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a. Brain-Wide Projections

1.0
=
2
< 0.8 ¢
(o]
=
S
o 0.6
S)
Z
S04
A == Homogeneous Model

0.2 === Regionalized Model

z2Zzw® oL Ee >SS SSSSEEEEOQOQOORPRA A IO
aoo%%%%%%%wcaccccaaaamaaaOO“>Wwa%%%g
w:sw:-‘c-r'_éé,',é OUUUUam~~s-c_-c:~ggi> ggz:; =
= = EH 5 o<1 'cos < =] =] 9 B = ga,
Source Injection Structure
b. 10! VISp Injections

== Homogeneous Model Prediction
=== Regionalized Model Prediction ’
+ Experimental Data (n=16, mean and 95% CI) '

Y $8:.9.
o Yy "%
=== 1 1%

-1 o
o

w

'

w

|

Normalized Projection Volume
=
[\)
R
.
[

- <4
-‘I-l
-0~

X |
-t '-’ 1
1
-
O-I
4@l
° c il

103 ° IG - - ‘
0% 12 ' ’f ::
109 '
0 — -
S AR AR EFI P R PR R LR E P EEL
5%=BE:§ £53% <73 =5 gax =5 < o%i‘:‘-< = =

Ipsilateral Target

Figure 6: Model performance compared to human-curated “ground truth.” (a) Pearson correlation of model predictions
and experimental data for injection experiments into 37 cortical source regions. Lighter colored points indicate corre-
lation coefficients for individual experiments; darker points and lines indicate the mean and 95% confidence interval
for all experiments in each source. (b) (log scale) Normalized projection volume in cortical targets from experimental
data (gray) with corresponding predicted regional projection weights from the homogeneous model (red) and the re-
gionalized voxel model (cyan) overlaid. Projection data from individual experiments is plotted as gray points and the
mean and 95% confidence interval for each target are plotted as black diamonds (most confidence intervals are smaller
than the markers). Normalized projection volume below 106 are truncated in this graph (5 data points).
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3 Discussion

In this study, we infer whole brain connectivity at a 100 um voxel level from a set of brain-wide anterograde viral
tracing experiments in young adult C57BL/6J mice (Oh et al.|(2014)), http://connectivity.brain-map.org/). The central
assumption of the method is that brain-wide projections from nearby neurons within a brain region vary smoothly.
Such a method, and its application to the visual system, has been described in Harris et al.|(2016). However, using a
smoothness prior simultaneously both at source level and at target level is computationally quite difficult, and led us
to develop the simpler source-space interpolation presented here.

The tracing data which forms the basis of this study is based on anterograde viral tracers (Oh et al.,|2014)). Serial
images are acquired with two photon tomography, at a sampling distance between planes of 100 um. The in-plane
resolution is much higher from the raw images (0.35 pm x 0.35 pm), but for the purpose of this study the data has
been re-processed to an isotropic 100 um resolution. The viral tracing methods used to generate the Allen Mouse
Connectivity Atlas dataset results in two limitations affecting our ability to resolve connections. One limitation comes
from the size of the injections, which have a typical radius of 0.3 mm (Table[2]provides the volume distribution through
different brain regions). An even stronger limit comes from the typical distances between a voxel and the center of
mass of an injection centroid being typically 0.5 mm (Table[2]reports this average in the “Inj. center distance” column).
This distance is the consequence of the number of injections (429, of which we select 366 as described in Methods)
being much smaller than the number of source voxels (2.5 x 10°). Thus the connections originating from a voxel have
to be inferred from sources on average 0.5 mm away which average information over a radius of 0.3 mm Given the
difference between source and target in accuracy of the data, applying the smoothness prior in the source space only
seemed reasonable.

We compared the voxel and regional models’ ability to predict held out injection experiments. Although the errors
for both are relatively high, the voxel model on average performs better. Furthermore, we are asking a lot of the models
to predict such held out data when on average we only have a few injections per region.

We believe a good method to evaluate the model’s performance is to compare the predicted weights with a human-
curated ground truth metric. We were able to make this comparison for a subset of injections well-contained in
a few cortical sources. By comparing the models’ predictions with experimentally derived normalized projection
volume values, we found two main differences between the regionalized model and the homogeneous model. Most
importantly, the regionalized model predicts very weak but nonzero connections that the homogeneous model assigns
zero weight. This is due to the inherent tendencies of the models to increase sparsity (homogeneous model) or to
decrease to decrease sparsity (regionalized model). We verified some of the connections that were detected by the
regional model and not the homogeneous model as true positives, but others were true negatives that were incorrectly
assigned a weight by the regionalized model. The other main difference between the two models was in the prediction
of weights for small target structures. Because the regionalized model is a linear smoother, it will tend to over predict
weak connections for targets near regions with high connectivity. In choosing the appropriate model for an application,
it is therefore important to consider the higher uncertainty of the presence of predicted weak connection.

We would like to emphasize that when analyzing this connectivity, especially from a graph theoretical perspective,
one has also to be mindful of the correlations between connections originating from nearby sources that are introduced
by the methods used. The spatial resolution of the connectivity is presented at 100 um resolution: this is the native
resolution for measurements of targets. However, at source level, the average distance to the closest injection is
typically 0.5 mm (see Table [2)), which limits the resolution. Also, many graph statistics may not be well-suited for
studying such explicitly spatial graphs as ours.

Among multiple models for weight distributions, we found the log-normal being the best fit, in accordance with
previous studies (e.g.,|Oh et al., 2014)). Following this analysis, we found that a mixture of normal distributions better
fit the distribution of log weights, which can be expected for heterogeneous neuronal populations. We analyzed the
distance dependence of the connection weights and found that a power law dependence is a better fit than exponential.
It is interesting that the power is close to -2 for the cortex (ipsilateral), which is primarily a 2-D structure, and close
to -3 for the entire brain, which is 3-D. However, the weak scaling we observe only holds over roughly 1.5 orders of
magnitude, so we prefer not to speculate too much about this result.

The voxel model enables quantitative characterization of the structural connectivity of the mouse brain. It is a
significant improvement over the previously published homogeneous linear model (Oh et al.| [2014), with tractable
mathematics compared to the earlier voxel proposal (Harris et al., |2016). It offers improved predictions at region
level, but, more importantly, it provides the connectivity at a much higher spatial resolution. This new model provides
the necessary basis for studies of large-scale network structure, enabling discovery of general organizational rules for
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brain-wide systems which consist of both local and long-distance connections. A better understanding of these rules
will lead to more accurate predictions of the directions of information flow, constrained by anatomy, and can be used
by researchers interested in questions of structure-function relationships in the mouse brain.

4 Methods

4.1 Summary of data

The data were taken from 429 experiments using wildtype C57BL/6J mice. These data are available from the Allen
Mouse Brain Connectivity Atlas at http://connectivity.brain-map.org/. We divide the brain into a
set of s = 12 major brain divisions at a high level of the 3D Allen Mouse Brain Reference Atlas ontology. These
major brain divisions are: Isocortex, Olfactory Bulb, Hippocampus, Cortical Subplate, Striatum, Pallidum, Thalamus,
Hypothalamus, Midbrain, Pons, Medulla, Cerebellum. We also consider a finer partition (lower in the ontology) into
a set of r = 292 regions. The major brain divisions form a disjoint partition of the brain, as do the regions. However,
the regions are each contained within a given major brain division.

We conducted a hand-curation of the experiments to exclude those that have injections which substantially overlap
multiple major brain divsions. For example, we removed experiments with large injection volumes spanning multiple
subcortical major brain divisions and subcortical injections with substantial leakage of the tracer in the overlying
cortex. Additionally, we removed four experiments having very little to no long-distance projections (small projection
volume outside of the injection location). Overall, of the 429 experiments, we removed 63 experiments resulting in a
total of 366 included experiments. We summarize these experiments used to fit our connectome in Table[2]

In our mathematical framework, the brain is a subset of R3 which is discretized into a collection of n cubic
voxels. Subsets of these voxels then correspond to the major brain division {S;}{_; and regions {R;}!_;. Each
voxel 4 maps to a location in the brain, which we denote by v; € R3. Each injection tracing experiment leads to
an image of fluorescence throughout the brain. The fluorescence signal is reported as injection density (fraction of
fluorescing pixels per voxel for voxels in the annotated injection site) and projection density (fraction of fluorescing
pixels per voxel elsewhere). For the eth experiment, let X, . and Y. . denote the length n vectors of injection density
and projection density, respectively. We also compute voxel coordinates of the center of mass of the injection density
ce € R3. For our estimator, we also compute the normalized projection density by normalized by the sum of the
injection density, and denote this Y. .. Note that Y. . = (Y., + X. )/ Y., Xy, since we also include the injection
pattern in the normalized projection density. Thus, the experimental data is this collection {(X. ., Y. ., Y. o, ce) }iy,
of length n vectors as well as the injection centers of mass for each experiment.

4.2 Multivariate nonparametric regression to infer voxel connectivity

We consider the problem of fitting a nonnegative, weighted adjacency matrix W € RZ{" that is common across
animals. Entry W;; is the estimated projection density of neurons in voxel j to voxel 4, if one unit of virus were
delivered to voxel j. Each experiment consists of an injection X, and its projections Y, and we would like to find W
so that so that Y =~ WX. Uncovering the unknown W from multiple experiments (X..,Y..) fore = 1,...,m is
then a multivariate regression problem. The unknown matrix W is a linear operator which takes images of the brain
(injections) and returns images of the brain (projections).

Unlike the earlier work by |Harris et al.|(2016)), we make two crucial simplifying approximations: First, we assume
that in experiment e the injection is delivered to precisely one voxel, the injection center of mass c.. This removes
the more difficult credit assignment problem of which voxels within each injection site contribute which projections.
The method of Harris et al.| (2016) solved this problem by essentially “dividing out” the injection correlations across
experiments. Second, we assume that projections vary smoothly as we change the source voxel, i.e. the columns of W
are smooth functions of the column voxel. However, we do not explicitly assume that the incoming projections to a
target voxel vary smoothly as we move the target voxel, or smoothness in the rows. Smoothness in target space leads
to dependencies among the output variables of the multivariate regression problem, making it a so-called structured
regression problem, which are generally more difficult to solve. Note that, because the data tend to produce patterns of
projections that are spatially smooth, and because we enforce smoothness in the source space, some target smoothness
will naturally arise from the data and assumptions.
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4.2.1 Nadaraya-Watson connectome estimator

With these simplifying assumptions, we can now state the model. Our data are now the pairs of center of mass voxels
ce and normalized injection densities Y, ., which we assume arise from an injection of one unit of virus to the center
of mass. Kernel regression is a standard non-parametric method for estimating a smooth univariate or multivariate
function. For simplicity, we use the Nadaraya-Watson estimator (Nadaraya, 1964} |Watson, |1964) to estimate the
connectivity:

W — Decoes, Kllv; —cell)Yie v
ij = K — = Z ieQej (D
ZfZCfESk (HUJ cf”) e:co €Sy

where

o K(y-al
! Zf;cfesk K(|lvj —efll)

and k is the unique index such that v; € Sk, i.e. we only average over injections in the major brain division containing
the source voxel. Furthermore, we can construct the matrices

2)

Y = [Y,lv?,?a B ’Ym]
A= [O‘ej] )

so that the connectome is written compactly as a rank m matrix W = Y A, where Y € R"*™ and A € R™*". Note
that each column in A, the coefficients o, has entries which sum to one.

The Nadaraya-Watson estimator, Eqn. (T)), has a number of nice properties: It does not require any fitting, because
the coefficients «.; are given explicitly in terms of the center of masses and kernel, Eqn. (). Furthermore, it forms a
compressed rank m representation of VW which is only as large as the data. However, it does suffer some drawbacks: It
is well-known that the Nadaraya-Watson estimator is biased for data that is not sampled uniformly and near boundaries.

Note also that experiments with center of masses ¢, € Sk do not have any influence outside of Sy. This is
because we do not want to average over experiments in vastly different brain areas. Therefore, the coefficients o 1
are decoupled across major brain divisions. Essentially, we fit a different model for each major brain division.

4.2.2 Choice of spatial kernel

One needs to select a kernel to apply Eqn. (T). We use kernels of the polynomial family with finite support:

Kna(d) = (1 - (d/h)?)™ 1a<n, 3)

where h and ) are hyperparameters which set the size of the support and polynomial degree, respectively. The uniform
kernel is in this family with A = 0 and the Gaussian kernel is a limiting case as A — oo.

For polynomial kernels Eqn. (3, we have two hyperparameters to fit: the length scale h and exponent A. However,
we have a good lower bound for the length scale h, since we do not want any voxel in the brain to have zero connec-
tivity. We therefore set h to be the maximum of the minimum distance from any voxel to the closest injection center
of mass.

4.2.3 Evaluating performance via cross-validation

To evaluate the performance of the model, we employ nested leave-one-out cross validation. In the inner loop, we
fit m — 1 different models on sets of m — 2 experiments in order to perform model selection, wherein we fit the
hyperparameters i and A of the kernel function K. The best model is then evaluated against the held out experiment
from the outer loop, and this process is repeated m different times. The performance metric we choose to use is mean
square error relative to the average squared norm of the prediction and left out data:

2||Ypred _ Ytrue”QF
Yl + Y7

MSE, = €]

This choice of normalization prevents experiments with small ||Y'|| from dominating the error, more heavily weighting
experiments with larger signal (Harris et al.| 2016).
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The relative error in Eqn. (@) is approximately equal to the usual relative mean square error ||YPred—Yree||2, /||y true| 2,
when Y is close to Y™, and this is not too small. To see this, let YP® = Y™ 1 § where ||§]|r < ¢ and
[|[Y'™e||z = O(1). Then, dropping the superscript “true” for clarity,

2(|6]/% 21611 5|3 1 Yz
MisE = 20l LS S S O

= = = 1—0(e?)).
IV +0l% + V1% 2VIE+161E VIR \ 1+ 2”&"‘2{2 V]I ( )
F

However, if Y is close to zero, our metric can be different. For example, if ypred — 1 and Y™ = .25, then MSE,; =
2(1 —0.25)%2/(1% + (0.25)?) = 106%. The usual relative mean square error would be (1 — 0.25)2/(0.25)% = 900%.
If either Y™ or Y'Pd 5 zero and the other is not, then MSE, = 200%, its maximum value.

Consider a set of experiments {(c., Y. .)}™ , where c. is the center of mass of the eth injection. Let C € R"*™
be the matrix of injection center indicators, with entries C;. = 1{06 —v;}- Define the kernel matrix A° € R™>*™ as the
kernel evaluated at the centers of mass, then this is just A. = AC'". Thus the model prediction of the center of mass
projections is WC = Y AC = Y A..

We can perform leave-one-out cross validation efficiently after computing the coefficients A. for a given set of
data. If we leave out experiment e, the new model TW(~¢) predicts that the projections from ¢, are Y = VV(_‘:)C’:,e =

?A&e), where Agfe) has the eth diagonal entry equal to zero and the corresponding column renormalized to sum to
one. Therefore,

(Ac)igs J#e,

—e Ac)ij . . .
(Ag ))ij = 1£(A)c)€€7 j=ecandi # j,
0, 1 =j =e.

Extending the above result to compute the leave-one-out predictions for all of the experiments, we find that these are

equal to Y ASY, where
ov =, P4
(AV)ig = mWdam 77
0, i=7.

Thus, once we compute the coefficients A., we set the diagonals equal to zero and renormalize the columns to obtain

ASV. The leave one out cross-validation relative error of the voxel model is then
2

1|2 V2’

V1% + 1Y 1%

where Y = Y ASY are the leave-one-out predictions.

4.3 Regionalized and homogeneous models

The application of Eqn. results in a very large n X n voxel-scale connectivity matrix. Recall that we defined a
parcellation of the brain into 7 regions ‘'R. We would like to be able to compare this with extant regional connectomes,
which are smaller » x r matrices. With this, we can define the regional projection matrix, IT € R"*", with entries:

ILij = 1qy,eri}-

That is, the ith row of II has ones in entries corresponding to voxels in region i. Therefore, for some vector z € R"
corresponding to a voxel image of the brain, the vector z® = IIz has entries corresponding to the sum of = over
regions. Furthermore, consider another matrix It € R™*", with entries:

T Lvier;}
K IR,

where |R;| is the number of voxels in region j. Then IIf, operating from the left on a length 7 vector spreads the
entries evenly over all of the voxels in a given region. Operating from the right, it averages over the voxels in a region.
Note that ITTIT = I,., so it is a right inverse of II and in fact is a Moore-Penrose pseudoinverse.
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With this notation, it becomes simple to convert voxel vectors and matrices into regional ones. We refer to the sum
of the connection weights between two regions as the connection strength between the regions. Thus, the regional
connection strength is given by

wR=nwn’.

However, these regions may be vastly different sizes, in which case a measure normalized by source and/or target
region size is more appropriate. We define the normalized projection density as the connection strength between two
regions divided by the size of the source and target region. In this case, the matrix becomes

WR,norm density _ HTT 1574 HT.

Finally, our last normalization only normalizes by the size of the source region, which we call normalized connection
strength:
WR,norm strength __ ow HT

This normalization is necessary to compare directly with the homogeneous model.

4.3.1 Fitting a homogeneous regional model

As in |Oh et al.| (2014), one could also fit a regional model where connection strengths are fixed across regions by
working directly to data which are integrated over regions. We performed this for comparison and refer to the result
as the homogeneous model. Let X® = II X and YR = ITY . Then the model fit to this regional data is found via
nonnegative least squares as

WhemeE = arg min [|W7XT — V. (©)

Note that the output W"°™¢ is a normalized connection strength, since entry (i, j) is the expected volume of fluores-
cence in region ¢ per unit of virus in region j.

4.3.2 Comparing the regionalized voxel model to the homogeneous model

Let Y € R™ be the voxel prediction, we can compute the regionalized prediction YR € R" by projecting the voxel
predictions into the regional space: YR = IIY. Itis important to note that although the comparison between the
regionalized voxel model and the homogeneous model are done in the same space R", the predictions themselves are
slightly different. The regionalized voxel predictions YR are the predicted result of a unit injection into the center of

mass of the injection c., whereas the regional prediction YR JA/homog . . 1s the regional prediction of the projection
from the full injection X .

5 Supplementary materials

All of the data used to construct these models is available at http://connectivity.brain-map.orqg. The
curved coordinate system is available athttp://help.brain-map.org/download/attachments/2818171/
Mouse_Common_Coordinate_Framework.pdf. All code used to build this model will be made available at the

time of publication fromhttps://github.com/AllenInstitute/high resolution_data-driven_mbodel
_of the mouse_connectome.
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8 Supplement

8.1 Technical Terms

8.2

Connection Strength: The sum of the connection weights from all voxels in a source region R to all voxels
in a target region R, denoted WX .

Edge Density: The total number of edges in a graph over the total possible number of edges in a graph. In our
case, since our graphs are directed, it is - doiim1 Lwy, 20y

Frobenius Norm: The 2-norm of a matrix viewed as a vector: || Al|r = , /Zij Afj.

Normalized Connection Density: The connection strength from R, to Ro divided by the product of their sizes:
W3y

[R1[[R2]"

Normalized Connection Strength: The connection strength from R, to R4 divided by the size of the source
R

1 . W21
region: 2.

Radial Basis Function: A monotonically decreasing, nonnegative function.

Regions: The set of 292 brain structures (also called ’summary structures’) from the 3D Allen Mouse Brain
Reference Atlas.

Major Brain Divisions: The set of 12 major brain divisions (also called ’coarse’ structures) from the 3D Allen
Mouse Brain Reference Atlas: Isocortex, Olfactory Areas, Hippocampus, Cortical Subplate, Striatum, Pallidum,
Thalamus, Hypothalamus, Midbrain, Pons, Medulla, Cerebellum.

Voxel: A 3-D cubic volume element; the generalization of a pixel.

Wildtype mouse (C57BL/6J): Mice of strain C57BL/6] which have not been genetically altered.

Supplemental Tables
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BIC
o Projection Inverse .
Division Hemisphere Lognormal Gamma Exponential Normal
Whole-Brain Ipsilateral -1.61e6 p =2e-111 -1.39¢6 -1.09¢6  8.30e9
Contralateral | -1.79e6  p =2e-88 -1.58e6 -1.29¢6 3.37ell
Isocortex Ipsilateral -2.70e4 p=0.02 -2.62e4 -2.57e4  -2.17e4
Contralateral | -3.36e4 p=0.01 -3.29¢4 -3.18e4  -2.74e4

Table 3: Model selection for the best fit distribution for the connectivity weights. The best-fit model was chosen
through minimizing Bayes Information Criteria (BIC). BIC is based on the liklihood function with an additional
penalty for the number of model parameters. The weight distributions of both ipsilateral and contralateral whole-
brain and cortical-cortico connection weights were best fit by a lognormal distribution. However, these fits were not
significantly similar to any of the above weights distributions as determined by the Kolmogorov-Smirnov test at a
a = 0.5 level of significance as seen by the above p-values.
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Division Projection Hemisphere | Component I o weight
Whole-Brain Ipsilateral 1 -6.21 0.24 0.29
2| -5.02 021 0.33

31 -11.37  9.71 0.01

4| 756  0.66 0.08

5| -3.81 0.26 0.29

Contralateral 1 -4.34 0.26 0.26

2| -8,18 0.84 0.07

3| -6.71 0.26 0.29

41 -553 0.19 0.36

5| -12.36 13.07 0.01

Isocortex Ipsilateral 1 -3.23  0.15 0.35
2| -4.21 0.13 0.44

3| -5.19 022 0.21

Contralateral 1 -5.52  0.32 0.50

2| 420 029 0.50

Table 4: Fitted gaussian mixture model parameters for the whole-brain and cortical-cortico logrithmically scaled
connectivity weight distributions broken down by projection hemisphere. In both cases, the logrithmically transformed
weights distributions failed to pass the Shapiro-Wilk test for normality, so we fit a mixture of gaussians to each of the
logrithmically transformed distributions. As in Table[3] the number of gaussian components was selected to minimize
the Bayesian Information Criteria (BIC). With the exception of two of the whole-brain components, the individual
weights of the fitted gaussians are similar, possibly resulting from different regions contribute to a non-homogeneous
distribution of connection weights across the brain.

RMSE
Division Projection Hemisphere | Power Law  Exponential
Whole-Brain Ipsilateral 2.85 2.89
Contralateral 3.14 3.19
Isocortex Ipsilateral 1.40 1.48
Contralateral 1.89 1.92

Table 5: Model comparison of the best fit relation between normalized connection density and pairwise distances
between anatomical regions. The power law and exponential relations were fit through a nonlinear optimization
algorithm (Levenberg-Marquadt) to minimize the mean squared residuals. The performance of the two models is
similar, with the powerlaw relation having slightly lower root mean squared error (RMSE).
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