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� Norway spruce (Picea abies) is an important boreal forest tree species of significant 58 

ecological and economic importance. Hence there is a strong imperative to dissect the 59 

genetics controlling important wood quality traits in the species.  60 

� We performed a functional genome-wide association mapping of 17 wood traits in 61 

Norway spruce using 178101 single-nucleotide polymorphisms (SNPs) generated 62 

from exome genotyping of 517 mother trees. The wood traits were defined using 63 

functional modelling of wood properties across annual growth rings. 64 

� Association mapping was performed using a multilocus LASSO penalized regression 65 

method and we detected a total of 51 significant SNPs from 39 candidate genes that 66 

are involved in wood formation.  67 

� Our study represents the first functional multi-locus genome-wide association 68 

mapping (AM) in Norway spruce. The results advance our understanding of the 69 

genetics influencing wood traits, identify novel candidate genes for further functional 70 

studies and support current Norway spruce breeding efforts. 71 
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 75 

Introduction 76 

Norway spruce (Picea abies (L.) Karst.) is a dominant boreal softwood species of significant 77 

economic and ecological importance (Hannrup et al., 2004).  Long-term Norway spruce 78 

breeding programmes for improvement of growth and survival were initiated in the 1940s and 79 

recently, wood quality has become one of the priority traits (Bertaud & Holmbom, 2004; 80 

Hannrup et al., 2004). Norway spruce breeding in Sweden complete one cycle in about 20 81 

years and such long generation times make improvements in growth and wood quality very 82 

slow. Among wood quality traits, wood density is considered a key indicator of stability, 83 

strength and stiffness of sawn timber (Hauksson et al., 2001). Several studies of wood quality 84 

observed that fast growth conflicts with high quality wood, as shown by the negative genetic 85 

correlation between wood volume growth and density in Norway spruce  ( Olesen, 1977; 86 

Dutilleul et al., 1998; Chen et al., 2014). In order to combine fast growth and desirable wood 87 

properties through breeding, and to shorten the breeding cycle, it is therefore imperative to 88 

design effective early selection methods and breeding strategies. In an effort to design optimal 89 

breeding and selection strategies for reducing or breaking negative genetic correlations 90 

between traits it is essential to identify alleles that are responsible for generating favourable or 91 

unfavourable genetic correlations (Hallingbäck et al., 2014). 92 

When DNA markers were first introduced in 1980s, tree breeders were provided a 93 

possibility to correlate phenotypes with polymorphic DNA markers and to conduct selection 94 

using genotypes instead of phenotypes (Lande & Thompson, 1990). Groover et al. (1994) first 95 

identified quantitative trait loci (QTL) for wood density variation in loblolly pine using 96 

linkage analyses based on segregating family pedigrees. However, maker-aided selection 97 

(MAS) based on results from QTL analyses was never implemented in practical tree breeding 98 

due to the so-called Beavis effect (e.g. inflated estimates of allelic effects and underestimation 99 
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of QTL number for economically important traits) (Beavis, 1998), inconsistent associations 100 

among different families and the low transferability of markers (Strauss et al., 1992). 101 

Association Mapping (AM)  is a more powerful QTL detection method that was introduced to 102 

tree genetics using a candidate gene approach (Thumma et al., 2010). AM overcomes the 103 

limited resolution of family-based QTL mapping by relying on historical recombination in the 104 

mapping population ( Neale & Savolainen, 2004; Thavamanikumar et al., 2013; Huang & 105 

Han, 2014). The effectiveness of AM relies on genome-wide levels of LD, which decays 106 

rapidly within coding regions in conifer species, however, it may be extensive in certain non-107 

coding regions (Moritsuka et al., 2012). Fast-decaying LD, coupled with complex polygenic 108 

nature for both growth and wood quality traits (Hall et al., 2016) implies that a large number 109 

of genomic regions need to be investigated to identify significant QTL (Beaulieu et al., 2011).  110 

The availability of a draft genome sequence for Norway spruce (Nystedt et al., 2013) 111 

has opened new possibilities for the development of genetic markers to conduct both AM at 112 

the genome-wide level (genome-wide association, GWAS) and genomic selection (GS). 113 

Several reduced representation-based approaches such as sequence capture and transcriptome 114 

sequencing (Hirsch et al., 2014) have been developed as complexity-reduction methods suited 115 

for studying large genomes, such as the 20Gb Norway spruce genome. These approaches 116 

reduce the sequence space by decreasing the repetitive sequence content of the genome. In 117 

this study we employed a solution-based sequence capture method.  118 

Several AM studies have been performed in trees and have identified genetic loci 119 

linked to, for instance, wood properties in Populus trichocarpa (Porth et al., 2013), adaptive 120 

traits in Pinus contorta (Parchman et al., 2012) and to wood quality traits in Eucalyptus 121 

(Porth et al., 2013; Resende et al., 2012). Such studies aimed at dissecting the genetic basis of 122 

wood properties can benefit from the application of mathematical functions that account for 123 

year-to-year variation across annual growth rings, cambial age and distance from pith (Li et 124 
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al., 2014). Mathematical modelling allows the incorporation of phenotypic growth trends that 125 

increase the precision and resolution of  QTL detection through the integration of the 126 

phenotype information over multiple time points and reduction of residual variance (Ma et al., 127 

2002). Such functional mapping analysis can be conducted using a multistage approach 128 

(Heuven & Janss, 2010). First, the phenotype trends of each individual are modelled using 129 

curve-fitting methods and the parameters describing the curve are then considered as latent 130 

traits. The latent traits are then used in an independent association analyses to search for 131 

genomic regions affecting the trait and to estimate genetic marker effects (Li et al., 2014).  132 

In this study, we applied a functional genome-wide association mapping (AM) 133 

approach to identify genomic regions contributing to wood quality traits in Norway spruce 134 

[Picea abies (L.) Karst.]. Estimated breeding values (EBVs) were calculated for growth and 135 

wood quality traits at the resolution of annual growth rings and were then used to extract 136 

latent traits from fitting quadratic splines, Fig. 1a. We applied quadratic splines since 137 

traditional analyses that utilise a single point data across annual growth rings may confound 138 

the analyses by averaging across a full sample. Such averaging may obscure mechanisms 139 

acting at specific time points during wood formation and will make identification of 140 

underlying genes more difficult. In this study, we have refined our data in order to cover 141 

within ring features in earlywood (EW) and latewood (LW), as well as in a more weather 142 

influenced part in between named transitionwood (TW). This study has also performed the 143 

first analysis of number of cells per ring calculated from SilviScan data. Penalized LASSO 144 

regression (Tibshirani, 1996) and the stabilizing selection probability method of 145 

(Meinshausen & Bühlmann, 2010) were then used, Fig. 1c, to detect significant associations 146 

between latent traits derived from EBVs and 178101 SNP markers covering the Norway 147 

spruce genome, Fig. 1b.  148 

149 
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Materials and Methods 150 

Plant material and phenotype data 151 

Plant material and phenotype data used in this study have previously been described in Chen 152 

et al. (2014). In brief, two progeny trails were established in 1990 in Southern Sweden 153 

(S21F9021146 aka F1146 (trial1) and S21F9021147 aka F1147 (trial2)). These trials were 154 

composed of 1373 and 1375 open pollinated families, respectively, and form the basis of our 155 

analyses. We selected 517 families in 112 sampling stands to use in the investigation of wood 156 

properties. At each site, increment wood cores of 12 mm were collected from six trees of the 157 

selected families at breast height (1.3 m) (6 progeny × 2 sites = 12 progenies in total). A total 158 

of 5618 trees, 2973 and 2645 trees from the F1146 and F1147 trails respectively, were 159 

analysed. The pith to bark profiling of the wood physical attributes was analysed using the 160 

SilviScan technology (Evans 1994, 2006) at Innventia, Stockholm, Sweden, where the initial 161 

data evaluations were performed using customized methods. These methods focus on the 162 

identification and dating of all annual rings and their compartments of earlywood, 163 

transitionwood and latewood. For the current study, Innventia also calculated three additional 164 

traits, number of cells per ring (NC), wood percentage (WP), and a trait named Mass Index 165 

(MI), introduced to express the relative amount of biomass, all derived from the SilviScan 166 

data. MI was then used to identify trees with an uncommon positive correlation between 167 

density and growth, that is more biomass. The traits included in the current study are listed in 168 

Table 1. 169 

 170 

 171 

 172 

 173 

 174 
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 175 

Table 1 List of the phenotypes, their abbreviations and measurement unit. 176 

Phenotype Abbreviation Unit 

Ring wood density WD kg m-3 

Early wood density EWD kg m-3  

Transition wood density TWD kg m-3 

Latewood density LWD kg m-3 

Ring width RW μm 

Early wood ring width ERW μm 

Transition wood ring width TRW μm 

Latewood ring width LRW μm 

Ring number of cells NC  

Early wood number of cells ENC  

Transition wood number of cells TNC  

Latewood number of cells LNC  

Early wood percentage EP % 

Transition wood percentage TP % 

Latewood percentage LP % 

Early/Latewood percentage EP/LP % 

Modulus of elasticity MOE GPa 

Mass Index (Density x Growth)  MI  

 177 

 178 

 179 
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 181 

 182 

 183 

 184 

 185 

 186 

Fig 1. Outline of the association mapping approach: 1a) Mother Estimated breeding values (EBVs) were determined using a univariate, bivariate 187 

or multivariate mixed linear model based on the different fitness of the model with the resultant values adjusted with the mean. The adjusted 188 

EBVs were plotted against cambial age (annual ring number) to produce time trajectories for each trait. A quadratic spline curve model was then 189 

applied to the EBVs to estimate latent-traits. 1b) Sequence capture on the 517 from 40018 diploid probes resulted in 178101 single-nucleotide 190 
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polymorphisms (SNPs). 1c) Association mapping was the performed using a multi-locus LASSO penalized regression method with PCA 191 

components acting as covariates accounting for the population structure in our mother trees. 1d) Finally, a candidate gene identification process 192 

for contigs with significant SNPs was conducted in ConGenIE and public sequence databases. 193 
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 194 

Statistical analysis 195 

EBVs were calculated for each cambial age (annual ring) separately and used for statistical 196 

modelling to derive latent traits. The variance and covariance components were estimated 197 

using ASREML 4.0 (Gilmour et al., 2014) as described in Chen et al., (2014). In brief, the 198 

EBVs at each cambial age were estimated using a univariate, bivariate or multivariate mixed 199 

linear models. The fit of different models were evaluated using the Akaike Information 200 

Criteria (AIC) and the optimal model was selected based on a compromise of model fit and 201 

complexity. Breeding values were then centred in order to obtain within genotype trends. A 202 

univariate linear mixed model for joint-site analysis was implemented as: 203 

The following univariate linear mixed model for joint-site analysis was fitted as: 204 

Y���� � u� S� � B���� � F� � SF�� � e����                     [1]                            205 

where Y���� is the observation on the lth tree from the kth family in jth block within the 206 

ith site, u is the general mean, S� and B���� are the fixed effects of the ith site and the jth block 207 

within the ith site, respectively,  F� and SF�� are the random effects of the kth family and the 208 

random interactive effect of the ith site and kth family, respectively, e����  is the random 209 

residual effect. Multivariate mixed linear models were used to estimate BV for different 210 

phenotype traits if the model fitted better than bivariate or univariate based on AIC.  211 

A number of trees were observed that broke the negative correlation usually observed 212 

between density and growth. These trees exhibited both high density and fast growth, thus 213 

larger biomass. In order to identify putative genes involved in this favourable combination of 214 

traits, we defined a new trait termed Mass Index (MI), that we subsequently used in the 215 

association mapping. The MI was defined as follows: 216 

Mass index = (Individual average density/population average density) * (individual 217 

cross-sectional area / population average cross-sectional area). 218 
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The index was then treated as a new dynamic trait in the AM analyses where 219 

individuals with an index > 1 indicate a wood mass per length unit than the population 220 

average in the cross-section at breast height. The index was calculated for all progeny and 221 

were used to calculate BVs for the 517 mother trees.  222 

 The EBVs were plotted against cambial age (annual ring number) to produce time 223 

trajectories for each trait (Fig. 2 and Fig. S1) and used to estimate latent curve parameters. At 224 

the first stage, all the trajectories versus cambial age were fitted with a quadratic spline with 225 

multiple knots in order to describe the dynamics of the EBVs across age. In this study, this 226 

was done with the values of four parameters obtained from the spline fitting: the intercept, the 227 

slope and two knot parameters (K1 and K2). The intercept and slopes were used to evaluate 228 

the mean and rate of change for the trait across the annual rings, respectively. K1 and K2 229 

represent inflection points in the cambial age trajectories where the development of the EBVs 230 

enters new phases. These two points (K1 and K2) are therefore supposed to have biological 231 

significance, warranting a closer analysis of the genes imparting these shifts in the EBVs 232 

dynamics. The four latent traits show lower correlations compared to the direct measurements 233 

on the original scales and they also have constant variances, thereby reducing the need to 234 

account for residual dependencies in the model (Li et al., 2014).   235 

The general definition of a quadratic spline with multiple knots is as follows: 236 

β(t) = b0 + b1t + b2t
2 + + b3(t-tt)

2
+ + b4(t-t2)

2
++…+ b2+k(t-tk)

2,                                (1) 237 

which is continuous and where ti (i=1,…,k; t1<t2…<tk) are defined as knots, and (t – ti)
2

+ = (t 238 

– ti)
2 if t > ti (ti>0; i=1,…,k), and otherwise is equal to zero. The number of knots has to be 239 

properly defined in order to provide an accurate description of the data under investigation, as 240 

well as functional starting points for the search of their locations  (Li et al., 2015). In our case, 241 
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since the growth pattern of wood property traits were not complex, we choose two knots of 242 

the time interval.   243 

Hence, the quadratic spline model to describe the growth trajectory of individual i 244 

applied in this study was defined as: 245 

i.i.d.
2

0 1 2 1 3 2( ) ( ) ( ) ( ),        ( )  (0, ).                                (2)i i iy t t t t t t t t Nβ β β β ε ε σ+ += + + − + − + �  246 

 Then the intercept β0, slope β1, β2, (Knot 1 (k1)) and β3 (Knot 2 (k2)) are estimated by 247 

standard least squares, and their estimates were considered as the latent trait in the subsequent 248 

QTL analysis conducted in R-studio (Team, 2015). The latent traits were then analysed using 249 

the LASSO model in order to identify SNPs showing significant associations to the traits. 250 

 251 

 252 

 253 

 254 
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D) 264 

 265 

 266 

Fig 2. EBV trajectories of four wood quality traits by time:(A) wood density, (B) latewood 267 

density, (C) annual ring width and (D) latewood ring width. Individual trajectories for each 268 

trait are shown in light blue lines and the black line represents the mean trajectory for the 269 

phenotype. These individual trajectories were used to determine the four latent traits of each 270 

tree, using quadratic splines with two knots. 271 

 272 

Sequence capture, genotyping and SNP annotation 273 

Total genomic DNA was extracted from 517 unrelated individuals using the Qiagen Plant 274 

DNA extraction protocol with DNA quantification performed using the Qubit® ds DNA 275 

Broad Range (BR) Assay Kit (Oregon, USA). Sequence capture was performed using the 40 276 

018 diploid probes previously designed and evaluated for P. abies (Vidalis et al., 2018) and 277 

samples were sequenced to an average depth of 15x using an Illumina HiSeq 2500 (San 278 
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Diego, USA). Raw reads were mapped against the P.abies reference genome v1.0 using 279 

BWA-mem (Langmead & Salzberg, 2012; Li & Durbin, 2009).  SAMTools v.1.2 (Li et al., 280 

2009) and Picard v.1.140 (McKenna et al., 2010) were used for sorting and removal of PCR 281 

duplicates. Variant calling was performed using GATK HaplotypeCaller v.3.6 (McKenna et 282 

al., 2010) in gVCF output format. Samples were then merged into batches of ~200 before all 283 

517 samples were jointly called.  284 

Variant Quality Score Recalibration (VQSR) method was performed in order to avoid 285 

the use of hard filtering for exome/sequence capture data. For the VQSR analysis two datasets 286 

were created, a training subset and input file. The training dataset was derived from a Norway 287 

spruce genetic mapping population with loci showing expected segregation patterns 288 

(Bernhardsson et al., 2018) and assigned a prior value of 15.0. The input file was derived 289 

from the raw sequence data using GATK best practices with the following parameters: 290 

extended probe coordinates by +100 excluding INDELS, excluding LowQual sites, and 291 

keeping only bi-allelic sites. The following annotation parameters QualByDepth (QD), 292 

MappingQuality (MQ) and BaseQRankSum, with tranches 100, 99.9, 99.0 and 90.0 were then 293 

applied for the determination of the good versus bad variant annotation profiles. After 294 

obtaining the variant annotation profiles, the recalibration was then applied to filter the raw 295 

variants. Using VCFTools v.0.1.13 (Danecek et al., 2011), SNP trimming and cleaning 296 

involved the removal of any SNP with a minor allele frequency (MAF) and “missingness” of 297 

< 0.05 and >20%, respectively.  298 

The resultant SNPs were annotated using default parameters for snpEff 4 (Cingolani et 299 

al., 2012). Ensembl general feature format (GTF, gene sets) information was utilized to build 300 

the P. abies snpEff database.  301 

 302 

Genetic Structure 303 
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A principal component analysis (PCA) was performed on the sampled trees using SNPs 304 

derived from the sequence capture data. SNPs with missing values following VQSR were 305 

imputed using the nearest neighbour principle in TASSEL (Bradbury et al., 2007). This 306 

approach was essential considering that PCA demands no missing data points. The covariate 307 

matrix derived from the PCA was then displayed by plotting principal component 1 scores 308 

against principal component 2 scores in Figure 2. The PCA plot was used to make inference 309 

about the population structure. The first two components of the PCA covariate matrix 310 

explaining most of the variation were then applied to the AM to account for population 311 

structure and correcting for any stratification within the study. 312 

Linkage disequilibrium was calculated using VCFtools v.0.1.13 software using the 313 

squared correlation coefficient between genotypes (r2) within scaffolds using the “geno-r2”. 314 

The trend-line of LD decay with physical distance was fitted using nonlinear regression (Hill 315 

& Weir, 1988) and the regression line was displayed using R (Team, 2015). 316 

 317 

Trait Association Mapping 318 

The LASSO model as described by Li et al (2014), Fig. 1c, was applied to all latent traits for 319 

the detection of QTLs. 320 

The LASSO model:  321 

0

2
0

( , ) 1 1 1

1
( ) ,                                  (3)

2min
j

p pn

i ij j j
i j j

y x
nα α

α α λ α
= = =

− − +∑ ∑ ∑  322 

where yi is the phenotypic value of an individual i (i=1,…,n; n is the total number of 323 

individuals) for the latent trait β0, β1, β2 or β3, α0 is the population mean parameter, xij is the 324 

genotypic value of individual i and marker j coded as 0, 1 and 2 for three marker genotypes 325 

AA, AB and BB, respectively, αj is the effect of marker j (i=1,…,n; n is the total number of 326 

markers), and λ (>0) is a shrinkage tuning parameter. A fundamental idea of LASSO is to 327 
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utilize the penalty function  to shrink the SNP effects toward zero, and only keep a small 328 

number of important SNPs which are highly associated with the trait in the model. 329 

The stability selection probability (SSP) of each SNP being selected to the model was 330 

applied as a way to control the false discovery rate and determine significant SNPs (Gao et 331 

al., 2014; Li & Sillanpää, 2015). For a marker to be declared significant, a SSP inclusion ratio 332 

(Frequency) was used with an inclusion frequency of at least 0.52 for all traits. This frequency 333 

inferred that the expected number of falsely selected markers was less than one (1), according 334 

to the formula of Buhlmann et al, (2014). Population structure was accounted for in all 335 

analyses by including the first two principal components based on the genotype data as 336 

covariates into the model. An adaptive LASSO approach (Zou et al. 2006) was used to 337 

determine the percentage of phenotypic variance (PVE) (H2
QT ) of all the QTLs (Methods S1). 338 

These analysis were all performed in R (Team, 2015), with all the scripts provided in the 339 

supplementary material. 340 

 341 

Candidate gene mining  342 

To assess homology of contigs with significant associations, a BLAST search was performed 343 

against ConGenIE and public sequence databases, Fig. 1d. After the identification of 344 

significant SNPs, the complete P. abies contigs that harboured the QTLs were then BLASTed 345 

against the ConGenIE database and if no significant hit were detected the whole contig was 346 

then extracted. The complete contigs in fasta format were then used to perform a nucleotide 347 

BLAST (Blastn) search using the option for only highly similar sequences (megablast) in the 348 

National Center for Biotechnology Information (NCBI) nucleotide collection database 349 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?).  350 

 351 

 352 
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 353 

 354 

Results 355 

Norway spruce SNP identification and mapping population structure 356 

All of the 517 Norway spruce mother trees in the study were considered for variant detection 357 

and an average of 1.5 million paired end reads were sequenced per individual for the 40019 358 

exome capture probes. This resulted in the identification of 178101 high confidence SNPs. In 359 

order to account for effects derived from population stratification we performed a PCA and 360 

identified two separate main population groups as well as a number of individuals scattered in 361 

between these two main groups. Nevertheless, the differences due to population structure 362 

were small with the first two principal components cumulatively explaining only 2.18% of the 363 

genetic variation observed (Fig. 3). LD was also determined between all the SNPs, within 364 

contigs as well as within significant contigs only and LD decay across physical distance is 365 

plotted in Fig 4. 366 

 367 

 368 
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 369 

 370 

Fig 3. PCA plot of all the 517 mother trees. After VQSR and hard filtering of the SNPs, 371 

imputation using the nearest neighbor principle was performed in TASSEL. The PCA 372 

indicated a presence of two distinct populations within the 517 mother trees from the Norway 373 

spruce breeding program in Sweden. The inferred population structure was used for the 374 

correction of stratification within the AM analysis. 375 

 376 

Significant SNPs affecting wood traits  377 

Employing a SSP inclusion frequency of at least 0.52 on the intercept, slope and two knots 378 

(K1 and K2) as latent traits, we detected 51 significant QTL across 17 individual traits with 379 

the phenotypic variances explained QTL (H2
QTL) ranging from 0.01 to 4.93% (Table 2).  380 

Several appreciable QTLs were identified with WD and RW having the highest number of 381 

associations, at a total of 13 and 14 QTLs, respectively. This was followed by EP/LP-ratio, 382 

which had six QTLs. WD, RW and EP/LP were the only three observed traits that have QTLs 383 
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detected in all four latent traits. For these three phenotypes, the majority of the QTLs were 384 

detected when the average ring phenotype was used to derive the latent traits (Table 2). NC 385 

associated with one QTL that was detected for the entire ring, whilst six QTLs were identified 386 

when EW, TW and LW were analysed separately, with H2
QTL ranging from 0.01-4.93% 387 

(Table 2). 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

A) 397 

 398 
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B) 400 
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 401 

 402 

 403 

 404 

 405 

C) 406 

 407 

Fig 4. (A) Decay of linkage disequilibrium (LD) across all the tagged genomic sequences, the 408 

majority being exoms. Squared coefficients of allele frequency (r2) are plotted against 409 
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distance in base pairs. The fitted curve (red) is representative of the trend of decay from the 410 

178101 SNPs utilised in the association mapping (AM). (B) Decay of LD with distance in 411 

base pairs between sites from across 41 contigs with significant associations. (C) Decay of 412 

LD across contig MA_96191 that has a significant association for ratio of percentage 413 

earlywood vs latewood on which two probes were captured. 414 

 415 

 416 

 417 
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 418 

Table 2 Phenotypes, Latent Traits, SNP, SNP feature, frequency and PVE 419 

Phenotype Latent Trait QTL *SNP Allele SNP Feature Frequency PVE 

WD Intercept 167610 MA_10435406_13733 A/G Downstream variant 0.71 4.64% 

Slope 30469 MA_33109_11804 A/G Upstream variant 0.72 4.50% 

K1 30469 MA_33109_11804 A/G Upstream variant 0.551 4.15% 

K2 157442 MA_10432646_63090 G/A Upstream variant 0.567 2.43% 

EWD Intercept 167610 MA_10435406_13733 A/G Downstream variant 0.545 3.38% 

Slope 23798 MA_20321_44812 C/T Upstream variant 0.53 0.69% 

70955 MA_118446_4316 T/A Upstream variant 0.644 0.40% 

TWD Slope 131698 MA_10235390_3386 G/A Stop gained 0.672 1.58% 

 160208 MA_10433411_3386 T/C Intron variant 0.595 3.41% 

K1 89044 MA_212523_6278 T/C Upstream variant 0.534 3.34% 

LWD Slope 43797 MA_62987_13474 T/C Missense variant 0.524 1.81% 

165481 MA_10434805_21408 C/T Intron variant 0.588 1.21% 
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171223 MA_10436058_4902 G/A Intron variant 0.712 4.03% 

RW Intercept 11535 MA_10694_9101 A/C Synonymous variant 0.545 1.95% 

112391 MA_879270_7373 C/T,A Stop gained 0.532 1.45% 

112394 MA_879384_3894 C/A Splice region variant 0.692 2.56% 

Slope 165481 MA_10434805_21408 C/T Intron variant 0.521 2.66% 

K1 23808 MA_20322_28351 T/G Synonymous variant 0.554 1.78% 

165481 MA_10434805_21408 C/T Intron variant 0.533 0.18% 

K2 23808 MA_20322_28351 T/G Synonymous variant 0.55 1.20% 

165481 MA_10434805_21408 C/T Intron variant 0.615 1.79% 

TRW Slope 111057 MA_817099_1105 T/A Missense variant 0.685 1.12% 

K1 33110 MA_38472_13803 T/A Upstream gene variant 0.657 3.23% 

89295 MA_214776_1624 G/A Upstream gene variant 0.688 4.51% 

K2 111057 MA_817099_1105 T/A Missense variant 0.672 1.20% 

LRW Intercept 143628 MA_10428744_29330 C/T Downstream variant 0.668 0.5% 

K2 164772 MA_10434624_20686 C/A Downstream variant 0.571 0.06% 
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MOE Slope 165481 MA_10434805_21408 C/T Intron variant 0.602 1.00% 

NC K1 145839 MA_10429444_12692 G/C Upstream variant 0.645 3.82% 

ENC Slope 98508 MA_402880_2045 A/C Upstream variant 0.667 0.03% 

167610 MA_10435406_13733 A/G Downstream variant 0.685 0.01% 

TNC Intercept 95870 MA_346723_2241 T/C Upstream variant 0.667 3.78% 

126785 MA_9447489_687 A/C Upstream gene variant 0.68 4.93% 

LNC Intercept 143628 MA_10428744_29330 C/T Downstream variant 0.66 3.14% 

Slope 143628 MA_10428744_29330 C/T Downstream variant 0.672 4.77% 

EP Intercept 16868 MA_15729_40331 G/T Intron variant 0.609 3.32% 

91242 MA_246125_1213 G/A Synonymous variant 0.594 3.41% 

TP Intercept 101203 MA_462319_4322 A/C Upstream gene variant 0.594 1.16% 

 132014 MA_10251995_2442 A/C Upstream gene variant 0.601 3.22% 

LP K1 162397 MA_10434007_77578 C/T Upstream gene variant 0.892 1.14% 

EP/LP Intercept 51657 MA_80954_29644 G/A Downstream variant 0.63 0.81% 

60787 MA_98424_947 C/T Intron variant 0.655 1.80% 

123639 MA_8790100_1384 A/C Upstream variant 0.628 0.75% 
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K1 59480/36496 MA_96191_7122 A/G Synonymous 0.6 2.37% 

K2 117333 MA_1045136_4310 T/C Missense variant 0.523 1.34% 

K3 72414 MA_122136_11653 A/T Non-Coding 0.617 4.05% 

Mass 

Index 

(Growth x  

Density) 

Intercept 166235 MA_10435002_4986 G/A Intergenic variant 0.533 0.65% 

Slope 61096 MA_99004_17108 G/A Synonymous variant 0.66 0.01% 

67181 MA_109804_10278 G/A Missense variant 0.612 0.05% 

1401 MA_1378_4718 C/A Exon/stop gained 0.588 1.19% 

138744 MA_10427214_13968 G/T Missense variant 0.58 1.80% 

162397 MA_10434007_77578 C/T Upstream variant 0.627 1.44% 

K1 21924 MA_19222_1789 A/G Upstream variant 0.71 1.82% 

 420 

*SNP: The SNP name was composed of the contig (MA_number) and SNP position on contig. For example, the first SNP MA_1043540_13733 421 

was located on contig MA_1043540 at position 13733 bp.422 
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Several QTLs shared within each trait and across traits were observed in the analysis.  423 

WD, RW, TRW and LNC had one (30469), two (165481 and 23808), one (111057) and one 424 

(143628) QTL shared by two latent traits, respectively. One of the common QTL (30469) for 425 

WD had a frequency of 0.72 with an H2
QTL of 4.50% for the slope trait, which indicates that it 426 

is highly significant for the phenotypes. Common QTLs within RW were observed for slope, 427 

K1 and K2 latent traits, with moderate frequencies ranging from 0.521 to 0.615 and 428 

influenced their respective traits to modest degree (H2
QTL in ranges of 0.18-2.66%).  429 

For QTLs common across the different latent traits, QTL 165481 was shared between 430 

LWD, RW and MOE; this is not surprising because of the close correlation between MOE 431 

and wood density, which in turn generally show negative correlation to RW. Intron variant 432 

MA_10434805g0010_165481 explained between 0.18-2.66% of the H2
QTL observed in the 433 

respective traits. The SNP associated with this QTL also had high frequencies of 0.602 and 434 

0.615 in MOE and RW explaining H2
QTL of 1.00 and 2.66%, respectively. It was also 435 

observed that the SNP MA_10434805g0010_165481 is a common QTL within the wood 436 

traits related to Width (Table 2).  SNP MA_10435406g0010_167610 was shared between 437 

WD, EWD and ENC. This SNP was characterized by having high frequencies in WD (0.71) 438 

and ENC (0.685), however it had a moderate frequency of 0.545 for EWD. This QTL was 439 

detected by the intercept latent trait for WD and EWD, and the slope latent trait in ENC 440 

(Table 2), with H2
QTL ranging from 0.01-4.64%. The QTL had a high influence on the density 441 

related traits as it explained 4.64% (WD) and 3.38% (EWD).  442 

Trees showing a positive correlation between growth and density had seven QTL 443 

specific for this observed phenomenon (MI) and had modest influence on the trait (H2
QTL in 444 

the ranges 0.05-1.82%). Five of the QTL were detected using the slope as the latent trait with 445 

high frequencies ranging between 0.58 to 0.66 for SNP 61096 (Table 2).446 
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 447 

 448 

Fig 5. Box plot of the estimated genotypic effect on the phenotypes in the study. The significant SNPs associated and each one of the traits have 449 

been correlated to give the impact each genotype has on the average of the overall trait.450 
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 451 

 452 

Genetic association with phenotypes 453 

Sequence capture and the SNP-trait associations allowed the mining of candidate genes 454 

involved in spruce wood formation coupled with the identification of orthologous annotations 455 

and descriptions from Populus and Arabidopsis. This also allowed for the anchoring of 456 

significant markers on to the genetic linkage map for Norway spruce Fig 5. 457 

RW, TRW, and LRW were associated with nine gene models. For RW five genes, 458 

endoglucanase 11-like, Alpha-dioxygenase 1 (DIOX1), Proliferating cell nuclear antigen 459 

(PCNA), B3-DNA-binding and E3 ubiquitin-protein ligase were identified. The SNP 460 

MA_879270g0010_112391, a splice region variant, explained 2.56% of the H2
QTL and is 461 

associated with DIOX1. Marker MA_20322g0010_23808 for RW is associated with the 462 

protein domain for a plant specific B3-DNA binding protein, explaining 1.78% variation, with 463 

similar orthologous genes in Arabidposis and Populus (Table S1). The three putative genes 464 

associated with TRW are a Serine/threonine-protein kinase, a Homeodomain protein (HB2) 465 

and a Senescence-associated protein, and all have high H2
QTL ranging from 2.14 to 4.50%. 466 

Contig MA_10434624 is homologos to a Pectin esterase and was associated with the 467 

downstream variant MA_10434624g0010_164772 for LRW. This may suggest a link between 468 

LRW and pectin modification. QTL associated with gene MA_214776g0010 for the TRW 469 

may be linked with serine/threonine-protein kinase gene (Os01g0689900), this occurrence of 470 

kinase-like related genes was also observed across TRW, NC, EP, EP/LP and EWD (Table 471 

S1).  472 

NC, ENC, TNC and LNC are associated with a total of three putative genes and three 473 

protein domains. Of the three putative genes, two are associated with serine/kinase activity 474 

and one is involved in cysteine and methionine synthesis (Table 1 S1). All the SNPs 475 
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associated with these traits were either downstream or upstream of coding regions and may 476 

thus act as modifiers of gene expression. The SNP MA_402880g0010_98508 (an upstream 477 

gene variant) significantly associated with ENC located on gene MA_402880g0010 is 478 

homologous to a Populus sphingolipid biosynthesis protein. SNP 479 

MA_9447489g0010_126785 associated with TNC was located in the gene 480 

MA_9447489g0010 which is homologous to a peptidase domain from Arabidopsis and 481 

showed the highest H2
QTL in the dataset (4.93%). This domain is similar to an orthologous 482 

zinc carboxypeptidase enzyme of Oryza sativa (Zn-dependent exopeptidases superfamily 483 

protein) (Table S1).  484 

Wood percentage traits, EP, LP, TP and the ratio of EP/LP had significant associations 485 

with ten SNPs. Four of the six significant SNP variants for EP/LP are modifiers with the other 486 

two SNPs, being a synonymous (MA_96191g0010_59480) and missense 487 

(MA_1045136g0010_117333) variant. The synonymous SNP MA_96191g0010_59480 was 488 

associated with the gene model MA_96191g0010, which is homologous to a P. sitchensis 489 

Glycosyltransferase (GT), similar to UDP-glucosyltransferase 73B2 (AT4G34135) from 490 

Arabidopsis. Five protein domains were also detected, that were linked to phytochrome 491 

kinase substrate 1, TIR/NBS/LRR and zein binding domains (Table S1). The significant SNP 492 

MA_15729g0010_16868, an intron variant, that is associated with EP, is located in the gene 493 

MA_15729g0010, which is homologous to a DNA-3-methyladenine glycosylase II enzyme. 494 

The SNPs identified for TP and LP are all downstream gene variants (Table 2). 495 

WD, EWD, TWD and LWD had a total of 12 significant associations. For the 496 

associations with WD we identified the SNP MA_10435406g0010_167610 that is a 3′-gene 497 

variant which explained the highest H2
QTL observed (4.64%) and is located in a gene that is 498 

homologous to a Phosphoadenosine phosphosulfate reductase gene cysH_2. This locus was 499 

also detected for EWD and ENC explaining H2
QTL of 3.38% and 0.01%, respectively. A 500 
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missense SNP, MA_33109g0010_30469, was associated with WD and located within the 501 

gene MA_33109g0010 homologous to an Arabidopsis senescence associated gene 24 (Table 502 

S1). The three significant SNPs identified for EWD were all modifiers, upstream and 503 

downstream gene variants. Of the three significant SNP associations for TWD, two, SNP 504 

MA_10235390_131698 (stop gained) and SNP MA_212523g0010_89044 (upstream gene 505 

variant), were identified within genes. The intron variant MA_10433411g0010_160208 506 

associated with TWD and is found in the gene MA_10433411g0010 that is homologous to an 507 

Arabidopsis Transducin/WD40 repeat-like superfamily protein. Two of the three significant 508 

SNPs identified for LWD were intron variants (MA_10434805g0010_165481 and 509 

MA_10436058g0010_171223) with the third being a missense variant 510 

(MA_62987g0010_43797). The SNP MA_10434805g0010_165481 was found in the gene 511 

MA_10434805g0010, which is homologous to an Arabidopsis Proliferating Cell Nuclear 512 

Antigen Protein (PCNA). This SNP is also associated with RW and explained 1.21% and 513 

2.66% H2
QTL, respectively.  514 

The Mass Index trait, that is linked to a positive effect of wood volume growth and 515 

increased density (growth x density) yielded a total of seven associated SNPs, with two 516 

upstream gene variants, two missense variants one intergenic variant, one stop gained variant 517 

and one synonymous nucleotide replacement (Table 2). The slope latent trait had five genes 518 

with modest influence on the phenotype ranging from 0.01-1.80%. The genes were 519 

homologous to Arabidopsis GRAS transcription factor, Aluminium induced protein, Protein 520 

virilizer, ARM repeat superfamily protein and an uncharacterized protein. The SNP 521 

MA_1378g0010_1401 encodes for a premature stop codon (stop gained, a high impact 522 

variant) on gene MA_1378g0010, which is homologous to an Arabidopsis protein virilizer 523 

involved in mRNA splicing regulation. The gene homologous to the GRAS transcription 524 

factor was associated with the SNP MA_99004g0010_61096 (a synonymous variant).  The 525 
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SNP MA_19222g0010_21921, an upstream gene variant, was located in the gene 526 

MA_19222g0010 which is homologous to a Picea sitchensis ADP (NB-ARC domain) and 527 

explained the highest H2
QTL of 1.82% (Table S1). 528 

 Wood density traits were associated with a total of 12 genes, the largest number of 529 

genes identified from the contigs. Percentage of wood was linked to ten putative genes, cell 530 

width had nine putative genes and number of cells was associated with six genes. Two genes 531 

were shared across multiple traits, PCNA was common across RW and LWD, and 532 

phophoadenosine phosphosulfate reductase was shared across WD, EWD and ENC.  Genes 533 

with the Serine/threonine-protein phosphatase and TIR-NBS-LRR domains were also 534 

identified across width, wood density and cell percentage traits.535 
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 536 

 537 

Fig 6. Frequencies of the significant markers selected using the multi-locus LASSO model for 538 

whole ring, earlywood and latewood associated with contigs plotted against their locations on 539 

a genetic linkage map derived from similar sequence captured probes. Significant associations 540 

for the traits were identified on the twelve linkage groups (LG) as follows: [LG_I: EWD, 541 

TWD and ENC], [LG_II: NC, EP/LP and WD], [LG_III: EP/LP and RW], [LG_IV: RW 542 

and EWD], [LG_V: EP, EP/LP, ENC, EWD and WD], [LG_VI: MI], [LG_VII: WD], 543 

[LG_VIII: MI], [LG_IX: MI], [LG_X: TP], [LG_XI: MI] and [LG_XII: TNC, LWD and 544 

LRW].  545 

 546 

Discussion 547 

We applied a functional mapping approach in a genome-wide association mapping context 548 

and identified 51 significant QTLs that were associated with wood formation in Norway 549 

spruce. Previous work utilizing a functional mapping analysis in forest trees have used a 550 

limited number of molecular markers (Li et al., 2014; Ma et al., 2002). Li et al., applied this 551 
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analysis in a bi-parental Scots pine (P. sylvestris L.) cross using 319 markers. Hence, our 552 

work represents a major advance in that we have been able to apply this approach at a 553 

genome-wide scale (178101 SNPs) on unrelated mother trees, with a dynamic functional trait 554 

dataset comprising 15-time points/annual growth rings (i.e., cambial age). Latent traits 555 

represent significant time points in the trait development allowing us to detect putative genes 556 

at these critical junctures in wood formation. 557 

The number of detected QTLs is relatively small compared with several recent studies 558 

in Populus (Evans et al., 2014; McKown et al., 2014; Porth et al., 2013). The sample size, 559 

number of SNPs used and the stringency with which we accepted significant SNPs 560 

contributed to the modest number of QTL. Previous functional mapping studies, (Li et al., 561 

2014) involving SNPs in conifers have used two levels of evaluating QTLs, whereby they 562 

have suggestive and significant QTL. In our study, we only reported significant QTL. As 563 

indicated in Hall et al (2016), there should be hundreds to thousands of QTL of moderate to 564 

very small effect related to growth and wood quality traits in trees. Hence,  a large population 565 

and accurate phenotyping are required for a reliable identification of most QTLs (Korte & 566 

Farlow, 2013). However, the sample size of our study allowed the detection of the 567 

largest/most significant QTL. The study identified significant associations explaining 568 

relatively small proportions of the phenotypic variance being observed, ranging from 0.01-569 

4.93%. This is in line with other studies of QTL for wood traits (González-Martínez et al., 570 

2007; Porth et al., 2013).  571 

 572 

Genetic associations with potential to improve wood properties 573 

With all the SNPs, having been derived from known genomic positions, it was 574 

possible to identify genes linked to the associated QTLs and infer their potential function in 575 

wood formation.  576 
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The gene MA_10694g0010 is homologous to an enzyme involved in cell wall 577 

biosynthesis, endoglucanase 11-like, and was associated with RW (intercept latent) (Table 578 

S1). The association of this gene with the RW intercept implies that the gene influences the 579 

trait throughout the growth period. This enzyme is a vital component of xylogenesis and is 580 

involved in the active digestion of the primary cell wall (Goulao et al., 2011). The 581 

endoglucanase 11-like, was associated with a synonymous SNP MA_10694g0010_11535 for 582 

(RW) suggesting an involvement in cell expansion and cell wall loosening during wood 583 

formation. Endoglucanases have been proposed as enzymes involved in controlling cell wall 584 

loosening (Cosgrove, 2005). Endoglucanase 11-like gene is part of the endo-1 family in 585 

which the eno-1-4-β-glucanase Korrigan gene belongs. Characterisation of the Korrigan gene 586 

in P. glauca has identified it to be functionally conserved and essential for cellulose synthesis 587 

(Maloney et al., 2012). Hence, MA_10694g0010 is a candidate for the remodelling of cell 588 

walls that affects the mechanical and growth properties of wood cells, and consequently 589 

annual ring width.  590 

The synonymous SNP MA_20322g0010_23808 is associated with RW located on 591 

gene MA_20322g0010 which is homologous with a plant specific B3-DNA binding protein 592 

domain, that is shared among various plant-specific transcription factors. This includes 593 

transcription factors involved in auxin and abscisic acid responsive transcription (Yamasaki et 594 

al., 2004). Auxin is one of the central phytohormones in the control of plant growth and 595 

development (Abel & Theologis, 1996), and also known to be involved in cell wall loosening 596 

and elongation (Cosgrove, 2016).  This suggests a possible functional role for 597 

MA_20322g0010 in influencing RW.  598 

An intron variant located in the MA_10434805g0020 gene, which is homologous to 599 

PCNA was detected across several phenotypes (LWD, RW and MOE) associated with the 600 

slope latent trait (Table 2). The detection of this gene across these phenotypes using the slope 601 
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latent trait implies that the gene affects the rate of change of these phenotypes. Thus, this 602 

would be a good gene to target for further studies. PCNA proteins function as integral 603 

enzymes in the regulatory pathways of cell cycle regulation and DNA metabolism (Maga & 604 

Hübscher, 2003). PCNA has been associated with chromatin remodelling, DNA repair, sister-605 

chromatid cohesion and cell cycle control, which are all vital processes in plant growth 606 

(Strzalka & Ziemienowicz, 2010), but it has not been previously associated with wood 607 

formation traits. 608 

In our study we detected a significant downstream SNP 609 

(MA_10434624g0010_164772) associated with LRW on gene MA_10434624g0020, 610 

homologous to pectinmethylesterases (PMEs), which are cell wall associated enzymes 611 

responsible for demethylation of polygalacturonans (Phan et al., 2007). This enzyme has been 612 

shown to be linked with many developmental processes in plants, such as, cellular adhesion 613 

and stem elongation (Micheli, 2001). An association study in White spruce identified a 614 

significant nonsynonymous SNP coding for cysteine associated with earlywood and total 615 

wood cell wall thickness associated with pectinmethylesterase (Beaulieu et al., 2011). Our 616 

study identified a PME SNP association in the latewood stage, supporting the importance of 617 

PMEs in wood cell development.  618 

A SNP (MA_10435406g0010_167910) downstream on gene MA_10435406g0010 619 

was detected across the traits ENC, WD and EWD. The association of this gene with the WD 620 

and EWD intercept implies that it an impact on the overall development of density throughout 621 

the growth period. Since density is correlated with number of cells, this association with the 622 

slope latent trait of ENC means the gene influences its rate of change. The gene is 623 

homologous to Phosphoadenosine phosphosulfate reductase (PAPS), which plays a central 624 

role in the reduction of sulphur in plants. An analysis of PAPS enzymes in Arabidopsis (Klein 625 

& Papenbrock, 2004) and Populus (Kopriva et al., 2004) revealed that enzymes  involved in 626 
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sulphate-conjugation, play an important role in plant growth and development (Klein & 627 

Papenbrock, 2004). Reduced sulphur is utilized by the sulphate assimilation pathway for the 628 

synthesis of essential amino acids cysteine and methionine (Kopriva & Koprivova, 2004). 629 

Methione acts as a methyl donor in both lignin, hemicellulose and pectin biosynthesis 630 

providing a possible mechanism of how PAPS could influence wood density and number of 631 

cells.  632 

When analyzing QTLs detected for traits linked to the percentage of cells (EP, LP and 633 

EP/LP) we identified three putative candidate genes, DNA-3-methyladenine glycosylase II 634 

enzyme, phytochrome kinase substrate 1 and glycosyltransferase. DNA-3-methyladenine 635 

glycosylase II enzyme is responsible for carrying out base excision repairs (BER) in the 636 

genome in order to maintain genomic integrity. This enzyme has the ability to initiate a broad 637 

substrate recognition and provides a wide resistance to DNA damaging agents (Wyatt et al., 638 

1999). This DNA repair capacity can be expected to be essential for the process of cell 639 

propagation and growth. 640 

 A synonymous SNP (MA_96191_59480) within the gene MA_96191g0010, which is 641 

homologous to Glucosyltransferase in P. sitchensis was associated with EP/LP. Glycosyl 642 

transferases operate by facilitating the catalytic sequential transfer of sugars from activated 643 

donors to acceptor molecules that form region and stereospecific glycosidic linkages (Lairson 644 

et al., 2008). The Arabidopsis ortholog (UDP-glucosyltransferase 73B2) encodes for a 645 

putative flavonol 7-O-glucosyltransferase involved in stress responses. In our study, this 646 

significant association was associated with EP/LP, however a nonsynonymous variant in a 647 

gene coding for a Glycosyl transferase in Populus was associated with fibre development and 648 

elongation (Porth et al., 2013). Therefore, gene MA_96191g0010 is a novel candidate for 649 

further investigation of how flavonol metabolism may influence the proportion of early and 650 

late wood in Norway spruce. 651 
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Two genes concerning wood formation, PAPS and PCNA, were also detected across 652 

related traits density, growth number of cells and MOE. Significant SNP 653 

(MA_10435406_167610) in the PAPS reductase gene is common across ENC, WD and 654 

EWD, with SNP MA_10434805_165481 located in an intron for a gene encoding for PCNA 655 

protein being detected across WD, RW and MOE (Table S1). The presence of these common 656 

QTL suggests that these traits might be under the control of the same genes or genetic 657 

pathways. Chen et al (2014) reported a significant positive genetic correlation between wood 658 

density and MOE, which increased with tree age. However, wood volume growth and density 659 

have a negative correlation (Chen et al., 2014), with our study being the first to detect QTLs 660 

for trees exhibiting a positive correlation for this phenomenon (MI). The common QTL 661 

observed across WD, EWD and ENC indicates that the number of cells during the juvenile 662 

wood development stages has a significant impact on the overall density. The seasonal 663 

changes in EWD to LWD has been speculated to be due to a change in auxin levels leading to 664 

the initiation of wall-thickening phase, which has a direct impact on the wood quality traits 665 

such as MOE. This phase coincides with the cessation of height growth and where available 666 

resources are used for cell-wall thickening (Sewell et al., 2000), which may explain the 667 

common QTL between LWD, RW and MOE, as part of the same feedback loop mechanism.  668 

We identified two associations to homologous genes related to nucleic acid repair 669 

functions, DICER-LIKE3 (DCL3) and DNA mismatch repair protein (MSH5), which are 670 

concerned with RNA processing as well as DNA repair, respectively. These genes are 671 

involved in ensuring the fidelity of DNA replication and to preserve genomic integrity (Hsieh 672 

& Yamane, 2008). These genes are possibly associated with cambial cell division and endo-673 

reduplication during wood formation and can conceivably have effects on wood density.  674 

An association for TWD with a SNP located upstream of gene MA_212523g0010, is 675 

homologous to Kinesin-related protein 13 (gene-L484_021891). Kinesin-related proteins are 676 
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known to be involved in secondary wall deposition, which can impact wood density (Zhong et 677 

al., 2002), cell wall strength and oriented deposition of cellulose microfibrils. 678 

Several receptor-like Kinases (TIR/NBS/LRR and Serine/threonine-protein 679 

phosphatase) homologs were identified across traits (TRW, NC, EP, EP/LP and EWD) (Table 680 

S1). These protein domains control a large range of processes including hormone perception 681 

and plant development. Approximately 2.5% of the annotated genes in Arabidopsis genome 682 

are RLK homologs (Shiu & Bleecker, 2001), where they among other functions play an 683 

important role in the differentiation and separation of xylem and phloem cells (Fisher & 684 

Turner, 2007). Similar to our study a synonymous SNP in a RLK gene was associated with 685 

early wood proportion (EP) in White spruce (Beaulieu et al., 2011), hence RLKs seem to be 686 

involved in modifying a number of different wood properties from density to cell identity and 687 

number.   688 

Norway spruce trees that possess the ability of fast growth and high wood density are 689 

very rare, but such trees and associated SNPs were discovered in our study. Trees combining 690 

these traits are of high interest to forest industries and owners, and thus also in focus for 691 

breeders. Of the seven genes significantly linked to this phenomenon of particular interest was 692 

a synonymous SNP on MA_99004g0100 gene homologous to a transcription factor from the 693 

GRAS family (Table S1). GRAS is an important class of plant-specific proteins derived from 694 

three members: GIBBERELLIC-ACID INSENSITIVE (GAI), REPRESSOR of GAI (RGA) 695 

and SCARECROW (SCR) (GRAS) (Hirsch & Oldroyd, 2009). GRAS genes are known to be 696 

involved in the regulation of plant development through the regulation of gibberellic acid 697 

(GA) and light signalling (Cenci & Rouard, 2017; Hirsch & Oldroyd, 2009). Furthermore GA 698 

signalling has also been shown to stimulate wood formation in Populus (Mauriat & Moritz, 699 

2009). Thus, the GRAS transcription factor identified here and the other six genes positively 700 
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associated with MI provide interesting genetic markers and tools to understand this 701 

phenomenon. 702 

 703 

Conclusion 704 

This work has dissected the genetic basis of wood properties in Norway spruce with use of 705 

functional association mapping. In total, we identified 51 Significant QTLs for wood 706 

properties and mining of candidate genes located in the vicinity of significant QTLs identified 707 

genes that could be directly or indirectly responsible for variations in the observed traits. 708 

Significant novelty in our results is provided by the identification of QTLs associated to both 709 

high wood density and fast growth, thus larger biomass. These genes are candidates for 710 

further functional verification in Norway spruce.  711 
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