse and
subsequent re-diversification. Thus, in addition to creat-
ing a larger target for invasion events, these additional
strategy mutations can also enhance the probability of
ecosystem collapse. The balance between these compet-
ing tendencies will depend on the genetic architecture
of the resource strategies, ρα(α′|α), which is poorly pa-
rameterized by existing data. A detailed analysis of the
potential regimes will be left for future work.

Beyond pairwise coexistence

Our previous analysis focused on environments with only
two substitutable resources, where at most two strains
can coexist at equilibrium. In this case, the structure of
the stable ecosystem was simple enough to admit a full
analytical solution, which we could use to derive explicit
predictions for many evolutionary quantities of interest.
However, many microbial communities are found in en-
vironments with large numbers of potential resources,
and flexible gene pools that allow them to alter their re-
source uptake rates through horizontal gene transfer (39).
It is therefore natural to ask how our results generalize
to these more complicated environments as well. A full
analysis of this case is beyond the scope of the present
work, as there are even fewer constraints on the space of
ecological and evolutionary parameters compared to the
two resource case. Nevertheless, it is still useful to know
whether our qualitative results extend beyond R = 2,
and whether there are fundamentally new behaviors that
only arise in higher dimensions.

For a general ecological equilibrium, a mutation that
alters the phenotype of a resident strain from (Xµ, ~αµ)
to (Xµ + s, ~αµ + ∆~α) will have an invasion fitness

Sinv ≈ s−
∑
i

∆αiXi , (14)

where the resource-specific mean fitnesses Xi are given
by Eq. (2) evaluated at the equilibrium frequencies f∗µ

FIG. 4 Diversification-selection balance when R � 1.
Circles depict the long-term steady state from SSWM simu-
lations of a binary resource usage model in a nearly uniform
environment (SI Appendix E.2). Each point denotes an av-
erage over multiple timepoints from 3 independent replicates;
solid lines indicate the minimum and maximum replicate. (a)
The standard deviation in Xi across the R resources. (b)
The number of coexisting ecotypes. The colored dashed lines
denote the maximum ecosystem capacity S = R. The black
dashed line depicts the scaling relation in Eq. (17) which ap-
plies for S � R, with an O(1) prefactor of 1/

√
2π included

for visualization.

(SI Appendix C.1). Increases in αi are favored when Xi

is lower than the “effort-averaged” Xi for the other re-
sources, and vice-versa. Thus, similar to the two-resource
case, there is still a sense in which selection favors mu-
tations that flow from high values of Xi to lower values
of Xi, though there are now

(R
2

)
beneficial directions,

Xi → Xj , rather than just one.
The invasion fitness in Eq. (14) depends on the current

community composition only through the intensive vari-
ables Xi. In a saturated ecosystem, where the number
of coexisting strains is equal to the number of resources,
these can be directly obtained by a matrix inversion of
Eq. (1),

Xi ≈
∑
µ

α−1
i,µXµ , (15)

where α−1
i,µ is the left inverse of αµ,i. Thus, we see that in

a saturated ecosystem, the Xi are given by linear combi-
nations of the strain fitnesses Xµ, justifying their inter-
pretation as resource-specific mean fitnesses. Moreover,
perturbation expansions of α−1

i,µ suggest that the pref-
actor is still inversely proportional to an effective dis-
tance between the strategies (SI Appendix C.2), similar
to the two-resource case in Eq. (13). We note that the
equilibrium values of Xi are conditionally independent
of both the resource supply vector βi and the strain fre-
quencies f∗µ; these quantities influence Xi only through
shaping the set of resource strategies that coexist at equi-
librium. Thus, these saturated ecosystems dynamically
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FIG. 5 Schematic of (a) ecological and (b) genealogical
structure at the evolutionary steady-state described
in Eq. (17). In (b), blue dots represent general fitness mu-
tations and red dots represent loss-of-function strategy muta-
tions.

adjust their composition to screen the internal selection
pressures Xi from the external environmental conditions.
Similar findings were recently obtained for the neutral
case [where Xi = 0 (32)], as well as in certain commu-
nity assembly processes in the R → ∞ limit (33, 34).
Eq. (15) shows that this is a generic property that oc-
curs whenever the number of surviving species is equal
to the number of resources.

In this limit, the steady-state frequencies f∗µ can be
obtained from a similar matrix inversion,

f∗µ ≈
∑
i

βiα
−1
i,µ −

∑
i,ν

βiα
−1
i,µα

−1
i,ν (Xµ −Xν) , (16)

which serves as the generalization of Eq. (8) for R ≥ 2
(SI Appendix C.2). As in the two-resource case, small
fitness differences perturb the neutral ecological equilib-
rium via linear combinations of the strain fitnesses, with
a prefactor that is inversely proportional to the square of
the effective distance between the resource strategies.

While the saturated case is particularly simple, we
saw above that fitness mutations can drive the number
of surviving species below this saturated value. In con-
trast to the two-resource case, these unsaturated ecosys-
tems can now harbor multiple coexisting strains when
R > 2, leading to a continuous generalization of the
diversification-selection balance in Eq. (11). To inves-
tigate this effect, we performed computer simulations of
a binary strategy space model, in which individuals can
either import or not import a given resource, with mu-
tations that toggle individual uptake rates on and off (SI
Appendix C.3). The results recapitulate the qualitative
behavior observed for R = 2 resources, in that a suf-
ficiently high rate of general fitness mutations can con-
strain the number of distinct strategies that are able to
coexist (Fig. 4B). To compensate for the strong ecolog-
ical selection pressures that can arise when S � R, the
populations are forced to evolve consortia of “generalist”
strains such that

∑
µ ~αµf

∗
µ is still close to ~β, at least at

lowest order (Fig. 4A).
In a nearly uniform environment [βi ∝ 1±O(ε)], sim-

ulations show that the steady-state ecosystem tends to
be dominated by a single “generalist” strain (αµ,i ∝ 1),
and a collection of S − 1 single loss-of-function variants
(αµ,i ∝ 1− δµ,i) that recently descended from mutations
in the generalist background (Figs. 5 and S2-S4). These
simple community structures can be characterized ana-
lytically, and in the weak-mutation limit, yield a simple
heuristic expression for the diversification-selection bal-
ance,

S ∼ 1

R

(
Uαε

2

UXs2

)
, (17)

which is valid for S � R (SI Appendix C.3). The tran-
sition to the fully saturated state (S = R) requires an
even more stringent condition, which implies that un-
saturated ecosystems are obtained for a very broad pa-
rameter regime (Fig. 4B). In both cases, a larger num-
ber of substitutable resources will lead to a less diverse
ecosystem at diversification-selection balance. This is ul-
timately due to the fact that the difference between gen-
eralists and single loss-of-function variants becomes in-
creasingly small as R →∞.

This suggests that the relative frailty of the
diversification-selection balance in Eq. (17) may be a
pathological feature of the simple genetic architecture
that we have assumed, in which fit generalist pheno-
types are easily accessible. If we instead impose an up-
per limit Rc � R on the number of resources that a
strain can metabolize, heuristic calculations suggest that
diversification-selection balance will be achieved for sub-
stantially higher values of S, even for large R (SI Ap-
pendix C.4). In this case, the ecological and genealogical
structures that are attained at this evolutionary steady
state will be considerably more complex than the shal-
low star-shaped genealogies in Fig. 5. A more detailed
analysis of this steady state will be considered in future
work.

DISCUSSION

In microbial populations, primitive ecological interac-
tions can evolve spontaneously over years (5), months
(6), and even days (7). Yet this process rarely takes place
in isolation. In rapidly evolving populations, diversifying
selection must compete with directional selection acting
on other loci throughout the genome. Here, we have in-
troduced a simple mathematical framework to model the
interactions between these two processes in asexually re-
producing organisms.

The ecological interactions in our model emerge from
the competition for substitutable resources (e.g. different
carbon sources), according to a well-studied class of mod-
els from theoretical ecology (31, 32, 33, 34). To incorpo-
rate evolution into this model, we assumed that individu-
als can acquire mutations that alter their resource uptake
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rates. We showed that it is useful to distinguish between
two characteristic types of mutations: (i) strategy mu-
tations, which divert metabolic effort from one resource
to another and (ii) fitness mutations, which increase the
overall growth rate but leave the relative uptake rates
unchanged. In this classification scheme, strategy muta-
tions enable ecological diversification, while fitness muta-
tions capture the effects of directional selection at other
genomic loci.

The creation of new strains via mutation bears a su-
perficial resemblance to immigration from a fixed species
pool, which is the traditional scenario considered in theo-
retical ecology. However, this analogy is exact only in the
absence of inheritance, when the phenotypes of nearby
genotypes are uncorrelated from each other. In contrast,
when the effects of mutations are heritable, we have seen
that directional selection can produce dramatic depar-
tures from traditional ecological predictions.

Similar to immigration (34, 40), strategy mutations
allow an initially clonal population to diversify into sta-
bly coexisting ecotypes, whose upper bound is set by the
number of resources. Yet because fitness mutations are
heritable, further evolution will lead to fitness differences
between the clades, which can dynamically shift the eco-
logical equilibrium over time, and eventually drive less fit
clades to extinction. The mere observation that selection
can disrupt coexistence is not surprising, since drug re-
sistance or other harsh selection regimes provide striking
examples of this effect. However, our quantitative anal-
ysis shows that this collapse can happen long before any
clade is universally inferior to another, and that it can
result from the compound effect of many small effect mu-
tations that would not lead to extinction on their own.
These results suggest that ongoing directional selection
may have a larger impact on the structure of microbial
communities than is often assumed. In particular, while
previous ecological analyses suggest that the number of
ecotypes should meet (33, 34) or even exceed (32) the
number of resources, our results raise the possibility that
they could also reside at a diversification-selection bal-
ance below the maximum capacity of the ecosystem.

In addition to their influence on coexistence, we also
found that fitness differences accrued via directional se-
lection will generate emergent selection pressures for con-
tinual evolution of the ecological phenotypes, even in a
saturated ecosystem. While these internal selection pres-
sures are reminiscent of the Red Queen effect (41), our
quantitative analysis shows that they select for different
phenotypes than in the standard predator-prey setting.
In particular, less fit clades do not experience increased
selection pressure to narrow their fitness deficit by accu-
mulating fitness mutations. Instead, selection favors mu-
tations that divert metabolic effort toward resources with
lower effective competition, even at the cost of widening
the fitness deficit. Moreover, the direction of selection
toward any given resource can shift dynamically as the

fitness differences and resource uptake strategies evolve
over time.

Most of our analysis focused on the strong-selection
weak-mutation regime, in which the current ecological
equilibrium is attained before the next mutation occurs.
In this limit, when the resource uptake strategies are suf-
ficiently close to the supply rates, our model takes on a
universal form that closely resembles traditional models
of adaptive dynamics (22, 42). The key difference is that
directional selection behaves as an additional trait di-
mension, which is effectively constrained to remain far
from its optimum at all times (Fig. S1, SI Appendix D).
Our results show that this simple broken symmetry can
lead to dramatic deviations from the standard adaptive
dynamics picture.

In contrast to adaptive dynamics, we also allow for
mutations that have non-infinitesimal effects on resource
uptake rates, which turn out to play a key role in con-
trolling the dynamical behaviors that we observe. In
practice, the genetic architectures of most ecological in-
teractions remain poorly characterized empirically. In a
few well-studied cases, ecological diversification can be
traced to a single large-effect mutation (9, 43), while in
others, a series of smaller mutations have been implicated
(44). Our present analysis suggests new ways in which
we might constrain this key parameter experimentally,
either by analyzing fluctuations in ecotype frequencies
on long timescales (13), or by measuring the joint distri-
bution invasion fitness (Sinv) and ecological perturbation
(∆f) across a panel of engineered mutations (44).

Of course, the present work has focused on a highly
simplified model, which omits many of the complicating
factors expected in either natural or laboratory settings.
Future work will be required to fully explore the effects of
clonal interference (SI Appendix B.3), time-varying en-
vironments, crossfeeding, recombination, and other ad-
ditions to our basic model. We believe that our results
provide a promising analytical framework in which to in-
vestigate these effects, which have mostly been confined
to simulations so far.

It is also interesting to ask whether our results can
mapped onto more diverse modes of ecological interac-
tion, or whether there are other universality classes yet
to be discovered. Since our model can be viewed as the
simplest generalization of population genetics with mul-
tiple fitness axes, we hypothesize that it may capture the
limiting behavior of a broad class of ecological interac-
tions that are mediated by a small number of intensive
variables. If so, its analytical tractability may offer a
promising avenue for investigating the interactions be-
tween ecology and evolution more generally.
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Appendix A: Derivation of Eqs. (1) and (2)

In this section, we show how the coarse-grained Langevin dynamics in Eqs. (1) and (2) emerge from two different
microscopic models. The first is a simplified class of consumer-resource models described in the main text. To illustrate
the generality of these dynamics, we also describe a second implementation that is a more direct extension of the
traditional Wright-Fisher model, in which subsets of a population are randomly assigned to different environmental
conditions.

1. Consumer-resource model

Our consumer-resource derivation closely follows the one described by Ref. (32). We assume that all strains µ and
resources i are present in a well-mixed volume V , which is diluted at rate δ. In the consumer-resource framework, the
per capita growth rate of each strain is mediated by the resource concentrations,

∂tnµ = gµ(~c)nµ − δnµ +
√
nµδ · ηµ(t) , (A1)

where nµ is the absolute number of individuals of strain µ, gµ(~c) is a strain-specific growth function, and ηµ(t) is an
uncorrelated Brownian noise term (45). The resource concentrations (in units of V −1) obey a second set of equations,

∂tci = Si − δci −
∑
µ

dµ,i(~c)nµ
V

+

√
ciδ

V
· ηi(t) , (A2)

where Si is the input flux of resource i and dµ,i(~c) is the per capita depletion rate of resource i by strain µ. This
general class of models has been studied previously by Refs. (31, 35), and others. Following Ref. (32), we consider a
restricted subset of models where the growth and depletion functions take on a particularly simple form:

gµ(~c) =
∑
i

bµ,idµ,i(~c) , (A3)

dµ,i(~c) = rµ,iλi(~c) . (A4)

The first assumption states that the resources are effectively substitutable, i.e. biomass can be produced equally well
from suitably normalized versions of any imported resource. The constant normalization factor b−1

µ,i can be interpreted
as the amount of imported resource i necessary to create one cell of strain µ. The second assumption states that the
resource uptake rates can be factored into a species-and resource-specific (but concentration independent) factor rµ,i,
and a species-independent (but resource and concentration-specific) function λi(~c). For example, λi(~c) could denote
the uptake rate of a pathway that imports resource i, while rµ,i denotes the constitutive expression of that pathway
in an individual of strain µ. In this picture, strains can differ in their overall expression of a given pathway, but have
limited ability to tune its biochemical properties.

We assume that the resource fluxes and concentrations are both large, such that the dilution and noise terms can
be neglected in Eq. (A2). Following Ref. (32), we also assume a separation of timescales between the dynamics of
resource concentrations, such that the resource concentrations reach a quasi-equilibrium SiV ≈

∑
µ dµ,i(~c)nµ before

the strain abundances start to change significantly. Under these assumptions, we can eliminate the concentration
variables entirely, and obtain a set of coarse-grained dynamics for the strain abundances:

∂tnµ =

[
−δ +

∑
i

SiV bµ,irµ,i∑
ν rν,inν

]
nµ +

√
nµδ · ηµ(t) . (A5)

In this model, the dynamics of the total number of individuals, N̂(t) =
∑
µ nµ(t), does not close, due to the µ

dependence in the biomass conversion factor bµ,i:

∂N̂

∂t
= −δN̂ +

∑
i

SiV

[∑
µ bµ,irµ,inµ∑
µ rµ,inµ

]
+
√
N̂δ · ηµ(t) . (A6)

However, if we assume that bµ,i ≈ bi (similar to our previous assumption that λ(~c) is independent of µ), then the

equation for N̂(t) closes, and we find that N̂(t) rapidly approaches a steady-state value N ≡∑i Sibi/δ on a timescale
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of order 1/δ, with fluctuations of order
√
N . Such fluctuations become irrelevant in the large N limit, which suggests

that we rewrite the dynamics in terms of the strain frequencies, fµ = nµ/
∑
ν nν . Following the derivation in Ref. (46),

the dynamics of the frequencies fµ satisfy

∂fµ
∂t

=

[
−1 +

∑
i

βiαµ,ie
Xµ∑

ν αν,ie
Xνfν

]
fν +

∑
ν

[δµ,ν − fν ]

√
fν
N
ην(t) , (A7)

where we have defined the normalized parameters

βi =
Sibi∑
j Sjbj

, (A8)

αµ,i =
rµ,i∑
i rµ,i

, (A9)

Xµ = log
∑
i

rµ,i , (A10)

and time is measured in units of δ−1.

2. Subdivided environment model

The familiar form of Eq. (A7) suggests that these dynamics can also be obtained from a generalization of the standard
Wright-Fisher model, in which the population is periodically subdivided into separate environments. In this model,
the strains in environment i produce a number of gametes proportional to their Wrightian fitness, Wµ,i. After a
period of growth, Nβi gametes are chosen from each environment and mixed together to obtain the next generation.
The expected fraction of individuals in the next generation is

〈fµ(t+ ∆t)〉 =
∑
i

βi

[
Wµ,ifµ∑
νWν,ifν

]
. (A11)

When 〈fµ(t+ ∆t)− fµ(t)〉 is small, this update rule has the same continuum limit as Eq. (A7), with

Xµ = log

(∑
i

Wµ,i

)
, (A12)

αµ,i =
Wµ,i∑
iWµ,i

. (A13)

3. Deterministic Lyapunov function

The deterministic dynamics possess a Lyapunov function

Λ(~f) = −
∑
µ

fµ +
∑
i

βi log

(∑
µ

αµ,ie
Xµfµ/βi

)
= −

∑
µ

fµ +
∑
i

βiXi , (A14)

for which

dΛ

dt
=
∑
µ

1

nµ

(
dnµ
dt

)2

≥ 0 , (A15)

and which is convex and bounded from above. Among other things, this implies that the deterministic dynamics have
a unique equilibrium that is approached at long times. We exploit this fact in the simulations in Appendix E.
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Appendix B: Competition for two resources

In this section, we derive our main results for the two resource case. The major advantage of this limit is that
the multidimensional resource space reduces to the scalar interval (0, 1). Without loss of generality, we will write
everything in terms of the first resource component, defining β = β1 and αµ,1 = αµ, with the remaining components
β2 = 1 − β and αµ,2 = 1 − αµ fixed by the normalization condition. Following the description in the main text, we
will begin by analyzing the competition between two strains, and then consider the effects of adding a third strain to
a pair of previously coexisting strains.

1. Competition between two strains

To anayze the competition between two strains, we let α1 and α2 denote the strategy vectors of the two strains, and
let ∆X = X2 −X1 denote the fitness difference between them. We arbitrarily designate strain 1 as the “wildtype”
and consider the frequency of the “mutant strain”, f ≡ f2. With these definitions, Eq. (1) can be rewritten in the
form,

∂f

∂t
= se(f)f(1− f) +

√
f(1− f)

N
η(t) , (B1)

which is familiar from single-locus population genetics (47), where we have defined an effective frequency-dependent
selection coefficient,

se(f) =
β
[
α2e

∆x − α1

]
α1 + [α2e∆x − α1] f

+
(1− β)

[
(1− α2)e∆X − (1− α1)

]
1− α1 + [(1− α2)e∆X − (1− α1)] f

. (B2)

Our main results can be derived from limiting versions of this basic model.

Invasion of a new strain

The invasion of a new strain corresponds to the f → 0 limit, in which Eq. (B1) reduces to the linearized form,

∂f

∂t
= Sinvf +

√
f

N
η(t) , (B3)

with an invasion fitness Sinv defined by

Sinv ≡ lim
f→0

se(f) =
(
e∆X − 1

)
+ e∆X

[
(β − α1)(α2 − α1)

α1(1− α1)

]
. (B4)

Eq. (B3) can be solved using standard methods (48), so we will simply quote the relevant results here. For initial
frequencies small compared to the 1/NSinv, the genetic drift term dominates, and there is a high probability that
the mutant will drift to extinction. However, with probability pest = 2NSinvf(0), the mutant will drift to frequency
∼1/NSinv, after which point the selection term dominates over genetic drift. This “established” lineage will then grow
deterministically as f(t) = 1

2NSinv
eSinvt, which can be matched onto the full nonlinear (but deterministic) solution

as f increases further. The full solution is somewhat unwieldy, but the first-order nature of the ODE shows that
f(t) cannot decrease as t → ∞. Thus, once the mutant establishes, the deterministic dynamics will never drive the
mutant close enough to the drift barrier that extinction becomes likely again. This suggests that the branching process
description will be valid as long as f(t) remains sufficiently small during the duration of the establishment process
that f(t) � 1 and se(f) ≈ Sinv. This will be true provided that these conditions are satisfied at the drift barrier,
1/NSinv, which leads to the conditions

NSinv � 1 , (B5)

NSinvα1

α2e∆X − α1
� 1 , (B6)

NSinv(1− α1)

(1− α2)e∆X − (1− α1)
� 1 . (B7)

These conditions can be satisfied simultaneously for sufficiently large N .
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Stable coexistence

If Sinv > 0 and the mutant is lucky enough to establish, then the frequency-dependent selection term will either drive
the mutant to fixation (f = 1) or else stabilize at some intermediate frequency f∗. As described in the main text,
stable coexistence requires that the reciprocal invasion fitness,

SRinv ≡ lim
f→1
−se(f) =

(
e−∆X − 1

)
+ e−∆X

[
(β − α2)(α1 − α2)

α2(1− α2)

]
, (B8)

is also positive. Solving this equation when SRinv = 0 yields the critical fitness threshold

∆Xmax = log

(
1 +

(α1 − α2)(β − α2)

α2(1− α2)

)
, (B9)

which reduces to Eq. (7) in the main text in the near-ESS limit. We might naively assume that this threshold would
be equivalent to the fitness that gives strain 2 a higher uptake rate on both individual resources, i.e. α2e

∆X ≥ α1

and (1 − α2)e∆X ≥ 1 − α1. Although this is indeed a sufficient condition for strain 2 to fix, the true thresholds in
Eqs. (7) and (B9) are much weaker conditions, which depend on the environmental supply vector β. This means that
in practice, stable coexistence will be disrupted long before one of the strains is uniformly better than the other.

When the conditions for stable coexistence are met, the equilibrium frequency f∗ is obtained from the condition
that se(f

∗) = 0. From Eq. (B2), we see that this can only happen if α2e
∆X − α1 and (1 − α2)e∆X − (1 − α1) have

different signs, i.e. neither strain is uniformly better than the other. Solving for f∗, we find that

f∗ =
f∗0 +

[
f∗0 + α1(1−α1)

∆α2

] (
e∆X − 1

)
[
1 + α2

∆α (e∆X − 1)
] [

1− (1−α2)
∆α (e∆X − 1)

] , (B10)

where f∗0 = (β − α1)/∆α is the equilibrium frequency in the absence of any fitness differences. When f = f∗, the
resource-specific mean fitnesses Xi take on the values

X1 = − log

[
1−

(
1− e−∆X

)(1− α2

∆α

)]
,

X2 = − log
[
1 +

(
1− e−∆X

) ( α2

∆α

)]
,

(B11)

which are independent of the resource supply vector β. This extends the “environmental shielding” behavior derived
in the neutral limit by Ref. (32): when two strains coexist on two substitutable resources, the strain frequencies evolve
so that the remaining selection pressures take on values that are independent of the environment, and depend only
on the identities of the coexisting strains. We will revisit this behavior again in the multi-resource case below.

In the limit that fitness differences are small [specifically, when ∆X is small compared to 1, α2/∆α, and (1−α2)/∆α],
Eq. (B11) reduces to the linearized version,

X1 =
(1− α2)

∆α
∆X , X2 = − α2

∆α
∆X , (B12)

while Eq. (B10) reduces to the linear relation quoted in Eq. (8) in the main text. This defines a second fitness scale,

Xf ≡ f∗(1− f∗)
(
∂f∗

∂∆X

)−1

=
(β − α1)(α2 − β)

β(1− β) + (β − α1)(α2 − β)
, (B13)

over which f∗(∆X) changes significantly. Note that Xf has approximately the same scaling behavior for small and
large β − α as the critical threshold ∆Xmax in Eq. (7).

For frequencies close to f∗, the selection term again grows small compared to the genetic drift term. Linearizing
Eq. (B1) around f ≈ f∗, the fluctuations δf = f − f∗ are described by

∂δf

∂t
= −Xeqf

∗(1− f∗)δf +

√
f∗(1− f∗)

N
η(t) , (B14)
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where we have defined the equilibrium restoring fitness

Xeq ≡ −
∂se(f)

∂f

∣∣∣∣
f=f∗

=
1

β(1− β)

(
(α2e

∆X − α1)[(1− α2)e∆X − (1− α1)]

α1[(1− α2)e∆X − (1− α1)]− (1− α1)[α2e∆X − α1]

)2

. (B15)

In the limit that ∆X � 1, this becomes

Xeq =
∆α2

β(1− β)

[
1 +

2α2 − 1

∆α
∆X

]
. (B16)

This model can again be solved using standard methods (49). The stationary distribution of δf tends toward a normal
distribution with mean zero and standard deviation σf = 1/

√
2NXeq, which decays on a timescale ∼1/Xeqf

∗(1−f∗).
The quasi-deterministic model is therefore self-consistent provided that

σf
f∗(1− f∗) =

√
∆α2

2N(β − α1)2(α2 − β)2
� 1 , (B17)

which can be satisfied for sufficiently large N .
The fluctuations in f lead to similar fluctuations in the resource-specific mean fitnesses, Xi, whose first order

contribution is given by

δX1 =
∆α

β

[
1 +

α2

∆α
(e∆X − 1)

]
e−X1δf ,

δX2 = − ∆α

1− β

[
1− (1− α2)

∆α

(
e∆X − 1

)]
e−X2δf .

(B18)

2. Competition between three strains

Having characterized the dynamics for a pair of strains, we next consider a scenario in which a third strain is introduced
into a stable ecosystem where a pair of strains already coexist. Without loss of generality, we will assume that the
third strain is a mutant version of the second strain, with fitness X3 = X2 + s and strategy vector α3. For small
initial frequencies, the mutant strain has an invasion fitness

Sinv = (es − 1) + (α3 − α2)
(
e−X1(t) − e−X2(t)

)
e∆X+s , (B19)

where the resource-specific mean fitnesses X1(t) and X2(t) are dictated by the two strain process in Eq. (B1). We
consider the implications of this expression in various special cases below.

No fitness differences

In a completly neutral scenario (∆X = s = 0), the resource-specific mean fitnesses are solely determined by the
fluctuations δX1 and δX2 from Eq. (B18), and Eq. (B19) reduces to

Sinv = (α3 − α2)
[
δX2 − δX1

]
=

(α2 − α3)(α2 − α1)

β(1− β)
δf(t) . (B20)

Since 〈δf(t)〉 = 0, this agrees with the deterministic results of Ref. (32), who found that all further invasion fitnesses
vanish in a neutral population when the ecosystem is fully expoited. However, our stochastic analysis shows that
fluctuations can induce momentary selection pressures of order

δSinv ∼
(α2 − α3)(α2 − α1)

β(1− β)

1√
NXeq

, (B21)

which can be large compared to 1/N . However, these momentary selection pressures average out to zero over a
timescale 1/Xeqf

∗(1−f∗). When N is large, this is much shorter than the timescale ∼1/δSinv required for the mutant
lineage to escape the drift barrier. This shows that internal fluctuations cannot induce anomalous establishment events
in our model. To leading order in N , ecological selection pressures vanish in a neutral population when two strains
coexist on two substitutable resources.
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Pure fitness mutations

In the case where the mutant lineage is created by a pure fitness mutation, α3 = α2, and the invasion fitness reduces
to

Sinv = es − 1 ≈ s , (B22)

which is identical to the standard Wright-Fisher model. This justifies our interpretation of Xµ as a fitness parameter.
Eq. (B22) is a slightly stronger result, since it implies that general fitness mutations continue to establish at the same
rate, regardless of the structure of the ecosystem. When such a mutation establishes, it is guaranteed to displace its
parent strain, resulting in a two-strain competition between strain 3 and strain 1, which now differ in fitness by an
amount ∆X + s. If ∆X + s ≥ ∆Xmax from Eq. (7), then stable coexistence will be disrupted, and strain 3 will take
over the entire population. On the other hand, if ∆X + s < ∆Xmax, the mutant will only displace its parent strain,
and will be prevented from sweeping through the entire population. Instead, the successful mutation will shift the
equilibrium frequency by an amount

∆f = f∗(∆X + s)− f∗(∆X) ≈ β(1− β) + (β − α1)(β − α2)

∆α2
· s , (B23)

where we have employed the linearized approximation for f∗ from Eq. (8) in the main text.

Pure strategy mutations

If the mutant lineage is created by a pure strategy mutation (s = 0), then the invasion fitness reduces to

Sinv =
α3 − α2

α1 − α2

(
e∆X − 1

)
, (B24)

where we have retained only the leading order contribution as N → ∞. The ∆X � 1 limit is listed in Eq. (13) in
the main text. The interpretation of this expression, and the various scenarios that can arise after establishment, are
described in the main text as well.

3. Evolution of a single-locus ecology

The results above allow us to analyze the effects of further evolution in our consumer resource model. As a first pass,
we focus on a simplified scenario, in which strategy mutations switch between two fixed strategy vectors, α1 and α2,
and occur at rate Uα. We assume that α1 and α2 span β, so that the strains can stably coexist. We also assume
that α1 and α2 are sufficiently close to β that we can invoke the near-ESS limits of various expressions above. We
note that while this assumption is also employed in the adaptive dynamics literature (22, 42), our model also differs
from these results in a key way, as it includes α that go beyond the infinitesimal evolution assumption in adaptive
dynamics.

Our model also differs from the canonical adaptive dynamics scenario in that it includes pure fitness mutations,
which occur at rate UXρX(s). We assume that the tails of ρX(s) are sufficiently light that the distribution can be
approximated by a characteristic beneficial fitness effect (50), which we will also denote by the generic variable s
below. Our analysis here will focus on the strong-selection weak mutation (SSWM) regime that arises in the limit
that N →∞ and Uα + UX → 0. The first assumption guarantees that genetic drift is only relevant when mutations
are sufficiently rare, so that the establishment process can be modeled by the branching process techniques above.
The second assumption guarantees that all mutations establish or go extinct before the next mutation occurs, so that
they can be described by the two- and three-strain competition processes above. Violations of this assumption are
considered in more detail in a following section.

No strategy mutations

We first consider the dynamics under pure fitness mutations when Uα/UX = 0. We assume that the population has
just diversified into a pair of coexisting strains with fitness difference ∆X = 0, and equilibrium frequency f∗0 . Pure
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fitness mutations will occur in each clade at rate NUXf
∗ and NUX(1 − f∗), respectively. According to Eq. (B22),

these establish with probability pest = 2s, sweep through their parent clade, and result in a new fitness differential,

∆X =

{
+s with probability f∗,

−s with probability 1− f∗, (B25)

which depends on the genetic background in which the mutation arose. This fitness differential will lead to a shift
in the equilibrium frequency ∆f = ±s/sc described by Eq. (9) in the main text. If ∆f < −f∗ or ∆f > 1 − f∗,
then stable coexistence will be disrupted, and the mutant strain will take over the entire population. This will occur
whenever

s� scf
∗
0 (1− f∗0 ) ≡ (α1 − β)(β − α2)

β(1− β)
. (B26)

In this regime, the lifetime of coexistence is of order τcollapse ∼ 1/NUXs (the time that it takes for one fitness mutation
to occur).

In the opposite regime, when s � scf
∗
0 (1 − f∗0 ), individual fitness mutations lead to small shifts in f∗, and many

such mutations must accumulate before stable coexistence is disrupted. In this case, we can model the changing
equilibrium frequency using an effective diffusion process. In an interval of time δt, the fitness differential changes by
δ∆X = s(k2 − k1), where k2 and k1 denote the number of fitness mutations that accumulate in the f∗ and 1 − f∗
backgrounds, respectively. In the weak mutation limit, these occur as a Poisson process with rates 2NUXsf

∗δt and
2NUXs(1− f∗)δt, respectively, so that

〈k2 − k1〉 = 2NUXs(2f
∗ − 1)δt , Var(k2 − k1) = 2NUXsδt . (B27)

The fitness difference ∆X can therefore be described by an effective diffusion process,

∂∆X

∂t
= 2NUXs

2[2f∗(∆X)− 1] +
√

2NUXs3η(t) , (B28)

where the equilibrium frequency f∗ itself depends on ∆X through Eq. (8) in the main text. Changing variables from
∆X to f∗, we obtain Eq. (10) in the main text. For our detailed calculations, it will be somewhat more convenient
to work with the rescaled variables Y = 2f∗ − 1 and k = 2NUXst, which yields a related equation

∂Y

∂k
=

2s

sc
Y +

√
4s2

s2
c

· η(τ) . (B29)

This is similar to the equation for the drift-induced fluctuations in Eq. (B14), except that the bias is now a destabilizing
force, rather than a stabilizing one. This reflects the fact that larger clades are more likely to acquire beneficial
mutations in the weak mutation limit, which leads to further increases in frequency. We can quantify the strength of
this snowballing effect by analyzing the ultimate fixation probability of strain 1 (i.e., the probability that Y → 1) as
a function of the current value of Y = 2f∗ − 1. Eq. (B29) implies a corresponding backward equation for the fixation
probability

2s

sc
Y
∂Pfix

∂Y
+

2s2

s2
c

∂Pfix

∂Y
= 0 , (B30)

whose solution is given by

Pfix(f∗) ≈ 1√
2π

∫ 2f∗−1√
s/sc

−∞
e−

u2

2 du . (B31)

This function undergoes a sharp transition near 2f∗ − 1 ∼
√
s/sc. When |2f∗ − 1| �

√
s/sc, fixation and extinction

of the clade are equally likely, while for 2f∗−1�
√
s/sc, fixation is virtually guaranteed. This transition has a simple

interpretation in terms of the relative strengths of the bias and noise terms in Eq. (10):
√
s/sc represents a critical

frequency difference above which the bias dominates over the noise term. Since
√
s/sc is itself a small parameter in

the s � sc regime, this implies that the random portion of the clade competition process is confined to frequencies
near 50%. Reversals from frequencies near f∗ ≈ 0 or f∗ ≈ 1 are asymptotically unlikely.
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To investigate the dynamics of this process, we analyze the mean squared frequency difference 〈Y 2〉. Using Eq. (B29),
we can derive a closed moment equation for 〈Y 2〉

∂〈Y 2〉
∂k

=
4s

sc
〈Y 2〉+

4s2

s2
c

, (B32)

whose solution is given by

〈Y (k)2〉 = Y (0)2e
4sk
sc +

s

sc

(
e

4sk
sc − 1

)
. (B33)

Solving for k and converting back to units of time, we find that

t =
sc

8NUXs2
log

( 〈Y (t)2〉+ s/sc
Y (0)2 + s/sc

)
. (B34)

The behavior of this function has a simple heuristic interpretation based on the fundamental timescales of Eq. (10).
Starting from |2f∗0 − 1| �

√
s/sc, the clade frequencies will wander diffusively for a time τdrift ∼ sc

NUXs2
until

the frequency difference reaches
√
s/sc, after which point the major clade deterministically acquires mutations for

τcollapse ∼ sc
NUXs2

log(sc/s) more generations until it reaches fixation. On the other hand, if the clades start with a

frequency difference |2f0 − 1| �
√
s/sc, then the major clade will deterministically fix within ∼ sc

NUXs2
log
(

1
|2f∗−1|

)
generations

Including strategy mutations

We can use the results above to analyze the case where Uα/UX > 0. For very low values of Uα/UX , strategy mutations
will rarely occur before the ecosystem collapses according to the process described above. In this case, the main effect
of strategy mutations is to re-diversify a population that consists of a single ecotype. The invasion fitness of such
a mutation is therefore given by Eq. (3) in the main text, and will vary depending on which ecotype dominates the
population.

We can therefore distinguish between two regimes. If |2f∗0 − 1| �
√
s/sc, then both ecotypes are equally likely to

fix, and the average invasion fitness is

X inv =
(β − α1)(α2 − α1)

β(1− β)
+

(β − α2)(α1 − α2)

β(1− β)
= sc , (B35)

This leads to a diversification timescale τdiversify ∼ 1/NUαsc, and the diversification-selection balance in Eq. (11) in

the main text. On the other hand, if |2f∗0 − 1| �
√
s/sc then the clade with the larger initial frequency will typically

be the one that fixes. Without loss of generality, we will relabel the strains so that f∗ always represents this clade.
In this scenario, the average invasion fitness is instead given by X inv ∼ sc(1− f∗0 ), which is strictly smaller than sc.
In this case, the diversification-selection balance is given by

Pr[S = 2]

Pr[S = 1]
≈ τcollapse

τdiversify
∼ Uα
UX

(sc
s

)2

(1− f∗0 ) log

(
1

2f∗0 − 1

)
. (B36)

For still larger values of Uα/UX , strategy mutations will start to occur before one of the clades has fixed in the
population. If the mutation occurs in the fitter clade, it will have an invasion fitness Sinv = |∆X|, and will reset the
fitness difference to zero if it establishes. On the other hand, if the mutation occurs in the less fit clade, it will have
a negative invasion fitness and will not be able to establish. Thus, the net effect of these strategy mutations is to set
∆X = 0 at a time-dependent rate

λ0(t) = 2NUαf
∗∆Xθ(∆X)− 2NUα(1− f∗)∆Xθ(−∆X) , (B37)

where θ(z) is the Heaviside step function, and f∗(t) and ∆X(t) are determined by the effective diffusion process in
Eq. (10) in the main text. The first successful strategy mutation will occur on a characteristic invasion timescale
determined by the implicit relation ∫ τinvade

0

λ(t)dt ∼ 1 . (B38)
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Since the fitter strain will typically be the most abundant as well, Eq. (B37) will only differ by a factor of two from
the much simpler expression

λ0(t) ∼ NUα|∆X| . (B39)

Since Eq. (B38) is only accurate up to an order one factor, we will use this simpler approximation for λ0(t) instead.
Based on these definitions, we can obtain a self-consistent solution to Eq. (B38) in various regimes. If Uα � UX ,

then strategy mutations will arise much faster than individual mutations. In this case, a lucky fitness mutation will
establish in one of the clades after a time of order 1/NUXs, so that∫ t

0

λ0(t′)dt′ ∼ NUαs
(
t− 1

NUXs

)
. (B40)

This yields an invasion timescale

τinvade ∼
1

NUαs
+

1

NUXs
∼ 1

NUXs
, (B41)

which is self-consistent provided that Uα � UX .
If τinvade � 1/NUXs, then multiple fitness mutations will accumulate before the first successful strategy mutation

arises. If τinvade � τdrift then the fitness differential ∆X wanders diffusively as |∆X| ∼
√
NUXs3t, and∫ t

0

λ(t′)dt′ ∼ NUα
√
NUX(st)3/2 . (B42)

This leads to an invasion timescale of order

τinvade ∼
1

NUXs

(
UX
Uα

)2/3

, (B43)

which is self consistent provided that Uα � UX � Uα (sc/s)
3/2

.
If τinvade � τdrift, or if the initial frequency differential already exceeds the critical value

√
s/sc, then the successful

strategy mutation will occur when ∆X is growing deterministically as

∆X ∼ sc
√

(2f∗0 − 1)2 +
s

sc
· e

4NUXs
2t

sc , (B44)

so that ∫ t

0

λ0(t′)dt′ ∼ Uαs
2
c

UXs2

√
(2f∗0 − 1)2 +

s

sc
· e

4NUXs
2t

sc . (B45)

If τinvade � τcollapse, this leads to an invasion timescale,

τinvade ∼
sc

8NUXs2
log

(
U2
X

U2
α

s4

s4
c

1

(2f∗0 − 1)2 + s
sc

)
, (B46)

which will be self-consistent provided that Uα
(
sc
s

)3/2 � UX � Uα
(
sc
s

)2
. Finally, for UX � Uα

(
sc
s

)2
, strategy

mutants are sufficiently rare that the ecosystem will typically collapse and re-diversify before invasion can occur. In
this case, τinvade formally diverges. The various regimes for τinvade are summarized in Eq. (12) in the main text.

The effects of clonal interference

In our analysis above, we have focused on the weak mutation limit, in which only two or three strains exist within the
population at any one time. While this enabled many analytical simplifications, it is also known that many microbial
populations lie outside this regime. This is particularly true for many microbial evolution experiments in which stable
coexistence has been observed to evolve spontaneously. While a thorough analysis of this regime is beyond the scope
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of the present work, we will summarize the key differences that are likely to arise in the effective diffusion process in
Eq. (10) in the main text.

Outside of the weak-mutation limit, many established beneficial mutations will be driven to extinction due to clonal
interference with other beneficial mutations that happen to segregate at the same time (51). In the limit that clonal
interference is strong (NUX � 1), this has two main consequences. First, the rate of adaptive substitution scales
much more weakly with N than the linear expectation NUXs from the SSWM limit. In the case of coexisting strains,
this will also apply to the subpopulations Nf∗ and N(1 − f∗) that correspond to the two clades. As a result, the
bias term in Eq. (10) will be significantly reduced (and essentially vanishes in the limit of strong clonal interference).
Second, clonal interference causes the rate of adaptation to become more deterministic in addition to reducing it,
since it is no longer limited by the supply of beneficial mutations. The dynamics of these fluctuations are poorly
understood in the general case, though Ref. (52) has shown that they lead to a long-term diffusion constant,

DX =

 s

log
(

s
UX

)
3

. (B47)

for the total fitness gain in a model similar to ours. Thus, as long as Nf∗(1 − f∗) remains sufficiently large that
clonal interference within each clade remains strong, we expect the effective diffusion model in Eq. (10) to be better
approximated by the limiting form

sc
∂f

∂t
∼
√
DX · η(t) . (B48)

Due to the weaker bias term, we expect that the relative frequencies of the clades can undergo dramatic reversals
before one or the other accumulates a fitness advantage that is large enough it to fix. Interestingly, such reversals have
been observed in a long-term experiment in E. coli (13). However, a more thorough analysis of this clonal interference
regime remains an interesting avenue for future work.
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Appendix C: Competition for many resources

In this section, we show how many of the results derived in the two-resource case can be extended to systems with
larger numbers of resources. Most of these results will apply for arbitrary values of R, but we are particularly
interested in the qualitative differences that arise in the many resource limit where R � 1.

1. Invasion of a mutant strain

We begin by considering a mutation that occurs in an ecosystem with an arbitrary number of coexisting strains, with
equilibrium resource-specific mean fitnesses, Xi. Without loss of generality, we will assume that the mutation occurs
in the µ = 1 strain, and leads to a new phenotype (Xµ + s, ~αµ + ∆~α), where the stragy perturbation must satisfy
the normalization constraint

∑
i ∆αi = 0. The invasion fitness for the resident strain µ must be zero, since it is by

definition present at the ecological equilibrium. Using this fact, along with the normalization condition on ∆~α, one
can show that the general invasion fitness for the mutant is given by

Sinv ≡
∑
i

(αµ,i + ∆αi)
[
eXµ+s−Xi − 1

]
= (es − 1) + es

∑
i

∆αi

(
eXµ−Xi − 1

)
. (C1)

In the near-ESS limit where s, Xµ, and Xi are all small compared to one, this expression reduces to Eq. (14) in the
main text.

2. Ecological equilibria

The invasion fitness in Eq. (C1) depend on the structure of the stable ecosystem through the resource-specific mean
fitnesses, Xi, which depend on the equilibrium strain frequencies f∗µ through the definition in Eq. (2). Compared to
the two-resource case above, it is generally more difficult to calculate the ecological equilibrium for a set of strains
when R > 2. Part of this difficulty is caused by the vector nature of the resource space, which can no longer be
projected down onto a single scalar dimension. However, this is more than just a book-keeping issue — there are
also fundamentally new kinds of ecological equilibria that can arise when R > 2. In a two-resource system, ecological
equilibria are either monocultures (with S = 1 resident strains), or else contain the maximum number of coexisting
strains permitted by the environment (S = 2). However, when S > 2, one can also have stable coexistence at any
intermediate value of 1 < S < R, in addition to the saturated state with S = R. These two classes of equilibria turn
out to have very different properties.

Saturated ecosystems. The saturated stable state (S = R) is the closest analogue of the two-resource equilibrium
that we studied in Appendix B. In this case, we can obtain an explicit solution for the strain frequencies, f∗µ, and

resource-specific mean fitnesses, Xi, attained at equilibrium as a function of the phenotypes (Xµ, ~αµ) of the resident
strains. By definition, the per capita growth rate (∂t log fµ) of each resident strain must vanish at equilibrium, which
yields a system of S equations for the R resource-specific mean fitnesses:∑

i

αµ,ie
−Xi = e−Xµ . (C2)

When k = p, this system can be inverted to obtain

e−Xi =
∑
µ

α−1
i,µe
−Xµ , (C3)

where α−1
i,µ is the left inverse of αµ,i. In the limit that |Xµ − Xν | � 1, this reduces to Eq. (15) in the main text.

Using the definition of Xi in Eq. (2) in the main text, we obtain a second system of R equations for the k equilibrium
frequencies:

βi =
∑
µ

αµ,ie
Xµ−Xif∗µ , (C4)

which is the non-neutral generalization of Eq. (4) in the main text. Again, when S = R, we can invert this system to
obtain

f∗µ = e−Xµ
∑
i

βie
Xiα−1

i,µ =
∑
i

βiα
−1
i,µ∑

ν α
−1
i,ν e

Xµ−Xν
, (C5)
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since the left and right inverses are equal in this case. In the limit that |Xµ −Xν | → 0, we obtain the leading order
contribution

f∗µ ≈
∑
i

βiα
−1
i,µ −

∑
i,ν

βiα
−1
i,µα

−1
i,ν (Xµ −Xν) . (C6)

To gain intuition into these formulae, we consider a set of strains whose resource strategies are a mixture of specialist
and generalist components:

αµ,i = (1− ε)βi + εδµ,i , (C7)

where 0 ≤ ε ≤ 1 provides a measure of the “distance” between the resource strategies. In this case, the inverse matrix
has the asymptotic limits

α−1
i,µ ∼

{
δi,µ +O(1− ε) if 1− ε� 1,
δij−βj

ε +O(1) if ε� 1,
(C8)

so that

Xi ∼
{
Xi if 1− ε� 1,∑

j 6=i βj(Xi−Xj)
ε if ε� 1,

(C9)

and

f∗µ ∼
{
βµ if 1− ε� 1,

βµ

[
1−

∑
ν 6=µ βν(Xµ−Xν)

ε2

]
if ε� 1.

(C10)

Unsaturated ecosystems. In contrast to the saturated case, when the number of surviving species is less than
the number of resources (S < R) the equations in Eq. (C2) underdetermine the resource-specific mean fitnesses, Xi,
so we must invoke the non-linear constraints in Eq. (C4) to jointly solve for Xi and f∗µ. Alternatively Ref. (33) has

shown that the equilibrium values of Xi can be obtained from the solution of a convex optimization problem, subject

to the constraints in Eq. (C2). In particular, if we define the transformed variable hi = e−Xi , then the equilibrium
value of hi is the solution to the convex optimization problem

~h∗ = argmax~h

{∑
i

βi log hi :
∑
i

αµ,ihi = e−Xµ ∀µ
}
. (C11)

In fact, this method yields a general solution for the equilibrium value of Xi for any initial collection of strains,
provided that the equality constraints in Eq. (C11) are replaced by inequalities (≤). Given the equilibrium values
of Xi, the surviving species correspond to the indices µ where the equality condition is satisfied. The corresponding
values of f∗µ satisfy the (generally overdetermined) set of equations in Eq. (C4), which can be inverted using constrained
linear regression. We employ this technique to implement the SSWM simulations in Appendix E below.

We note that since the objective function in Eq. (C11) depends on βi, the equilibrium values of Xi will also
generally depend on the environmental supply vector in an unsaturated ecosystem, in contrast to the β-independent
values obtained in the saturated case. Thus, the ecosystem is no longer able to dynamically adjust to “shield” the
internal selection pressures from the current state of the environment (32, 33, 34). Shifts in βi can therefore lead to
new opportunities for evolutionary adaptation.

3. Evolution in a binary resource usage model

Since there are few empirical constraints on the genetic architecture of resource strategies in the limit of many resources
(R � 1), we focused on a toy “binary usage” model similar to the one considered by Ref. (33). In this model, genomes
can either encode the ability to utilize a given resource or not (e.g. through the presence or absence of a particular
pathway), so that the resource strategy is of the form

αµ,i =
Iµ,i∑
i Iµ,i

. (C12)
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where Iµ,i ∈ 0, 1 is a binary indicator variables. Individuals can acquire loss-of-function mutations at rate U−α
∑
i Iµ,i,

which cause one of the values of Iµ,i = 1 to switch to Iµ,i = 0. We also assume that they can acquire gain of function
“mutations” (e.g. horizontal acquisition of a gene from the environment) at rate U+

αR, which force a randomly chosen
uptake rate to the Iµ,i = 1 state. Under these assumptions, the pure mutation dynamics will lead to an binomial
ensemble of resource strategies, analogous to the one considered by Ref. (33), with a “success probability” of

〈∑i Iµ,i〉
R =

U+
α

U−α
. (C13)

For simplicity, we will assume that theR resources are all supplied at nearly identical rates. Note that in the completely
symmetric case (βi = 1/R), a “generalist” strain with Iµ,i = 1 will constitute a marginal evolutionary stable state.
To avoid this pathological behavior, we will consider small perturbations around the completely symmetric state:

βi =
1

R

1 + εi −
1

R
∑
j

εj

 , (C14)

where the εi are small random perturbations drawn from some distribution, and sorted in descending order (ε1 ≥
ε2 ≥ . . . εR). For simplicity, we will assume that the εi are i.i.d. Gaussian variables with scale ε � 1. The steep tail
ensures that the maximum perturbation scales as

ε1 ∼
√

2ε2 logR , (C15)

and can be bounded to be sufficiently small for a suitable choice of ε. Under these assumptions, an ecosystem comprised
of a single “generalist” strain will still have nonzero ecological selection pressures encoded by the resource-specific
mean fitnesses,

Xi ≈ −εi , (C16)

so that some alternate resource strategies will be favored to invade.

By simulating evolutionary dynamics in this model in the weak mutation limit for various values of UX and s
(Appendix E.2), we find that the long-term structure of the ecosystem tends toward a state in which there is a single
generalist strain and S − 1 single loss-of-function variants that have recently descended from this strain (Figs. 5 and
S2-S4). In the limit that UX/Uα → 0, this state must also coincide with a saturated state (S = R). If we let f1

denote the frequency of the generalist strain, then the equilibrium frequencies are given by

f1 = 1− (R− 1)ε1 , (C17)

fi =

(
1− 1

R

)
(ε1 − εi) , (C18)

where we have assumed that Rε1 � 1. In other words, all resources except the one with the largest value of εi will
have a loss-of-function strain. In the limit that ε1R � 1, the loss-of-function strains will constitute a tiny fraction
of the population, and most mutations will arise in the generalist strain. In particular, the accumulation of fitness
mutations will cause the fitness of the generalist strain to grow as X1 ∼ NUXs

2t. We therefore wish to understand
when and how this fitness differential drives some of the loss-of-function variants to extinction.

Due to the symmetry of the system, if j strains are driven to extinction, these must be strains with loss-of-function
mutations in genes with the next j largest values of εi, i.e. i = 2, . . . , j + 1. Let Xc(j) denote the critical value of X1

required for these j strains to go extinct. Expanding Eq. (1) in the main text to lowest order in X1, (1 − f1), 1/R,
and ε, the equilibrium frequencies satisfy

0 = −1 +
1

R− 1

∑
i

(1− δµ,i)
[
1− 1

R + εi −
R− 1

R X1f1 +
f1

R + fiδi>j+1

]
, (C19)

or

fi ≈
1− f1

R − εi −RX1f1 . (C20)
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To self consistently solve for 1− f1, we sum over i = j + 2, . . . ,R to obtain:

1− f1 ≈ R ·
1

j + 1

j+1∑
k=1

εk −
R2(R− 1− j)

j + 1
X1 . (C21)

Substituting this back into our expression for fi, we obtain:

fi ≈
1

j + 1

j+1∑
i=1

εk − εi −
R2

j + 1
X1 . (C22)

We can then self-consistently solve for j by setting fj+1 = 0. For example, if j = 1, then we have

Xc(1) ∼ ε1 − ε2
R2

. (C23)

This will be a quenched random variable, since we have assumed that the εi are randomly distributed. Given our
Gaussian assumption, the typical value of ε1 − ε2 will occur for

ε1 − ε2 ∼
ε log logR√

logR , (C24)

which yields

Xc(1) ∼ ε · log logR
R2
√

logR . (C25)

On the other hand, if j ∼ R, we have

Xc(j) ∼ ε ·
1

R . (C26)

These two fitness scales are separated by a gap of order

Xc(R)

Xc(1)
∼ R

√
logR

log logR , (C27)

which grows increasingly large as R � 1.
We can use these results to derive heuristic expressions for the number of species S at steady state as a function

of Uα/UX . We first consider the limit where S � R. As mentioned above, the generalist strain comprises the vast
majority of the population, so that to a first approximation, we can assume that all fitness and strategy mutations
occur on this genetic background. Furthermore, since S � R, most loss of function mutations will target a resource
i that does not already have a loss-of-function variant, where the resource-specific mean fitness is given by

Xi ≈ log

(
α1,ie

X1

βi

)
≈ X1 − εi . (C28)

According to Eq. (14), the invasion fitness for a loss-of-function variant that targets resource i is given by

Sinv ∼
−εi
R . (C29)

Since these loss of function mutations are produced from the generalist background at rate NUα per resource, the
number of coexisting strains increases at rate

dS
dt

=
∑
i

NUα ·
|εi|
R
θ(−εi) ∼ NUαε . (C30)

in the absence of fitness mutations.
However, as we mentioned above, the accumulation of fitness mutations will cause the fitness of the generalist

strain to grow as X1(t) ∼ NUXs
2t. Since loss-of-function variants do not acquire further fitness mutations of their

own, their fitness is frozen at whatever fitness the generalist strain had at the time that the mutation arose. The
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fitness difference between the mutant and the generalist therefore grows with time until it reaches a critical value
Xc(R) ∼ ε/R, at which point the loss-of-function variant is driven to extinction. This gives rise to two characteristic
dynamical regimes depending on whether Xc(R) is larger or smaller than the effect s of a typical fitness mutation.

If s� Xc(R), then the generalist lineage must acquire multiple fitness mutations to drive one of the loss-of-function
variants to extinction. To a first approximation, the fitness difference between the generalist and the jth most-recently
created loss-of-function variant in this regime is given by

∆Xj ∼
j

NUαε
·NUXs2 . (C31)

The number of coexisting ecotypes S at steady-state is therefore determined by the relation ∆XS ∼ Xc(R), which
reflects a balance between the elimination of the oldest loss-of-function variant due to the accumulation of fitness
mutations and the production of new loss-of-function variants through strategy mutations. Solving for S, we obtain
the scaling relation,

S ∼ 1

R

Uα
UX

( ε
s

)2

, (C32)

listed in Eq. (17) in the main text.
On the other hand, if s� Xc(R), then a single fitness mutation in the generalist strain is sufficient to drive loss-of-

function variants to extinction. Before this mutation arises, all the loss-of-function variants will share the same fitness
difference (∆Xj = 0), and this value suddenly shifts to � Xc(R) once the successful fitness mutation occurs, driving
all of the existing loss-of-function variants to extinction. This leads to oscillations in S in the time between successive
fitness mutations, which range from Smin ∼ 1 immediately after the fitness mutation arises, to a maximum value of
Smax ∼ Uαε/UXs right before the next mutation arises. Since the loss-of-function variants accumulate linearly with
time, this leads to a time-averaged value

S ∼ Uαε

UXs
. (C33)

Both expressions should remain valid up to the point where there is an appreciable probability that new loss-of-
function mutations target a resource that already has pre-existing variant (S ∼ R). However, there can still be a
broad intermediate regime between this point and the point where the ecosystem is completely saturated (R−S . 1).
The saturated state will coincide with the evolutionary steady-state if the generalist strain is able to seed fitter loss-
of-function variants into all the relevant resource dimensions before X1(t) increases to the point Xc(1), where the first
strains start to go extinct. Once again, there are two characteristic timescales depending on whether Xc(1) is large
or small compared to s.

If s� Xc(1), then the generalist lineage must acquire multiple fitness mutations to before the first loss-of-function
variants are driven to extinction. This will happen over a timescale,

Tcollapse ∼
Xc(1)

NUXs2
∼ ε

NUXs2
· log logR
R2
√

logR . (C34)

During this time, loss-of-function mutations will occur in the generalist background at rate NUαR and will establish
with probability ∼X1(t). Since the loss-of-function mutations are chosen randomly, R logR such establishments are
required to cover the total number of resource dimensions with high probability (53). This requires a timescale Tdiv

that satisfies ∫ Tdiv

0

NUαRNUxs2t ∼ R logR , (C35)

or

Tdiv ∼
√

logR
NUαNUXs2

. (C36)

The ecosystem will remain saturated if Tcollapse � Tdiv, which leads to the condition

UX �
Uα

R4 log2R
( ε
s

)2

. (C37)
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We can compare this point to the transition to R − S ∼ R from Eq. (17), which shows that these regimes are
separated by a gap of order

UX(R− S ∼ 1)

UX(R− S ∼ R)
= (R logR)2 , (C38)

while

UX(R− S ∼ R)

UX(S ∼ 1)
= R2 . (C39)

4. Limits on the number of utilized resources

The fragility of the diversification-selection balance in Appendix C.3 can be attributed in large part to the emergence
of a fit generalist strain that is able to utilize all of the available resources. In practice, however, there might be
biological constraints or other costs that limit the number of resources that a given strain can metabolize. This leads
us to consider an extension of our binary resource usage model, in which the maximum number of utilized resources
is capped at some value Rc � R. In this way, we can consider complex ecosystems (R → ∞) while restricting the
metabolic repertoire of any given strain. A full analysis of this model is beyond the scope of the present work. Instead,
we will outline a heuristic calculation that suggests that diversification-selection balance at large R is achieved for
substantially higher values of S than in Appendix C.3 above.

We first note that when Rc � R, multiple strains are required to cover the available resources. The minimum
possible number of strains is S ∼ R/Rc, which is achieved when each of the strains specializes on a disjoint subset of
Rc resources. To lowest order in ε, the frequencies of these strains are given by

fµ ≈
Rc
R . (C40)

With the same genetic architecture of strategy mutations that we assumed above, this state will form the basis of the
new diversification-selection balance. Generalizing our analysis above, this state will consist of R/Rc independent
copies of the diversification-selection balance in Appendix C.3, except with R → Rc. The strains that utilize Rc
resources will be prevented from branching into new resources because of the maximum resource capacity. Meanwhile,
single loss-of-function mutants on these backgrounds will be too small to acquire a gain-of-function mutation before
their parent acquires enough fitness differences to drive them to extinction.

However, this behavior is strongly dependent on the specific genetic architecture that we assumed, as well as our
focus on the SSWM limit. In larger populations, there may be a substantial probability for strains to acquire multiple
strategy mutations in a short period of time, which would allow them to break out of their resource neighborhood.

To mimic this effect in the SSWM limit, we can introduce a new rate U
(2)
α � Uα to represent the probability that two

strategy mutations arise in the same lineage in a single generation. In particular, we will use this new rate to model
resource swap events, in which one of the currently utilized resources is deleted and replaced with a randomly drawn
resource. As above, we will assume that this mutation rate scales with the number of utilized resources, so that the

net rate is given by U
(2)
α kµ, where kµ = 1/

∑
i α

2
µ,i.

In this augmented model, if we start from the set of R/Rc disjoint strains, then the fitnesses of these strains will
wander diffusively as Xµ ∼ NUXfµs2t±

√
NUXfµs3t, so that the typical fitness differences between a pair of strains

is of order ∆X(t) ∼
√
NUXfµs3t. These fitness differences will create a selection pressure for strategy mutations

that swap a resource from one of the fitter strains with a resource from one of the less fit strains. Such a mutation
will have an invasion fitness

Sinv =
e∆X(t) − 1

Rc
≈ ∆X(t)

Rc
. (C41)

Successful swap mutations will be produced on a timescale τdiversify that satisfies∫ τdiversify

0

NU (2)
α Rc ·

√
NUXfµs3t

Rc
dt ∼ 1 . (C42)
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Solving for τdiversify, we obtain

τdiversify ∼
1

s

(
NU (2)

α

)−2/3
(
NUX ·

Rc
R

)−1/3

, (C43)

∆X(τdiversify) ∼ s
(
UXRc
U

(2)
α R

)1/3

. (C44)

Once the successful swap mutation invades, it will create a new ecotype that coexists with the parent clade, as well
as the ecotype that currently utilizes the new resource. To lowest order in 1/Rc, the equilibrium frequency is given
by

f∗ν ∼
1− e−∆X(t)

2

Rc
R . (C45)

When ∆X � 1, this frequency will be small compared to the other dominant ecotypes. As above, fitness mutations
will therefore preferentially accumulate in the dominant ecotypes, causing the fitness advantage, ∆X(t), of the swap
mutant to decrease over time at rate NUXf

∗
µs

2. After a time of order

τcollapse ∼
∆X(τdiversify)

NUXs2 · RcR
∼ 1

s

(
UXRc
U

(2)
α R

)1/3 R
NUXRc

, (C46)

the fitness of the less fit ecotype will have caught up to the swap mutant, and the latter will be driven to extinction.
The ratio between τcollapse and τdiversify is therefore given by

τcollapse

τdiversify
∼
(
U

(2)
α R

UXRc

)1/3

. (C47)

If this ratio is sufficiently large, then new swap mutants will typically establish before the fitness differences drive any
of the existing swap mutants to extinction. For fixed Rc, this will become increasingly true R →∞.

On the other hand, if τcollapse � τdiversify, then a typical resource swap mutation will be driven to extinction before
the next arises. However, because the timing of the swap mutations is a random process, anomalously late mutations
may occur for which ∆X(t) ∼ O(1). In this case, the swap mutant is no longer rare compared to its parent, and there
is strong selection pressure for loss- (and later gain-) of-function mutations to arise in this mutant background.

Together, these arguments suggest that the simplest generalization of the steady-state in Appendix C.3 will generally
be unstable whenever we impose a cap on the number of utilized resources, and that the corresponding diversification-
balance will be attained for much higher values of S than we would expect based on our previous analysis. Further
analysis of these dynamics are left for future work.
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Appendix D: Connections to adaptive dynamics

Our model shares certain features associated with the traditional models studied in adaptive dynamics (22, 42),
though it also differs from these models in several key ways. In this section, we attempt to make this connection more
explicit, using the notation and terminology employed in the adaptive dynamics literature. As adaptive dynamics
relies on the weak mutation limit, we will confine our discussion to this regime as well.

Two resources, no fitness differences

For simplicity, we will start by considering the two-resource case in the absence of fitness differences, where individuals
are described by a scalar resource phenotype α. To make the connection with adaptive dynamics explicit, we will
define a rescaled trait,

x =
α− β√
β(1− β)

, (D1)

such that x→ 0 as α→ β. Following Ref. (22), we then let sx(y) denote the invasion fitness of a mutant of phenotype
y in a monomorphic population of phenotype x. In the neighborhood of x → 0, Eq. (3) shows that sx(y) takes on a
simple quadratic form

sx(y) = (x− y)x . (D2)

Under the standard adaptive dynamics assumption that y is infinitesimally close to x, the phenotypes will evolve in
the direction of the fitness gradient,

D(x) =
∂sx(y)

∂y

∣∣∣∣
y=x

= −x . (D3)

This gradient vanishes for x = 0 which shows that x∗ = 0 (or α=β) is an evolutionarily singular strategy. This strategy
is convergence stable, in that infinitesimal mutations drive the population toward x = 0 when |x| > 0. However, it
is only marginally ESS-stable, since ∂2sx(y)/∂y2 = 0 at x = 0. The second derivative classification in Ref. (22) also
shows that stable dimorphisms can coexist in the neighborhood of x∗.

These two features combine to make our evolutionarily singular strategy behave as both an evolutionarily stable
strategy (ESS) and an evolutionary branching point. On the one hand, x∗ = 0 resembles an ESS because no mutant
strains are favored to invade once the population reaches x∗. On the other hand, x∗ = 0 resembles an evolutionary
branching point because the population will typically branch into a stable dimorhpism once x − x∗ approaches the
typical spacing between mutants. Thus, in practice, the population will always branch before it reaches the ESS,
even if this is excluded under truly infinitesimal evolution. However, unlike a traditional branching point where
∂2s∗x(y)/∂2y > 0, there is no further selection to drive the branched phenotypes x1 and x2 away from each other once
branching has occurred. We showed in the text that this can be viewed as a generic feature of a saturated ecosystem
(where S = R) when there are no general fitness differences between strains.

Resource continuum, no fitness differences

One might ask why the evolutionarily singular strategy is so peculiar in our model, given that consumer-resource
theory is often touted as an example of evolutionary branching points in the adaptive dynamics literature (26). The
key difference is that in this existing literature, the trait x does not usually refer to the uptake rate of a single resource,
but instead is used to parameterize an entire curve of resource uptake rates for a continuum of different resources. To
choose a simple example, one might imagine that the resources denote seeds of different sizes, which are indexed by a
continuous parameter z. The function β(z) then represents the distribution of seed sizes supplied by the environment,
which is often assumed to have a Gaussian form

β(z) =
e−

z2

2√
2π

, (D4)
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centered at some special value z = 0. Individual uptake rates are often assumed to have a similar Gaussian shape

α(z|x) =
e−

(z−x)2

2σ2√
2πσ2

, (D5)

with a preferred value of z = x and a characteristic width σ. The trait x is then subject to further evolution, rather
than the individual uptake rates α(z). Substituting these functions into Eq. (1) (with Xµ = 0), the invasion fitness
for phenotype y in a monomorphic population of phenotype x is given by

sx(y) = exp

(
1

σ2

[
x2

2

(
1 +

1

σ2

)
− y2

2

(
1− 1

σ2

)
− 2xy

σ2

])
− 1 . (D6)

The fitness gradient ∂sx(y)/∂y vanishes when x = 0, showing that x∗ = 0 is an evolutionarily singular strategy, as
anticipated. The second derivative is given by

∂s∗x(y)

∂y2
=

1− σ2

σ4
. (D7)

For σ > 1, x∗ is a true ESS, while for σ < 1, x∗ is a true evolutionary branching point. In the neighborhood of x∗,
selection will act to drive the phenotypes further apart from each other after branching has occurred.

We can understand this behavior using the intuition developed in the main text. Since there are an infinite number
of resources in this model, the ecosystem is certainly not saturated when S = 2. Thus, we can expect much of the
selection pressure to focus on bringing the population averaged uptake rate α(z) closer to the environmental supply
rate β(z). When the niche width σ is larger than the range of resources supplied by the environment, the best way
to do this is with a single strain centered at x = 0. Branching is therefore not favored. On the other hand, if σ is
smaller than the range of supplied resources, then the ecosystem as a whole can match the environmental supply rate
better if there are two strains centered at intermediate locations on the real axis (|x− y| > 0).

In this way, we see that the R = 2 resource case, far from being pathological, serves as a basic building block that
allows us to understand more complex scenarios that are often considered in the literature. It also illustrates how the
genetic architecture of the uptake rates (in this case, whether the α(z) can evolve independently or are restricted to
the Gaussian family) can play a key role in determining the emergent dynamics of the model.

Directional selection as an intermediate asymptotic

We now return to the two-resource case above and examine how changes in the general fitness (X) alter the adaptive
dynamics analogy. Individuals are now described by a two-dimensional phenotype, (X,α). Generalizing our analysis
above, we will now define a two-dimensional trait space:

x1 =
α− β√
β(1− β)

, x2 = X . (D8)

In this notation, the invasion fitness in Eq. (5) becomes

sx1,x2(y1, y2) = (y2 − x2) + (x1 − y1)x1 , (D9)

whose fitness gradient is given by

∇ysx1,x2
(y1, y2) = (−x1, 1) . (D10)

As expected, the general fitness dimension always selects for phenotypes that increase X, regardless of the value of α.
As a consequence, there are no longer any evolutionarily singular strategies in this model, so the formal classification
such points in the adaptive dynamics framework does not apply any more. Nevertheless, we have seen that behaviors
very similar to evolutionary branching still occur in our model if we project down onto the x1 coordinate. Furthermore,
the old evolutionarily singular strategy at x∗1 = 0 continues to play a key role in these dynamics. The major difference
is that these ecologically stable polymorphisms are now only quasi-stable under evolutionary perturbations, as our
analysis in the main text shows that further fitness evolution can drive one of the ecotypes to extinction (Fig. 3B).
This behavior is consistent with observations from laboratory evolution experiments (13).
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FIG. S1 An intermediate asymptotic of adaptive dynamics. In a multidimensional phenotype space, a population that
is far from the evolutionarily singular strategy can display the quasi-stable branching behavior analyzed in the main text if one
of the trait dimensions (x1) is close to the singular coordinate (x∗1). In the specific context of our consumer resource model, x1
corresponds to the resource uptake strategy (α), while x2 corresponds to the general fitness (X).

Although we have motivated this behavior with the abstract notion of “general fitness,” our analysis suggests that
similar behavior will generically arise in multi-dimensional phenotype spaces whenever one of the traits (i) approaches
its marginal branching point x∗i , while at least one of the other traits (j) remains far from x∗j (Fig. S1). Previous work
has shown that such highly assymetric approaches to a stationary point are a common feature of gradient descent
dynamics in high dimensional spaces (54). In this way, our results can be viewed as an intermediate asymptotic that
describes the process of ecological diversification during the asymptotically long times required for a high-dimensional
trait space to approach a true evolutionarily singular strategy. A more detailed description of this regime is left for
future work.
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Appendix E: Simulations

1. Individual-based simulations

The simulations in Fig. 1 were carried out using an individual-based, discrete generation algorithm similar to the one
employed in Refs. (37, 50) for a single resource. Each simulation starts with a clonal population of N individuals,
and in each subsequent generation, the population undergoes a selection step followed by a mutation step. At each
step, we keep track of the number of individuals nµ with a given strategy vector αµ,i and general fitness Xµ.

In the selection step, each lineage nµ is assigned a new size from a Poisson distribution with mean

λµ = C

( R∑
i=1

αµ,ie
Xµ−Xi

)
, (E1)

where

Xi = log

[∑
µ

αµ,ie
Xµ

βi
·
(

nµ∑
ν nν

)]
, (E2)

and C = N/
∑
λµ is a normalization constant chosen to ensure that the total population size remains near N±O(

√
N).

In the mutation step, the new lineage size is pruned into multiple sublineages representing different mutations that
occur on the original lineage background. With probability UX , an individual founds a new sublineage ν is founded
with fitness Xν = Xµ + s, where s is drawn from the distribution of fitness effects ρX(s). With probability Uα, an
individual founds a new sublineage with a strategy vector ~αν drawn from the distribution ρα(~α′|~α).

The simulations in Fig. 1 were carried out for R = 2 with β = 0.5. We utilized a Gaussian distribution of fitness
effects, ρX(s) ∝ exp(−s2/2s2

0), for the pure fitness mutations. The distribution of strategy mutations, ρα(α′|α), was
taken to be a beta distribution with mean α and coefficient of variation Var(α′)/E(α′)2 = 0.05, but with α′ rounded
to the nearest value of 1/5, . . . , 4/5. The initial resource strategy for the ancestral population was chosen uniformly
at random from these discrete values.

Each simulation was performed for a total of 60, 000 generations. Every 500 generations, we simulated a round of
“metagenomic sequencing”. We calculated the population frequencies of all mutations present in the population, and
reported these values after binomial resampling at a depth of D = 1000.

A copy of our implementation in C++ is available on Github (https://github.com/benjaminhgood/consumer_
resource_simulations).

2. SSWM simulations

To simulate the long-term dynamics of the binary usage model in Fig. 4 (Appendix C.3), we use an optimized
simulation algorithm that is specifically designed for the strong-selection, weak mutation (SSWM) regime. Similar to
traditional SSWM algorithms in population genetics (55), this algorithm gains an efficiency advantage by simulating
only successful invasion events. In our case, however, the successful invasion events can now lead to non-trivial
ecological equilibria, in addition to simple fixation.

Our simulations start with a collection of strains (Xµ, ~αµ) at time t = 0. To assess convergence to diversification-
selection balance, we performed simulations for two initial conditions: (i) a single generalist strain with αµ,i = 1/R
(ii) a collection of R specialist strains with αµ,i = δµ,i and Xµ drawn from a Gaussian distribution with variance
σ = 10−7. Figs S3 and S4 show a comparison of these two initial conditions for R = 10. Since the agreement is
generally good, we utilized the more rapidly converging generalist initial conditions for the main simulations in Figs 4
and S2.

After drawing the initial condition, we first calculate the ecological equilibrium, f∗µ, for this collection of strains
using the convex optimization procedure in Appendix C.2, using the MOSEK software package (56). This algorithm

yields the equilibrium values of h∗i = e−Xi and the set of ecotypes Σ∗ that survive at equilibrium. Within this
subset, the equilibrium frequencies are obtained from the solution of the linear system in Eq. (C4), which will be
overdetermined when S < R. We obtain a solution to this system by solving the constrained least squares problem,

~f∗ = argmin~f∗


∑
i

∣∣∣∣∣∣
∑
µ∈Σ∗

αµ,ie
Xµf∗µ −

βi
h∗i

∣∣∣∣∣∣
2

:
∑
µ∈Σ∗

f∗µ = 1

 , (E3)
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using the SciPy library (57).
Once the initial ecological equilibrium is obtained, the simulation proceeds via a series of virtual timesteps, each of

which represents the successful invasion of a single mutation. In each step, we first enumerate the set of fitness and
strategy mutants that are generated from mutations on each of the current strains µ, and calculate their corresponding
invasion fitness from Eq. (C1). We use these values to calculate the net rate of successful invasions from each mutation
type. We assume that fitness mutations confer a characteristic fitness benefit s, so that the rate of successful fitness
mutations in strain µ is given by

RXµ = NUXf
∗
µ (es − 1) . (E4)

The rate of successful loss-of-function mutations for resource i is given by

R−µ,i = max

0, NUαf
∗
µ ·
∑
j 6=i

αµ,j(h
∗
j − h∗i )

kµ − 1
· θ(αµ,i − δ)

 , (E5)

where kµ = 1/
∑
i α

2
µ,i is the current number of resources utilized by strain µ, θ(z) is the Heavisde step function,

and δ is an infinitesimally small positive number so that the step function is well-defined. The rate of successful
gain-of-function mutations is given by an analogous expression,

R+
µ,i = max

0, NUαf
∗
µ ·
∑
j 6=i

αµ,j(h
∗
i − h∗j )

kµ + 1
· θ(δ − αµ,i)

 . (E6)

Since these successful invasion events arise as a compound Poisson process, the time Test to the next successful invasion
event is exponentially distributed with rate

Rtot =
∑
µ

[
RXµ +

∑
i

(
R+
µ,i +R−µ,i

)]
. (E7)

Using the Poisson thinning property, the identity of the invading mutation is chosen at random from the enumerated
list with probability proportional to its corresponding R-value. Once the identity of the invading strain is determined,
we find the new ecological equilibrium ~h∗ and ~f∗ using the constrained procedure above. By assumption, the time to
reach this new equilibrium is negligible compared to Test in the SSWM limit. The current time t is then incremented
by Test, and the process repeats itself.

We repeated this process for a total of M successful invasion steps until the ecosystem converged to diversification-
selection balance (M ∼ 100, 000). The simulations in Figs. 5 and S2-S4 were carried out for ε = 10−3 and s = 10−7,
scanning through different values of UX/Uα.

A copy of our implementation in Python is available on Github (http://github.com/StephenMartis/
consumer-resource-many-resources).
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FIG. S2 Ecological structure at diversification-selection balance in a binary usage model. (Top) For each of the
simulated populations in Fig. 4, the fraction of the population occupied by the generalist ecotype, αµ,i = 1/R. (Bottom) For
the same populations, the frequency-weighted average of kµ = 1/

∑
i αµ,i (a measure of the number of utilized resources) for

the remaining non-generalist ecotypes. A value of R − 〈kµ〉 = 1 indicates that the rest of the population consists of single
loss-of-function mutants that descend from the generalist background.
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FIG. S3 Approach to diversification-selection balance from different initial conditions. An analogous version of
Fig. 4 comparing specialist and generalist initial conditions for R = 10.

0

1

Ge
ne

ra
lis

t 
 fr

eq
ue

nc
y

10 5 10 4 10 3 10 2 10 1 100

Scaled fitness mutation rate, UXs2 /U 2

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

k
no

n
G

en
er

al
is

t

specialist
generalist

FIG. S4 Long-term ecological structure from different initial conditions. An analogous version of Fig. S2 comparing
specialist and generalist initial conditions for R = 10.
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