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Abstract

Knowledge of mesoscopic brain connectivity is important for understanding inter- and intra-region information
processing. Models of structural connectivity are typically constructed and analyzed with the assumption that regions
are homogeneous. We instead use the Allen Mouse Brain Connectivity Atlas to construct a model of whole brain
connectivity at the scale of 100 µm voxels. The dataset used consists of 366 anterograde tracing experiments in wild
type C7BL/6 mice, mapping fluorescently-labeled neuronal projections brain-wide. Inferring spatial connectivity
with this dataset remains underdetermined, since the approximately 2 × 105 source voxels outnumber the number
of experiments. To address this, we assume that connection patterns and strengths vary smoothly across major brain
divisions. We model the connectivity at each voxel as a radial basis kernel-weighted average of the projection patterns
of nearby injections. The voxel model outperforms a previous regional model in predicting held-out experiments and
compared to a human-curated dataset. This voxel-scale model of the mouse connectome permits researchers to extend
their previous analyses of structural connectivity to unprecedented levels of resolution, and allows for comparison
with functional imaging and other datasets.

1 Introduction
Brain network structure, across many spatial scales, plays an important role in facilitating and constraining neural
computations. Models of structural connectivity have been used to investigate the relationship with functional con-
nectivity, to compare brain structures across species, and more (Laramée & Boire, 2015; Sethi, Zerbi, Wenderoth,
Fornito, & Fulcher, 2017; Stafford et al., 2014; Wang & Kennedy, 2016). However, most of our knowledge of neu-
ronal networks is limited to either detailed description of small systems (Bock et al., 2011; Glickfeld, Andermann,
Bonin, & Reid, 2013; Kleinfeld et al., 2011; White, Southgate, Thomson, & Brenner, 1986) or to a coarse description
of connectivity between larger regions (Felleman & Van Essen, 1991; Sporns, 2010). In between these two extremes
is mesoscopic structural connectivity: a coarser scale than that of single neurons or cortical columns but finer than
whole brain regions. Facilitated by new tracing techniques, image processing algorithms, and high-throughput meth-
ods, mesoscale data with full brain coverage exist in animals such as the fly (Jenett et al., 2012; Peng et al., 2014) and
mouse (Gămănuţ et al., 2018; Kuan et al., 2015; Oh et al., 2014), and such data are being collected from other model
organisms (Bota, Dong, & Swanson, 2003; Majka et al., 2016).

We present a scalable regression technique for constructing spatially explicit mesoscale connectivity from antero-
grade tracing experiments. Specifically, our model estimates the projection strength between every pair of approxi-
mately 5×105 cubic voxels, each 100 µm wide, in the mouse brain. We use data from the Allen Mouse Brain Connec-
tivity Atlas (Oh et al., 2014), a large scale dataset viral tract-tracing experiments performed across many regions of the
mouse brain. All of the data and scripts are publicly available at https://github.com/AllenInstitute/
voxel model.
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Figure 1: Cartoon illustrating the overview of our method. We combine the information from many viral tracing
experiments with different injection sites into a model of voxel structural connectivity. To predict the weight of
projections from a voxel v, we take an average of nearby injections where the eth experiment is weighted by a factor
proportional to K(‖v − ce‖) and K(·) is the kernel.

In these mesoscale anterograde tracing experiments, a tracer virus (recombinant adeno-associated virus, or rAAV)
is first injected into the brain. The virus rAAV infects neurons at the site of injection, and causes them to express green
fluorescent protein in their cytoplasm, including throughout the entire length of their axons. Brains and labeled axons
are imaged with serial two-photon tomography throughout the entire rostral-to-caudal extent of the brain, resulting in
an aligned stack of 2-D images that can easily be transformed to 3-D space. Each brain contains one source injection
only. Every image series is registered to the 3D Allen Mouse Brain Reference Atlas space, using a combination
of global affine and local transformations (Kuan et al., 2015). The reference atlas provides a common coordinate
framework for data integration at the voxel level, and is fully annotated with structure/region delineations.

Combining many experiments with different sources then reveals the pathways that connect those sources through-
out the brain, the ingredients of a “connectome”. This requires combining data across multiple animals, which appears
justified at the mesoscale (Oh et al., 2014). Previous mouse connectome models were constructed with the assumption
that regions are homogeneous (Gămănuţ et al., 2018; Oh et al., 2014). While these have proven useful, they depend on
predefined regional parcelations and describe connectivity at a region-limited level of resolution. Here, we go beyond
the regional approach and construct a model of the whole brain connectivity at the scale of 100 µm voxels.

Previously, Harris, Mihalas, and Shea-Brown (2016) formulated a regularized, structured regression problem for
inferring voxel connectivity. This model was applied to Allen Mouse Brain Connectivity Atlas data in the visual
cortex, outperforming a regional model in prediction of held-out experiments. We have now extended this approach
from the visual cortex to the full mouse brain, while simplifying the mathematical model for computational efficiency.
Our model relaxes the assumption of homogeneity of connections within a region and instead assumes smoothness
across major brain divisions. We model the connectivity at each source voxel as the weighted average of the projection
patterns of nearby injections, where the weights are a nonlinear function of distance to the injection centroid. We fit
the parameters of the model using nested cross-validation with held out injection experiments. The new voxel-scale
model generally outpredicts a homogeneous regional model, as measured both by cross-validation error and when
compared to a human-curated dataset.

The new voxel-scale model will be useful for many applications. For example, we recently used it to reveal the
community structure of the mouse cortical network, where the model provided data for regions lacking well-isolated
injection experiments. We believe that this is the tip of the iceberg, and that this new voxel-scale model of the mouse
connectome will permit researchers to extend their previous analyses of structural connectivity with unprecedented
levels of resolution.

2 Results

2.1 Spatial method to infer the voxel connectome
Here, we will give a short overview of our method for connectome regression. The details are found in Methods. We
consider the problem of fitting a weighted, directed, adjacency matrix which contains the connection strength between
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Figure 2: Whole-brain normalized connection density obtained from the regionalized voxel model. We show 292
regions divided into 12 major brain divisions. For visualization purposes, sources are shown on the rows and targets
on the columns, the opposite convention as the mathematics in the text (WT is pictured). The similarity between rows,
e.g. in hypothalamus, is driven both by biological similarity and as a result of the model’s interpolation in the sources.
The similarity between columns is purely biological, as the model does not interpolate in target space.

any pair of points in the brain. We use n cubic voxels, 100 µm across, to discretize the brain volume. Our goal is
then to find a matrix W ∈ Rn×n≥0 that accurately captures voxel-voxel connection strength. We assume there exists
some underlying matrix W that is common across animals. Each experiment can be thought of as an injection X , and
its projections Y , where X,Y ∈ Rn, and we want to find W so that Y ≈ WX , i.e. we want to solve a multivariate
regression problem.

We adopt a spatial weighting technique to combine information from multiple experiments into one matrix, the
outline of which is shown in Fig. 1. As in Harris et al. (2016), we assume that the connectivity from any given source
voxel varies smoothly as a function of distance: columns W:,i and W:,j should be similar if the distance between
voxels i and j is small. We make the mathematically simplifying assumption that the projections we observe from
a given experiment come from the center of mass of the injection ce. This allows us to employ kernel regression
to approximate the connectivity from a given voxel v as the distance-weighted sum of injections in the major brain
division containing v. We also expect the connectivity could change sharply between the boundaries of high-level
brain structures. For example, we know that projections from the thalamus and hypothalamus are very different, even
though some areas within these major regions are near each other at the borders. To account for this, we partition
the brain into 12 distinct major brain divisions. These 12 major brain divisions constitute the set of coarse structures
defined in the 3-D Allen Mouse Brain Reference Atlas. These areas are: Isocortex, Olfactory Bulb, Hippocampus,
Cortical Subplate, Striatum, Pallidum, Thalamus, Hypothalamus, Midbrain, Pons, Medulla, Cerebellum.

2.2 Voxel-scale model outperforms previous regionally homogeneous model
Oh et al. (2014) obtained a regional connectome by integrating the injection and projection data over regions and fitting
a region-by-region matrix with nonnegative least squares. We recomputed such a matrix (see Methods) and compared it
to a regionalized version of the voxel connectivity. To avoid confusion, we call this the regionally homogeneous model.
In short, we chose 292 regions which are intermediate level “summary structures” in the 3-D Allen Mouse Brain
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Figure 3: Isocortex normalized connection density from the regionalized voxel model. Again, we show sources as
rows and targets as columns. The connectivity shows block structure, such as between the auditory and visual areas,
as well as somato-motor areas. These blocks are functionally related areas connected into modules.

Reference Atlas. We recomputed the homogeneous model since the Allen Mouse Brain Reference Atlas was updated
in the meantime. The voxel connectivity was then integrated and averaged over regions to produce regionalized
weights (see Methods for details).

In Fig. 2, there is a depiction of the whole-brain regionalized weights and, in Fig. 3, the regionalized weights for
isocortex (the largest major brain division). Note that, for visualization purposes, we depict sources as rows and targets
as columns. This is the opposite of our mathematical convention, so we are in fact depicting WT .

A number of features are evident in Figs. 2 and 3. First, there are patterns that arise from our smoothness assump-
tion. The vertical banded structures (for example, the column near the right side of the Medulla structure in Figure 2)
are due to smoothing in source but not target regions. In Fig. 3, note that the rows PERI, ECT, and TEa (the bottom
three rows) and AUDv (upper middle) match closely. All four of these regions are very close to each other on the
posterior, ventrolateral part of the cortex, so that smoothing causes them to be correlated. Also notice that, while the
rows corresponding to these regions as sources are very similar, the columns corresponding are not nearly as much so.
This highlights that our model interpolates only in the source, and not the target.

The second feature that is evident is the presence of blocks of strongly interconnected regions. These correspond
to modules in the network, or regions that are more highly connected to each other than they are to the rest of the
network. In Fig. 3, blocks of high connection density corresponding to somatomotor, auditory, visual, prefrontal, and
medial areas can be visualized along the diagonal in the order listed. A systematic analysis of modularity revealed that
the cortical network divides into 1–14 modules, depending on the choice of parameters (Harris et al., in submission).
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Table 1: Table of cross-validated model errors, comparing both the voxel model and regionally homogeneous model.
In each case the training error is in parentheses. Voxel MSErel refers to relative error, Eqn. 4, at the voxel level. This
measure approximates the data normalized MSE for small errors, but is bounded to maximum of MSErel = 200%,
which is achieved if either Y true or Y pred is zero and the other is not (see section 4.2.3). Region MSErel is the error
found after regionalizing the voxel mode prediction. PTP (“power to predict”): Here, we evaluate MSErel for only
those held out experiments where there was another injection in that region which was used for fitting.

Superstructure Model Voxel MSErel Region MSErel Region PTP
Iscortex Voxel 66% (21%) 33% (11%) 32% (8%)

Homogeneous - - 40% (19%) 31% (17%)
Olfactory Areas Voxel 82% (19%) 41% (7%) 39% (6%)

Homogeneous - - 57% (10%) 31% (9%)
Cortical Subplate Voxel 120% (6%) 104% (2%) 92% (2%)

Homogeneous - - 88% (9%) 72% (9%)
Hippocampus Voxel 93% (18%) 56% (17%) 53% (17%)

Homogeneous - - 46% (48%) 42% (48%)
Striatum Voxel 104% (8%) 46% (2%) 41% (1%)

Homogeneous - - 48% (24%) 48% (25%)
Pallidum Voxel 103% (8%) 71% (3%) 45% (5%)

Homogeneous - - 68% (4%) 45% (9%)
Thalamus Voxel 103% (10%) 59% (9%) 49% (10%)

Homogeneous - - 87% (15%) 86% (23%)
Hypothalamus Voxel 59% (58%) 28% (31%) 21% (8%)

Homogeneous - - 41% (5%) 66% (8%)
Midbrain Voxel 90% (32%) 30% (13%) 29% (10%)

Homogeneous - - 47% (16%) 43% (17%)
Pons Voxel 99% (11%) 52% (8%) 51% (8%)

Homogeneous - - 69% (31%) 113% (65%)
Medulla Voxel 94% (39%) 34% (19%) 35% (20%)

Homogeneous - - 68% (45%) 64% (29%)
Cerebellum Voxel 189% (8%) 104% (1%) 95% (6%)

Homogeneous - - 81% (26%) 34% (5%)

In Table 1, we show the results of comparing homogeneous and voxel models. We fit the models using nested
leave-one-out cross-validation. This allows us to evaluate both the voxel-scale and regionalized models’ error when
predicting held-out data. We report mean squared error relative to the average squared norm of the prediction and
data; see Eqn. 4. The model validation and training errors (goodness of fit, shown in parentheses) are reported at
both voxel (Voxel MSErel) and regional (Region MSErel) levels. Additionally, we compare model performance using
only the subset of experiments where every source region received repeated injections. More specifically, we only
include experiments if the injection center of mass of at least 3 experiments are located in the same region. Without
another injection, the only information about that region’s projections would come from our smoothness assumption
interpolating nearby regions’ patterns. The computed relative error MSErel with this repeated dataset we call the
“power to predict” (Region PTP).

From Table 1, we see that the relative training and validation errors are higher when evaluating error in the voxel
space. This makes sense because this error captures mistakes we make in predicting spatial patterns of projections
at the voxel, sub-regional level. That task is much more difficult than predicting regional patterns. The lowest voxel
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(a) VISp (b) MOp

Figure 4: Model predicted cortical-cortico projections from virtual injections into the entire primary visual area (VISp)
and primary motor area (MOp).

errors are in Isocortex, Olfactory Areas, and Hypothalamus. At the regional level we compare both the homogeneous
model and the regionalized voxel model, which uses the voxel connectome to make a prediction that is then integrated
across each region. At the regional level, our voxel model has lower regional validation errors than the homogeneous
model in 8/12 major brain divisions. The training error is lower in 11/12 cases, since assuming smoothness is less
biased than regional homogeneity. The regional PTP of the voxel model is lower than or roughly equal to (within 1%)
the PTP of the homogeneous model in 8/12 cases. Results for training PTP are similar. In general, we find the highest
errors (for either model) in major divisions which are small, composed of many small regions, and with large distance
between injections. These statistics are summarized in Supplementary Table 2.

2.3 Visualizing the voxel-scale connectivity: cortical-cortico virtual injections
Visualization of our model faces two challenges: the matrix W contains n × n = O(1011) single precision floating
point elements, and contains dense 3-D spatial structure. In order to address these challenges we opted to generate
“artificial injections,” compute predicted projections from these injections, and visualize the resulting volumes. These
artificial injections allow us to visualize the average projections from voxels of our choosing. This process is efficient,
first because the matrix W is formed explicitly from m rank one components, so we only have to store n × m =
O(108) items. Standard tools, such as volume rendering and projection, can then be applied to visualize the model’s
predictions.

In order to visualize model predictions in the Isocortex we make use of a curved cortical coordinate system. This
coordinate system defines two dimensions over the surface of the cortex and one which is composed of steepest-
descent paths from the pia surface to white matter. By projecting model predictions along these paths we can generate
2-D cortical projection maps which are faithful to the boundaries of Isocortical regions.

We display two such projections in Fig. 4. Here, we visualize the average over the columns of the matrix W
corresponding to the projections from two major brain regions, marked by a red outline. We immediately observe
strong ipsilateral projections to related areas. For instance, primary visual area VISp has a number of local projections
to higher visual areas, Fig. 4a.

2.4 Weight distribution and its distance dependence
We compared multiple models for the distribution of weights: lognormal, inverse gamma, exponential and normal. We
separately construct these models for ipsilateral and contralateral connections for the entire brain, and for connections
within isocortex. For all these weight distributions, the best fit is for a lognormal distribution (using the Bayesian
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Figure 5: Normalized connection density produced by the regionalized voxel model (log scale) plotted against inter-
region distance for 292 regions in the whole-brain (blue) and for only cortical-cortico connections (orange). The lines
are linear least squares of the form log10(weight) = β1 log10(distance) + β0. The histograms on the right side show
the distributions of weights as well as Gaussian fits of the log10(weight) distribution. Note that the standard deviations
are slightly biased due to small weight outliers.
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information Criteria, BIC; see Table 3). However, the results from the Kolmogorov-Smirnov test show that the fit-
ted lognormal distributions fail to be statistically similar to the weights distributions for any of the divisions of the
connections. Additionally, the logarithmically transformed weights fail to pass the Shapiro-Wilk test for normality at
α = 0.05 level of significance. This is because the weights, depicted on the right hand side of Fig. 5, exhibit a skewed
distribution.

We have previously seen that a heterogeneous set of connections can be better fit by a mixture of lognormal
distributions Oh et al. (2014). In a similar manner, we find the logarithmically transformed weights are best fit by
a multiple component Gaussian mixture model (GMM) (see Table 4). The number of components was selected to
minimize BIC resulting in a 5 component GMM for the whole brain, and 2-3 component GMM for cortical-cortico
connections. With the exception of two components in each of the whole-brain mixture models, the components have
similar valued weights, suggesting that different regions contribute to a non-homogeneous distribution of connection
weights across the brain. However, it could also be the case that the empirical distribution of log-transformed weights
is well-modeled by a unimodal distribution which is not Gaussian.

In Fig. 5, we show the dependence of extant connection weights on distance. We compared an exponential and
a power-law fit. Using the Levenberg-Marquardt algorithm to fit nonlinear least squares problems, the root mean
squared error (RMSE) was found to be slightly smaller for the power law fit.

2.5 Model performance compared with anatomical data
To evaluate how closely the model predictions aligned with experimental data, we compared the model predictions
from both the homogeneous and regionalized voxel models with projection data for each of the 128 injections into
the Isocortex in wild type mice from the Allen Mouse Brain Connectivity Atlas. For each injection experiment,
we calculated the Pearson correlation between the normalized projection volume and the model prediction for both
hemispheres in each of the 292 summary structures. Figure Fig. 6(a) shows the correlation values for each experiment
grouped by source structure. The mean correlation coefficient for the regionalized Model was higher than for the
homogeneous model (mean ± SD regionalized: 0.93 ± -0.08, homogeneous: 0.91 ± -0.12, p=0.03, paired t test), but
each model outperformed the other for some sources.

To further explore the relationship between the model prediction and the experimental data, we also compared
the predicted weights from both models with experimental data from a subset of experiments in which injections sites
were> 95% contained within a single source region. There were 29 experiments that met this criterion; all were in the
Isocortex with the following sources: AUDp (n=1), ENTl (n=1), MOp (n=2), MOs (n=1), RSPd (n=1), SSp-bfd (n=1),
SSp-m (n=4), SSp-n (n=1), SSs (n=1), and VISp (n=16). Some of these experiments had been manually checked for
segmentation errors, and where this data was available we multiplied the normalized projection volume by the manual
call (1 for true positives, 0 for true negatives). For each of these ten sources, we plotted the normalized projection
volume from the experimental data along with the predicted weights from both models for targets in the ipsilateral
Isocortex.

Fig. 6(b) shows the plot for VISp, where we had a total of 16 experiments of which three were checked for true
positive/true negatives. The weights predicted by the regional model were higher overall, but generally agreed with
the experimental data as well as the homogeneous model predictions. The biggest difference between the two models
was that the regionalized model correctly predicted weights for several targets that were missed by the homogeneous
model (PL, ILA, ORBm, and ECT). All four of these targets were verified true positives but had a predicted weight
of zero with the homogeneous model. On the other hand, both models predicted very small but non-zero weights
for targets that were true negatives (FRP, SSp-n, AId, AIp, and AIv). Across all ten sources that were checked, the
regionalized model routinely predicted weights for connections that were zero in the homogeneous model prediction,
and overall there was a tendency for the regionalized model to predict higher weights, particularly for small structures.

Overall, we found the predictions of the regionalized voxel model to be more consistent than the homogeneous
model, so that even when the predicted weight from the regionalized model was incorrect it was not off by a large
margin. Conversely, the homogeneous model often performs well except when its predictions considerably differ from
the experimental data. This is well-illustrated in Fig. 6(a), where the homogeneous model performs well overall, but
very poorly for projections from SSp-ll and ACAv.
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Figure 6: Model performance compared to human-curated “ground truth.” (a) Pearson correlation of model predictions
and experimental data for injection experiments into 37 cortical source regions. Lighter colored points indicate corre-
lation coefficients for individual experiments; darker points and lines indicate the mean and 95% confidence interval
for all experiments in each source. (b) (log scale) Normalized projection volume in cortical targets from experimental
data (gray) with corresponding predicted regional projection weights from the homogeneous model (red) and the re-
gionalized voxel model (cyan) overlaid. Projection data from individual experiments is plotted as gray points and the
mean and 95% confidence interval for each target are plotted as black diamonds (most confidence intervals are smaller
than the markers). Normalized projection volume below 10−6 are truncated in this graph (5 data points).
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3 Discussion
In this study, we infer whole brain connectivity at a 100 µm voxel level from a set of brain-wide anterograde viral
tracing experiments in young adult C57BL/6J mice (Oh et al. (2014), http://connectivity.brain-map.org/). The central
assumption of the method is that brain-wide projections from nearby neurons within a brain region vary smoothly.
Such a method, and its application to the visual system, has been described in Harris et al. (2016). However, using a
smoothness prior simultaneously both at source level and at target level is computationally quite difficult, and led us
to develop the simpler source-space interpolation presented here.

The tracing data which forms the basis of this study is based on anterograde viral tracers (Oh et al., 2014). Serial
images are acquired with two photon tomography, at a sampling distance between planes of 100 µm. The in-plane
resolution is much higher from the raw images (0.35 µm x 0.35 µm), but for the purpose of this study the data has
been re-processed to an isotropic 100 µm resolution. The viral tracing methods used to generate the Allen Mouse
Connectivity Atlas dataset results in two limitations affecting our ability to resolve connections. One limitation comes
from the size of the injections, which have a typical radius of 0.3 mm (Table 2 provides the volume distribution through
different brain regions). An even stronger limit comes from the typical distances between a voxel and the center of
mass of an injection centroid being typically 0.5 mm (Table 2 reports this average in the “Inj. center distance” column).
This distance is the consequence of the number of injections (429, of which we select 366 as described in Methods)
being much smaller than the number of source voxels (2.5× 105). Thus the connections originating from a voxel have
to be inferred from sources on average 0.5 mm away which average information over a radius of 0.3 mm Given the
difference between source and target in accuracy of the data, applying the smoothness prior in the source space only
seemed reasonable.

We compared the voxel and regional models’ ability to predict held out injection experiments. Although the errors
for both are relatively high, the voxel model on average performs better. Furthermore, we are asking a lot of the models
to predict such held out data when on average we only have a few injections per region.

We believe a good method to evaluate the model’s performance is to compare the predicted weights with a human-
curated ground truth metric. We were able to make this comparison for a subset of injections well-contained in
a few cortical sources. By comparing the models’ predictions with experimentally derived normalized projection
volume values, we found two main differences between the regionalized model and the homogeneous model. Most
importantly, the regionalized model predicts very weak but nonzero connections that the homogeneous model assigns
zero weight. This is due to the inherent tendencies of the models to increase sparsity (homogeneous model) or to
decrease to decrease sparsity (regionalized model). We verified some of the connections that were detected by the
regional model and not the homogeneous model as true positives, but others were true negatives that were incorrectly
assigned a weight by the regionalized model. The other main difference between the two models was in the prediction
of weights for small target structures. Because the regionalized model is a linear smoother, it will tend to over predict
weak connections for targets near regions with high connectivity. In choosing the appropriate model for an application,
it is therefore important to consider the higher uncertainty of the presence of predicted weak connection.

We would like to emphasize that when analyzing this connectivity, especially from a graph theoretical perspective,
one has also to be mindful of the correlations between connections originating from nearby sources that are introduced
by the methods used. The spatial resolution of the connectivity is presented at 100 µm resolution: this is the native
resolution for measurements of targets. However, at source level, the average distance to the closest injection is
typically 0.5 mm (see Table 2), which limits the resolution. Also, many graph statistics may not be well-suited for
studying such explicitly spatial graphs as ours.

Among multiple models for weight distributions, we found the log-normal being the best fit, in accordance with
previous studies (e.g., Oh et al., 2014). Following this analysis, we found that a mixture of normal distributions better
fit the distribution of log weights, which can be expected for heterogeneous neuronal populations. We analyzed the
distance dependence of the connection weights and found that a power law dependence is a better fit than exponential.
It is interesting that the power is close to -2 for the cortex (ipsilateral), which is primarily a 2-D structure, and close
to -3 for the entire brain, which is 3-D. However, the weak scaling we observe only holds over roughly 1.5 orders of
magnitude, so we prefer not to speculate too much about this result.

The voxel model enables quantitative characterization of the structural connectivity of the mouse brain. It is a
significant improvement over the previously published homogeneous linear model (Oh et al., 2014), with tractable
mathematics compared to the earlier voxel proposal (Harris et al., 2016). It offers improved predictions at region
level, but, more importantly, it provides the connectivity at a much higher spatial resolution. This new model provides
the necessary basis for studies of large-scale network structure, enabling discovery of general organizational rules for
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brain-wide systems which consist of both local and long-distance connections. A better understanding of these rules
will lead to more accurate predictions of the directions of information flow, constrained by anatomy, and can be used
by researchers interested in questions of structure-function relationships in the mouse brain.

4 Methods

4.1 Summary of data
The data were taken from 429 experiments using wildtype C57BL/6J mice. These data are available from the Allen
Mouse Brain Connectivity Atlas at http://connectivity.brain-map.org/. We divide the brain into a
set of s = 12 major brain divisions at a high level of the 3D Allen Mouse Brain Reference Atlas ontology. These
major brain divisions are: Isocortex, Olfactory Bulb, Hippocampus, Cortical Subplate, Striatum, Pallidum, Thalamus,
Hypothalamus, Midbrain, Pons, Medulla, Cerebellum. We also consider a finer partition (lower in the ontology) into
a set of r = 292 regions. The major brain divisions form a disjoint partition of the brain, as do the regions. However,
the regions are each contained within a given major brain division.

We conducted a hand-curation of the experiments to exclude those that have injections which substantially overlap
multiple major brain divsions. For example, we removed experiments with large injection volumes spanning multiple
subcortical major brain divisions and subcortical injections with substantial leakage of the tracer in the overlying
cortex. Additionally, we removed four experiments having very little to no long-distance projections (small projection
volume outside of the injection location). Overall, of the 429 experiments, we removed 63 experiments resulting in a
total of 366 included experiments. We summarize these experiments used to fit our connectome in Table 2.

In our mathematical framework, the brain is a subset of R3 which is discretized into a collection of n cubic
voxels. Subsets of these voxels then correspond to the major brain division {Si}si=1 and regions {Ri}ri=1. Each
voxel i maps to a location in the brain, which we denote by vi ∈ R3. Each injection tracing experiment leads to
an image of fluorescence throughout the brain. The fluorescence signal is reported as injection density (fraction of
fluorescing pixels per voxel for voxels in the annotated injection site) and projection density (fraction of fluorescing
pixels per voxel elsewhere). For the eth experiment, let X:,e and Y:,e denote the length n vectors of injection density
and projection density, respectively. We also compute voxel coordinates of the center of mass of the injection density
ce ∈ R3. For our estimator, we also compute the normalized projection density by normalized by the sum of the
injection density, and denote this Ȳ:,e. Note that Ȳ:,e = (Y:,e + X:,e)/

∑
vXve, since we also include the injection

pattern in the normalized projection density. Thus, the experimental data is this collection {(X:,e, Y:,e, Ȳ:,e, ce)}me=1,
of length n vectors as well as the injection centers of mass for each experiment.

4.2 Multivariate nonparametric regression to infer voxel connectivity
We consider the problem of fitting a nonnegative, weighted adjacency matrix W ∈ Rn×n≥0 that is common across
animals. Entry Wij is the estimated projection density of neurons in voxel j to voxel i, if one unit of virus were
delivered to voxel j. Each experiment consists of an injection X , and its projections Y , and we would like to find W
so that so that Y ≈ WX . Uncovering the unknown W from multiple experiments (X:,e, Y:,e) for e = 1, . . . ,m is
then a multivariate regression problem. The unknown matrix W is a linear operator which takes images of the brain
(injections) and returns images of the brain (projections).

Unlike the earlier work by Harris et al. (2016), we make two crucial simplifying approximations: First, we assume
that in experiment e the injection is delivered to precisely one voxel, the injection center of mass ce. This removes
the more difficult credit assignment problem of which voxels within each injection site contribute which projections.
The method of Harris et al. (2016) solved this problem by essentially “dividing out” the injection correlations across
experiments. Second, we assume that projections vary smoothly as we change the source voxel, i.e. the columns of W
are smooth functions of the column voxel. However, we do not explicitly assume that the incoming projections to a
target voxel vary smoothly as we move the target voxel, or smoothness in the rows. Smoothness in target space leads
to dependencies among the output variables of the multivariate regression problem, making it a so-called structured
regression problem, which are generally more difficult to solve. Note that, because the data tend to produce patterns of
projections that are spatially smooth, and because we enforce smoothness in the source space, some target smoothness
will naturally arise from the data and assumptions.
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4.2.1 Nadaraya-Watson connectome estimator

With these simplifying assumptions, we can now state the model. Our data are now the pairs of center of mass voxels
ce and normalized injection densities Y:,e, which we assume arise from an injection of one unit of virus to the center
of mass. Kernel regression is a standard non-parametric method for estimating a smooth univariate or multivariate
function. For simplicity, we use the Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 1964) to estimate the
connectivity:

Wij =

∑
e:ce∈Sk K(‖vj − ce‖)Ȳie∑
f :cf∈Sk K(‖vj − cf‖)

=
∑

e:ce∈Sk

Ȳieαej (1)

where

αej =
K(‖vj − ce‖)∑

f :cf∈Sk K(‖vj − cf‖)
, (2)

and k is the unique index such that vi ∈ Sk, i.e. we only average over injections in the major brain division containing
the source voxel. Furthermore, we can construct the matrices

Ȳ =
[
Ȳ:,1, Ȳ:,2, . . . , Ȳ:,m

]
A = [αej ] ,

so that the connectome is written compactly as a rank m matrix W = Ȳ A, where Ȳ ∈ Rn×m and A ∈ Rm×n. Note
that each column in A, the coefficients αej , has entries which sum to one.

The Nadaraya-Watson estimator, Eqn. (1), has a number of nice properties: It does not require any fitting, because
the coefficients αej are given explicitly in terms of the center of masses and kernel, Eqn. (2). Furthermore, it forms a
compressed rankm representation ofW which is only as large as the data. However, it does suffer some drawbacks: It
is well-known that the Nadaraya-Watson estimator is biased for data that is not sampled uniformly and near boundaries.

Note also that experiments with center of masses ce ∈ Sk do not have any influence outside of Sk. This is
because we do not want to average over experiments in vastly different brain areas. Therefore, the coefficients αe,k
are decoupled across major brain divisions. Essentially, we fit a different model for each major brain division.

4.2.2 Choice of spatial kernel

One needs to select a kernel to apply Eqn. (1). We use kernels of the polynomial family with finite support:

Kh,λ(d) =
(
1− (d/h)2

)λ
1{|d|≤h}, (3)

where h and λ are hyperparameters which set the size of the support and polynomial degree, respectively. The uniform
kernel is in this family with λ = 0 and the Gaussian kernel is a limiting case as λ→∞.

For polynomial kernels Eqn. (3), we have two hyperparameters to fit: the length scale h and exponent λ. However,
we have a good lower bound for the length scale h, since we do not want any voxel in the brain to have zero connec-
tivity. We therefore set h to be the maximum of the minimum distance from any voxel to the closest injection center
of mass.

4.2.3 Evaluating performance via cross-validation

To evaluate the performance of the model, we employ nested leave-one-out cross validation. In the inner loop, we
fit m − 1 different models on sets of m − 2 experiments in order to perform model selection, wherein we fit the
hyperparameters h and λ of the kernel function K. The best model is then evaluated against the held out experiment
from the outer loop, and this process is repeated m different times. The performance metric we choose to use is mean
square error relative to the average squared norm of the prediction and left out data:

MSErel =
2‖Y pred − Y true‖2F
‖Y pred‖2F + ‖Y true‖2F

. (4)

This choice of normalization prevents experiments with small ‖Y ‖ from dominating the error, more heavily weighting
experiments with larger signal (Harris et al., 2016).
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The relative error in Eqn. (4) is approximately equal to the usual relative mean square error ‖Y pred−Y true‖2F /‖Y true‖2F
when Y pred is close to Y true, and this is not too small. To see this, let Y pred = Y true + δ where ‖δ‖F ≤ ε and
‖Y true‖F = O(1). Then, dropping the superscript “true” for clarity,

MSErel =
2‖δ‖2F

‖Y + δ‖2F + ‖Y ‖2F
=

2‖δ‖2F
2‖Y ‖2F + ‖δ‖2F

=
‖δ‖2F
‖Y ‖2F

 1

1 +
‖δ‖2F
2‖Y ‖2F

 =
‖δ‖2F
‖Y ‖2F

(
1−O(ε2)

)
.

However, if Y is close to zero, our metric can be different. For example, if Y pred = 1 and Y true = 0.25, then MSErel =
2(1− 0.25)2/(12 + (0.25)2) = 106%. The usual relative mean square error would be (1− 0.25)2/(0.25)2 = 900%.
If either Y true or Y pred is zero and the other is not, then MSErel = 200%, its maximum value.

Consider a set of experiments {(ce, Ȳ:,e)}me=1, where ce is the center of mass of the eth injection. Let C ∈ Rn×m
be the matrix of injection center indicators, with entries Cie = 1{ce=vi}. Define the kernel matrix Ac ∈ Rm×m as the
kernel evaluated at the centers of mass, then this is just Ac = AC. Thus the model prediction of the center of mass
projections is WC = Ȳ AC = Ȳ Ac.

We can perform leave-one-out cross validation efficiently after computing the coefficients Ac for a given set of
data. If we leave out experiment e, the new model W (−e) predicts that the projections from ce are Ŷ = W (−e)C:,e =

Ȳ A
(−e)
c , where A(−e)

c has the eth diagonal entry equal to zero and the corresponding column renormalized to sum to
one. Therefore,

(A(−e)
c )ij =


(Ac)ij , j 6= e,
(Ac)ij

1−(Ac)ee
, j = e and i 6= j,

0, i = j = e.

Extending the above result to compute the leave-one-out predictions for all of the experiments, we find that these are
equal to Ȳ ACV

c , where

(ACV
c )ij =

{
(Ac)ij

1−(Ac)jj
, i 6= j,

0, i = j.

Thus, once we compute the coefficients Ac, we set the diagonals equal to zero and renormalize the columns to obtain
ACV
c . The leave one out cross-validation relative error of the voxel model is then

2‖Ŷ − Ȳ ‖2F
‖Ŷ ‖2F + ‖Ȳ ‖2F

, (5)

where Ŷ = Ȳ ACV
c are the leave-one-out predictions.

4.3 Regionalized and homogeneous models
The application of Eqn. (1) results in a very large n × n voxel-scale connectivity matrix. Recall that we defined a
parcellation of the brain into r regionsR. We would like to be able to compare this with extant regional connectomes,
which are smaller r × r matrices. With this, we can define the regional projection matrix, Π ∈ Rr×n, with entries:

Πij = 1{vj∈Ri}.

That is, the ith row of Π has ones in entries corresponding to voxels in region i. Therefore, for some vector x ∈ Rn
corresponding to a voxel image of the brain, the vector xR = Πx has entries corresponding to the sum of x over
regions. Furthermore, consider another matrix Π† ∈ Rn×r, with entries:

Π†ij =
1{vi∈Rj}

|Rj |
,

where |Rj | is the number of voxels in region j. Then Π†, operating from the left on a length r vector spreads the
entries evenly over all of the voxels in a given region. Operating from the right, it averages over the voxels in a region.
Note that Π Π† = Ir, so it is a right inverse of Π and in fact is a Moore-Penrose pseudoinverse.
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With this notation, it becomes simple to convert voxel vectors and matrices into regional ones. We refer to the sum
of the connection weights between two regions as the connection strength between the regions. Thus, the regional
connection strength is given by

WR = ΠW ΠT .

However, these regions may be vastly different sizes, in which case a measure normalized by source and/or target
region size is more appropriate. We define the normalized projection density as the connection strength between two
regions divided by the size of the source and target region. In this case, the matrix becomes

WR,norm density = Π†T W Π†.

Finally, our last normalization only normalizes by the size of the source region, which we call normalized connection
strength:

WR,norm strength = ΠW Π†.

This normalization is necessary to compare directly with the homogeneous model.

4.3.1 Fitting a homogeneous regional model

As in Oh et al. (2014), one could also fit a regional model where connection strengths are fixed across regions by
working directly to data which are integrated over regions. We performed this for comparison and refer to the result
as the homogeneous model. Let XR = ΠX and Y R = ΠY . Then the model fit to this regional data is found via
nonnegative least squares as

W homog = arg min
W ′≥0

‖W ′XR − Y R‖2F . (6)

Note that the output W homog is a normalized connection strength, since entry (i, j) is the expected volume of fluores-
cence in region i per unit of virus in region j.

4.3.2 Comparing the regionalized voxel model to the homogeneous model

Let Ŷ ∈ Rn be the voxel prediction, we can compute the regionalized prediction Ŷ R ∈ Rr by projecting the voxel
predictions into the regional space: Ŷ R = ΠŶ . It is important to note that although the comparison between the
regionalized voxel model and the homogeneous model are done in the same space Rr, the predictions themselves are
slightly different. The regionalized voxel predictions Ŷ R

:,e are the predicted result of a unit injection into the center of
mass of the injection ce, whereas the regional prediction Ŷ R:,e = W homogX:,e is the regional prediction of the projection
from the full injection X:,e.

5 Supplementary materials
All of the data used to construct these models is available at http://connectivity.brain-map.org. The
curved coordinate system is available at http://help.brain-map.org/download/attachments/2818171/
Mouse Common Coordinate Framework.pdf. All code used to build this model will be made available at the
time of publication from https://github.com/AllenInstitute/high resolution data-driven model
of the mouse connectome.
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Marcello G.P. (2016, April). Towards a comprehensive atlas of cortical connections in a primate brain: Mapping
tracer injection studies of the common marmoset into a reference digital template. Journal of Comparative
Neurology, 524(11), 2161–2181. doi: 10.1002/cne.24023

Nadaraya, E. A. (1964). On Estimating Regression. Theory of Probability and its Applications, 9(1), 141–2.
Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., . . . Zeng, H. (2014, April). A mesoscale

connectome of the mouse brain. Nature, 508(7495), 207–214. doi: 10.1038/nature13186
Peng, H., Tang, J., Xiao, H., Bria, A., Zhou, J., Butler, V., . . . Long, F. (2014, July). Virtual finger boosts three-

dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis. Nature
Communications, 5. doi: 10.1038/ncomms5342

Sethi, S. S., Zerbi, V., Wenderoth, N., Fornito, A., & Fulcher, B. D. (2017). Structural connectome topology relates to
regional BOLD signal dynamics in the mouse brain. Chaos: An Interdisciplinary Journal of Nonlinear Science,
27(4), 047405. doi: 10.1063/1.4979281

Sporns, O. (2010). Networks of the Brain (1st ed.). The MIT Press.
Stafford, J. M., Jarrett, B. R., Miranda-Dominguez, O., Mills, B. D., Cain, N., Mihalas, S., . . . others (2014). Large-

scale topology and the default mode network in the mouse connectome. Proceedings of the National Academy
of Sciences, 111(52), 18745–18750.

Wang, X.-J., & Kennedy, H. (2016). Brain structure and dynamics across scales: In search of rules. Current Opinion
in Neurobiology, 37(Supplement C), 92–98. doi: https://doi.org/10.1016/j.conb.2015.12.010

15

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 1, 2018. ; https://doi.org/10.1101/293019doi: bioRxiv preprint 

https://doi.org/10.1101/293019


Watson, G. S. (1964). Smooth Regression Analysis. Sankhyā: The Indian Journal of Statistics, Series A (1961-2002),
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8 Supplement

8.1 Technical Terms
• Connection Strength: The sum of the connection weights from all voxels in a source region R1 to all voxels

in a target regionR2, denoted WR
21.

• Edge Density: The total number of edges in a graph over the total possible number of edges in a graph. In our
case, since our graphs are directed, it is 1

n2

∑n
ij=1 1{Wij 6=0}.

• Frobenius Norm: The 2-norm of a matrix viewed as a vector: ‖A‖F =
√∑

ij A
2
ij .

• Normalized Connection Density: The connection strength fromR1 toR2 divided by the product of their sizes:
W R

21

|R1||R2| .

• Normalized Connection Strength: The connection strength from R1 to R2 divided by the size of the source
region: W R

21

|R1| .

• Radial Basis Function: A monotonically decreasing, nonnegative function.

• Regions: The set of 292 brain structures (also called ’summary structures’) from the 3D Allen Mouse Brain
Reference Atlas.

• Major Brain Divisions: The set of 12 major brain divisions (also called ’coarse’ structures) from the 3D Allen
Mouse Brain Reference Atlas: Isocortex, Olfactory Areas, Hippocampus, Cortical Subplate, Striatum, Pallidum,
Thalamus, Hypothalamus, Midbrain, Pons, Medulla, Cerebellum.

• Voxel: A 3-D cubic volume element; the generalization of a pixel.

• Wildtype mouse (C57BL/6J): Mice of strain C57BL/6J which have not been genetically altered.

8.2 Supplemental Tables
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BIC
Projection Inverse

Division Hemisphere Lognormal Gamma Exponential Normal
Whole-Brain Ipsilateral -1.61e6 p =2e-111 -1.39e6 -1.09e6 8.30e9

Contralateral -1.79e6 p =2e-88 -1.58e6 -1.29e6 3.37e11
Isocortex Ipsilateral -2.70e4 p =0.02 -2.62e4 -2.57e4 -2.17e4

Contralateral -3.36e4 p =0.01 -3.29e4 -3.18e4 -2.74e4

Table 3: Model selection for the best fit distribution for the connectivity weights. The best-fit model was chosen
through minimizing Bayes Information Criteria (BIC). BIC is based on the liklihood function with an additional
penalty for the number of model parameters. The weight distributions of both ipsilateral and contralateral whole-
brain and cortical-cortico connection weights were best fit by a lognormal distribution. However, these fits were not
significantly similar to any of the above weights distributions as determined by the Kolmogorov-Smirnov test at a
α = 0.5 level of significance as seen by the above p-values.
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Division Projection Hemisphere Component µ σ weight

Whole-Brain Ipsilateral 1 -6.21 0.24 0.29
2 -5.02 0.21 0.33
3 -11.37 9.71 0.01
4 -7.56 0.66 0.08
5 -3.81 0.26 0.29

Contralateral 1 -4.34 0.26 0.26
2 -8,18 0.84 0.07
3 -6.71 0.26 0.29
4 -5.53 0.19 0.36
5 -12.36 13.07 0.01

Isocortex Ipsilateral 1 -3.23 0.15 0.35
2 -4.21 0.13 0.44
3 -5.19 0.22 0.21

Contralateral 1 -5.52 0.32 0.50
2 -4.20 0.29 0.50

Table 4: Fitted gaussian mixture model parameters for the whole-brain and cortical-cortico logrithmically scaled
connectivity weight distributions broken down by projection hemisphere. In both cases, the logrithmically transformed
weights distributions failed to pass the Shapiro-Wilk test for normality, so we fit a mixture of gaussians to each of the
logrithmically transformed distributions. As in Table 3, the number of gaussian components was selected to minimize
the Bayesian Information Criteria (BIC). With the exception of two of the whole-brain components, the individual
weights of the fitted gaussians are similar, possibly resulting from different regions contribute to a non-homogeneous
distribution of connection weights across the brain.

RMSE
Division Projection Hemisphere Power Law Exponential

Whole-Brain Ipsilateral 2.85 2.89
Contralateral 3.14 3.19

Isocortex Ipsilateral 1.40 1.48
Contralateral 1.89 1.92

Table 5: Model comparison of the best fit relation between normalized connection density and pairwise distances
between anatomical regions. The power law and exponential relations were fit through a nonlinear optimization
algorithm (Levenberg-Marquadt) to minimize the mean squared residuals. The performance of the two models is
similar, with the powerlaw relation having slightly lower root mean squared error (RMSE).
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