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Abstract 

Background 

Interspecies epigenome comparisons yielded functional information that cannot be revealed by 

genome comparison alone, begging for theoretical advances that enable principled analysis 

approaches. Whereas probabilistic genome evolution models provided theoretical foundation to 

comparative genomics studies, it remains challenging to extend DNA evolution models to 

epigenomes.  

Results  

We present an effort to develop ab initio evolution models for epigenomes, by explicitly 

expressing the joint probability of multispecies DNA sequences and histone modifications on 

homologous genomic regions. This joint probability is modeled as a mixture of four components 

representing four evolutionary hypotheses, namely dependence and independence of interspecies 

epigenomic variations to sequence mutations and to sequence insertions and deletions (indels). For 

model fitting, we implemented a maximum likelihood method by coupling downhill simplex 

algorithm with dynamic programming. Based on likelihood comparisons, the model can be used 

to infer whether interspecies epigenomic variations depend on mutation or indels in local genomic 

sequences. We applied this model to analyze DNase hypersensitive regions and spermatid 

H3K4me3 ChIP-seq data from human and rhesus macaque. Approximately 5.5% of homologous 

regions in the genomes exhibited H3K4me3 modification in either species, among which 

approximately 67% homologous regions exhibited sequence-dependent interspecies H3K4me3 

variations. Mutations accounted for less sequence-dependent H3K4me3 variations than indels. 

Among transposon-mediated indels, ERV1 insertions and L1 insertions were most strongly 

associated with H3K4me3 gains and losses, respectively.  

Conclusion 

This work initiates a class of probabilistic evolution models that jointly model the genomes and 

the epigenomes, thus helps to bring evolutionary principles to comparative epigenomic studies.  
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Background 

Milestones of mathematical modeling of DNA evolution were marked by base substitution models 

in early 1980s [1-3], extension to incorporation of sequence insertions and deletions (indels) in 

early 1990s [4], and differential treatments of cis-regulatory sequences in the 2000-2010s [5-12]. 

The rise of interspecies transcriptome comparisons in 2000s [13-16] inspired a series of 

transcriptome comparison models and evolution models [17-19]. Benefits of joint analysis of 

interspecies variations of genomes and transcriptomes [20] demanded and eventually led to 

development of a joint probabilistic evolution model of the genome and the transcriptome [21].  

Interspecies epigenome comparisons facilitated discoveries of functions of genomic sequences 

[22-26]. However, analyses of epigenome evolution remain observational, leading to divergent 

opinions on the dependence of epigenome conservation on sequence conservation. Some studies 

reported correlations between genomic and epigenomic changes [27, 28], whereas other studies 

revealed poor sequence conservation in homologous regions demarcated with the same histone 

modifications [29-31]. In much shorter timescale, sequence independent passage of histone 

modifications was observed in multiple generations [32, 33]. The development of evolutionary 

models for epigenomes would bring mathematical rigor to comparative epigenomics, and provide 

a model competition framework for evaluation of different hypotheses.  

In this manuscript, we describe an effort on derivation of the joint probability of a pair of 

homologous genomic sequences and histone modifications on these sequences. We started with 

considering four hypotheses, where interspecies epigenomic variations (1) depend only on 

sequence mutations, or (2) depend only on sequence indels, or (3) depend on both mutations and 

indels, or (4) are independent of sequence mutations and indels. We formulated each hypothesis 

into a probabilistic evolution model, and developed a likelihood competition approach for model 

selection. This model competition approach enabled systematic evaluation of the four evolutionary 

hypotheses on any homologous sequences.   

Results 

Our goal is to develop a probabilistic evolutionary model for a pair of homologous genomic 

regions that include the genomic sequences and histone modifications. If we denote the pair of 
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homologous genomic regions as 𝐴𝐴 and 𝐵𝐵, our goal is to derive the joint probability 𝑃𝑃(𝐴𝐴,𝐵𝐵).  For 

this purpose, we introduce the following notations, model assumptions, and alternative hypotheses 

on evolution of genome and histone modifications.  

Notations  

We introduce three sets of notations, including indices, observed data, and model parameters. The 

indices are ℎ  for indexing histone modifications ( ℎ = {1, 2, … ,𝐻𝐻} ), 𝑚𝑚  and 𝑛𝑛  for indexing 

nucleotide positions in two DNA sequences, respectively, and 𝑘𝑘 for indexing nucleotide positions 

in a pair of aligned sequences. 

The observed data are denoted as follows. 𝐴𝐴0,𝐵𝐵0 denote a pair of homologous genomic sequences. 

𝐴𝐴ℎ,𝐵𝐵ℎ  denote the states of the ℎth  histone modification on 𝐴𝐴0,𝐵𝐵0 . 𝐴𝐴,𝐵𝐵  denote a pair of 

homologous regions, including the homologous genomic sequences and the states of each histone 

modification on these sequences, where 𝐴𝐴 = {𝐴𝐴0,𝐴𝐴1, … ,𝐴𝐴𝐻𝐻} , and 𝐵𝐵 = {𝐵𝐵0,𝐵𝐵1, … ,𝐵𝐵𝐻𝐻} . Let 

𝑠𝑠𝐴𝐴 and 𝑠𝑠𝐵𝐵 denote the lengths of 𝐴𝐴0 and 𝐵𝐵0. Let 𝑎𝑎0,𝑚𝑚 and  𝑏𝑏0,𝑛𝑛 denote the 𝑚𝑚th and the 𝑛𝑛th bases of 

sequences 𝐴𝐴0 and 𝐵𝐵0, where 𝑎𝑎0,𝑚𝑚, 𝑏𝑏0,𝑛𝑛 = {𝐴𝐴,𝐶𝐶,𝐺𝐺,𝑇𝑇}. Let 𝑎𝑎ℎ,𝑚𝑚 and 𝑏𝑏ℎ,𝑛𝑛 denote the states of the 

ℎth histone modification at positions 𝑚𝑚 and 𝑛𝑛 in 𝐴𝐴ℎ,𝐵𝐵ℎ , where 𝑎𝑎ℎ,𝑚𝑚 = {0,1} and  𝑏𝑏ℎ,𝑛𝑛 = {0,1}. 

Let 𝑎𝑎0,𝑘𝑘
′ , 𝑏𝑏0,𝑘𝑘

′  denote the nucleotides or indels on the 𝑘𝑘th position of an aligned pair of sequences, 

where 𝑎𝑎0,𝑘𝑘
′ , 𝑏𝑏0,𝑘𝑘

′ = {𝐴𝐴,𝐶𝐶,𝐺𝐺,𝑇𝑇,−}. Let 𝑎𝑎ℎ,𝑘𝑘
′ , 𝑏𝑏ℎ,𝑘𝑘

′  denote the states of the ℎth histone modification 

on the 𝑘𝑘th position in a pair of aligned sequences, where 𝑎𝑎ℎ,𝑘𝑘
′ , 𝑏𝑏ℎ,𝑘𝑘

′ = {0, 1,−}. Finally, we denote 

an alignment of two sequences as a 𝑝𝑝𝑎𝑎𝑝𝑝ℎ, that is 𝑝𝑝𝑎𝑎𝑝𝑝ℎ = {𝑎𝑎0,𝑘𝑘
′ ,𝑏𝑏0,𝑘𝑘

′ }. 

The model parameters include 𝜋𝜋Α,𝜋𝜋C,𝜋𝜋T,𝜋𝜋G, denoting the equilibrium probabilities of the four 

nucleotide bases. Let 𝜋𝜋1ℎ  denote the global equilibrium probability, that is the equilibrium 

probability of having the ℎth histone modification on any genomic location, and 𝜋𝜋0ℎ = 1 − 𝜋𝜋1ℎ . Let 

𝜑𝜑𝐴𝐴1ℎ  denote the local equilibrium probability, that is the probability of having the ℎth  histone 

modification on genomic region 𝐴𝐴 , and 𝜑𝜑𝐴𝐴0ℎ = 1 − 𝜑𝜑𝐴𝐴1ℎ . Denote sequence deletion rate as 𝜇𝜇 , 

insertion rate as 𝜆𝜆, and substitution rate as 𝑠𝑠. Let 𝜅𝜅ℎ be the rate of switch between 0 and 1, that is 

installing (0 to 1) or removing (1 to 0) for the ℎth histone modification. Let 𝑝𝑝 denote evolutionary 

time. 
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Model assumptions 

We assume that the state for each histone modification on each genomic location is binary, that is 

𝐴𝐴h  and 𝐵𝐵h  are sequences of 0’s and 1’s with the same lengths as 𝐴𝐴0  and 𝐵𝐵0  (Figure 1). For 

example, a 5nt sequence of ACGTA (𝐴𝐴0 = ACGTA) that is within an H3K9me3 peak (denote 

𝐴𝐴ℎ=𝐻𝐻3𝐾𝐾9𝑚𝑚𝑚𝑚3  as 𝐴𝐴1 ) can be written as 𝐴𝐴
0

𝐴𝐴1
= A

1
C
1

G
1

T
1

A
1  . For another example, a 10nt sequence 

ACGTAGGGGG (𝐵𝐵0 = ACGTAGGGGG) with the first 5 bases covered by an H3K9me3 peak and 

the second 5 bases not covered by any H3K9me3 peak can be written as  𝐵𝐵
0

𝐵𝐵1
= A

1
C
1

G
1

T
1

A
1

G
0

G
0

G
0

G
0

G
0 , 

where 𝐵𝐵1 denotes the states of H3K9me3. Our second assumption is the widely adopted Pulley 

principle, namely that genomic evolutionary processes are reversible [3]. Our third assumption is 

that evolutionary changes of the DNA do not depend on evolutionary changes of epigenome.   

Development of a probabilistic framework for epigenome evolution  

With the above introduced notations, our goal is to derive 𝑃𝑃(𝐴𝐴,𝐵𝐵) =

𝑃𝑃(𝐴𝐴0,𝐴𝐴1, … ,𝐴𝐴𝐻𝐻 ,𝐵𝐵0,𝐵𝐵1, … ,𝐵𝐵𝐻𝐻) , where 𝐴𝐴0,𝐵𝐵0  are homologous genomic sequences and 

𝐴𝐴ℎ,𝐵𝐵ℎ (ℎ = {1, … ,𝐻𝐻})  are histone modifications on 𝐴𝐴0,𝐵𝐵0. To specify such a joint probability, 

we considered two types of dependency structures. First, descendent genomic sequence depends 

on ancestral sequence, and histone modifications depend on their underlying genomic sequence. 

The challenge of using such a dependency structure lies in the lack of complete knowledge of how 

genomic sequence determines the histone modifications, and therefore generally speaking 

𝑃𝑃(𝐴𝐴ℎ|𝐴𝐴0) cannot be specified. In the second type of dependency structure, descendent genomic 

sequence depends on the ancestral sequence, and histone modifications on the descent sequence 

depend on the histone modifications on the ancestral sequence. Furthermore, the evolutionary 

changes of each type of histone modification may depend on the genomic sequence changes 

(Figure 2A) or not (Figure 2B), and conditional on sequence changes the evolutionary changes of 

different histone modifications are independent of each other (conditional independence) (see 

Discussion). We elected to specify the joint probabilities with the second type of dependency 

structure.    

Based on the second type of dependency structure, we have  
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where 𝑝𝑝𝑎𝑎𝑝𝑝ℎ is an evolutionary path of homologous sequences, corresponding to an alignment of 

𝐴𝐴0  and 𝐵𝐵0  (Figure 1). Any probabilistic expression of sequence alignment can be used for 

𝑃𝑃(𝑝𝑝𝑎𝑎𝑝𝑝ℎ), and in the work we employ the widely adopted TKF model as the analytical form of 

𝑃𝑃(𝑝𝑝𝑎𝑎𝑝𝑝ℎ) [4]. 𝑃𝑃(𝐴𝐴,𝐵𝐵|𝑝𝑝𝑎𝑎𝑝𝑝ℎ) is the probability of observing a pair of homologous sequences and 

their epigenomes conditional on the sequence alignment. Because all sequence information is 

contained in 𝑝𝑝𝑎𝑎𝑝𝑝ℎ, due to conditional independence, we have:  

Applying previously introduced notations, we have:  

where len(𝑝𝑝𝑎𝑎𝑝𝑝ℎ) is the length of the aligned sequence pair 𝐴𝐴0,𝐵𝐵0 (first lane, Figure 1). Taking 

Equations (1) – (3) together, we have obtained a probabilistic statement of the observing a pair of 

homologous sequences and their respective histone modifications. Hereafter, we call Equations 

(1) – (3) the LCZ model. The LCZ model is fully specified when 𝑃𝑃�𝑏𝑏ℎ,𝑘𝑘
′ |𝑎𝑎ℎ,𝑘𝑘

′ ,𝑎𝑎0,𝑘𝑘
′ , 𝑏𝑏0,𝑘𝑘

′ � and 

𝑃𝑃(𝑎𝑎ℎ,𝑘𝑘
′ |𝑎𝑎0,𝑘𝑘

′ ,𝑏𝑏0,𝑘𝑘
′ ) are specified.    

Translation of alternative evolutionary hypotheses into probabilistic models  

We restricted this work to considerations of two types of sequence changes, namely mutations and 

indels. A total of four possible evolutionary hypotheses can be posed, that are (1) epigenome 

changes are independent of sequence changes (Model N), (2) epigenome changes depend on 

 𝑃𝑃(𝐴𝐴,𝐵𝐵) = � 𝑃𝑃(𝐴𝐴,𝐵𝐵,𝑝𝑝𝑎𝑎𝑝𝑝ℎ)
𝑝𝑝𝑝𝑝𝑝𝑝ℎ

= � 𝑃𝑃(𝐴𝐴,𝐵𝐵|𝑝𝑝𝑎𝑎𝑝𝑝ℎ)𝑃𝑃(𝑝𝑝𝑎𝑎𝑝𝑝ℎ)
𝑝𝑝𝑝𝑝𝑝𝑝ℎ

 (1), 

 

𝑃𝑃(𝐴𝐴,𝐵𝐵|𝑝𝑝𝑎𝑎𝑝𝑝ℎ) = 𝑃𝑃(𝐴𝐴0,𝐴𝐴1, … ,𝐴𝐴𝐻𝐻 ,𝐵𝐵0,𝐵𝐵1, … ,𝐵𝐵𝐻𝐻|𝑝𝑝𝑎𝑎𝑝𝑝ℎ) 

= 𝑃𝑃(𝐴𝐴1, … ,𝐴𝐴𝐻𝐻,𝐵𝐵1, … ,𝐵𝐵𝐻𝐻|𝑝𝑝𝑎𝑎𝑝𝑝ℎ) 

= � 𝑃𝑃(𝐴𝐴ℎ,𝐵𝐵ℎ|𝑝𝑝𝑎𝑎𝑝𝑝ℎ)
𝐻𝐻

ℎ=1
 

(2). 

𝑃𝑃(𝐴𝐴ℎ,𝐵𝐵ℎ|𝑝𝑝𝑎𝑎𝑝𝑝ℎ) =  𝑃𝑃(𝐵𝐵ℎ|𝑝𝑝𝑎𝑎𝑝𝑝ℎ,𝐴𝐴ℎ)𝑃𝑃(𝐴𝐴ℎ|𝑝𝑝𝑎𝑎𝑝𝑝ℎ) 

= � 𝑃𝑃�𝑏𝑏ℎ,𝑘𝑘
′ |𝑎𝑎ℎ,𝑘𝑘

′ ,𝑎𝑎0,𝑘𝑘
′ ,𝑏𝑏0,𝑘𝑘

′ �𝑃𝑃(𝑎𝑎ℎ,𝑘𝑘
′ |𝑎𝑎0,𝑘𝑘

′ , 𝑏𝑏0,𝑘𝑘
′ )

len(𝑝𝑝𝑝𝑝𝑝𝑝ℎ)

𝑘𝑘=1
 

(3), 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/293076doi: bioRxiv preprint 

https://doi.org/10.1101/293076
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
7 

sequence mutations but are independent of sequence indels (Model M), (3) epigenome changes 

depend on sequence indels but not sequence mutations (Model I), and (4) epigenome depend on 

both mutations and indels (Model B, Figure 2C). In the rest of the manuscript, we will describe 

how to express each hypothesis in a probabilistic form. Furthermore, we will describe a likelihood 

comparison approach for testing which hypothesis fits actual data, and whether different genomic 

regions conform to a single evolutionary model.  

Modeling dependencies of epigenomic changes on sequence mutations  

Model N. Model N assumes that epigenomic changes are independent of both mutations and indels 

(Model N, Figure 2). We model evolutionary process of epigenomic changes as a Poisson process, 

in which the probability of change in time 𝑝𝑝 is:  

 𝑔𝑔𝑝𝑝ℎ,𝑘𝑘
′ ,𝑏𝑏ℎ,𝑘𝑘

′ (𝑝𝑝) = �
𝑒𝑒−𝜅𝜅ℎ𝑝𝑝 + 𝜋𝜋𝑏𝑏ℎ,𝑘𝑘

′
ℎ �1 − 𝑒𝑒−𝜅𝜅ℎ𝑝𝑝� ,   𝑎𝑎ℎ,𝑘𝑘

′ = 𝑏𝑏ℎ,𝑘𝑘
′

𝜋𝜋𝑏𝑏ℎ,𝑘𝑘
′
ℎ �1 − 𝑒𝑒−𝜅𝜅ℎ𝑝𝑝� ,  𝑎𝑎ℎ,𝑘𝑘

′ ≠ 𝑏𝑏ℎ,𝑘𝑘
′

 (4), 

where 𝑎𝑎ℎ,𝑘𝑘
′  and 𝑏𝑏ℎ,𝑘𝑘

′  are binary states of the ℎP

th histone modification on the 𝑘𝑘P

th position of an 

alignment, and 𝜋𝜋𝑏𝑏ℎ,𝑘𝑘
′
ℎ  is the equilibrium probability of having the ℎP

th histone modification on the 

𝑘𝑘P

th position, namely 𝜋𝜋1ℎ = 𝑃𝑃�𝑏𝑏ℎ,𝑘𝑘
′ = 1� and 𝜋𝜋0ℎ = 𝑃𝑃�𝑏𝑏ℎ,𝑘𝑘

′ = 0�. This probabilistic form is similar 

to the substitution model of DNA evolution [3]. On a position without indel 

(𝑎𝑎0,𝑘𝑘
′ ≠ " − " and 𝑏𝑏0,𝑘𝑘

′ ≠ " − "), we have: 

 𝑃𝑃�𝑏𝑏ℎ,𝑘𝑘
′ |𝑎𝑎ℎ,𝑘𝑘

′ ,𝑎𝑎0,𝑘𝑘
′ , 𝑏𝑏0,𝑘𝑘

′ � = 𝑔𝑔𝑝𝑝ℎ,𝑘𝑘
′ ,𝑏𝑏ℎ,𝑘𝑘

′ (𝑝𝑝) (5), 

and  

 𝑃𝑃�𝑎𝑎ℎ,𝑘𝑘
′ �𝑎𝑎0,𝑘𝑘

′ ,𝑏𝑏0,𝑘𝑘
′ � = 𝜋𝜋𝑝𝑝ℎ,𝑘𝑘

′
ℎ × 𝑔𝑔𝑝𝑝ℎ,𝑘𝑘

′ ,𝑝𝑝ℎ,𝑘𝑘
′ (0) = 𝜋𝜋𝑝𝑝ℎ,𝑘𝑘

′
ℎ  (6). 

In order to model epigenomic changes on insertions and deletions, we introduce four parameters 

𝜑𝜑𝐴𝐴0ℎ , 𝜑𝜑𝐴𝐴1ℎ  and 𝜑𝜑𝐵𝐵0ℎ , 𝜑𝜑𝐵𝐵1ℎ  to represent local equilibrium probabilities of epigenomic states 0 and 1 in 

genomic regions 𝐴𝐴  and 𝐵𝐵 , respectively (𝜑𝜑𝐴𝐴0ℎ = 1 − 𝜑𝜑𝐴𝐴1ℎ  and 𝜑𝜑𝐵𝐵0ℎ = 1 − 𝜑𝜑𝐵𝐵0ℎ ). Unlike global 
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equilibrium probabilities 𝜋𝜋0ℎ  and 𝜋𝜋1ℎ , which are estimated from all homologous regions in the 

entire genomes, local equilibrium probabilities are estimated from each genomic region. On an 

insertion in the descendent sequence (𝑎𝑎0,𝑘𝑘
′ = " − " and 𝑏𝑏0,𝑘𝑘

′ ≠ " − "), the transition probability is 

modeled as a mixture of the two transitions: 

 𝑃𝑃�𝑏𝑏ℎ,𝑘𝑘
′ |𝑎𝑎ℎ,𝑘𝑘

′ ,𝑎𝑎0,𝑘𝑘
′ , 𝑏𝑏0,𝑘𝑘

′ � = 𝜑𝜑𝐴𝐴0ℎ 𝑔𝑔0,𝑏𝑏ℎ,𝑘𝑘
′ (𝑝𝑝) + 𝜑𝜑𝐴𝐴1ℎ 𝑔𝑔1,𝑏𝑏ℎ,𝑘𝑘

′ (𝑝𝑝) (7), 

and because there is no place for histone mark on the 𝑘𝑘P

th position in the ancestral sequence (𝑎𝑎ℎ,𝑘𝑘
′  

is not observed), we denote:  

 𝑃𝑃�𝑎𝑎ℎ,𝑘𝑘
′ �𝑎𝑎0,𝑘𝑘

′ ,𝑏𝑏0,𝑘𝑘
′ � = 1 (8). 

On a deletion in the descendent sequence ( 𝑎𝑎0,𝑘𝑘
′ ≠ " − " and 𝑏𝑏0,𝑘𝑘

′ = " − " ), based on the 

reversibility of the evolutionary process we model the transition as a mixture of two transitions:   

 𝑃𝑃�𝑎𝑎ℎ,𝑘𝑘
′ �𝑎𝑎0,𝑘𝑘

′ ,𝑏𝑏0,𝑘𝑘
′ � = 𝜑𝜑𝐵𝐵0ℎ 𝑔𝑔0,𝑝𝑝ℎ,𝑘𝑘

′ (𝑝𝑝) + 𝜑𝜑𝐵𝐵1ℎ 𝑔𝑔1,𝑝𝑝ℎ,𝑘𝑘
′ (𝑝𝑝) (9). 

For the completeness of the model, we denote: 

 𝑃𝑃�𝑏𝑏ℎ,𝑘𝑘
′ |𝑎𝑎ℎ,𝑘𝑘

′ ,𝑎𝑎0,𝑘𝑘
′ ,𝑏𝑏0,𝑘𝑘

′ � = 1 (10). 

Taken together, 𝑃𝑃�𝑏𝑏ℎ,𝑘𝑘
′ |𝑎𝑎ℎ,𝑘𝑘

′ ,𝑎𝑎0,𝑘𝑘
′ ,𝑏𝑏0,𝑘𝑘

′ � and 𝑃𝑃�𝑎𝑎ℎ,𝑘𝑘
′ �𝑎𝑎0,𝑘𝑘

′ , 𝑏𝑏0,𝑘𝑘
′ � are given by: 

 𝑃𝑃�𝑏𝑏ℎ,𝑘𝑘
′ |𝑎𝑎ℎ,𝑘𝑘

′ , 𝑎𝑎0,𝑘𝑘
′ , 𝑏𝑏0,𝑘𝑘

′ � = �

𝑔𝑔𝑝𝑝ℎ,𝑘𝑘
′ ,𝑏𝑏ℎ,𝑘𝑘

′ (𝑝𝑝) , 𝑎𝑎0,𝑘𝑘
′ , 𝑏𝑏0,𝑘𝑘

′ ≠ " − "

𝜑𝜑𝐴𝐴0ℎ 𝑔𝑔0,𝑏𝑏ℎ,𝑘𝑘
′ (𝑝𝑝) + 𝜑𝜑𝐴𝐴1ℎ 𝑔𝑔1,𝑏𝑏ℎ,𝑘𝑘

′ (𝑝𝑝) , 𝑎𝑎0,𝑘𝑘
′ = " − "  𝑎𝑎𝑛𝑛𝑎𝑎 𝑏𝑏0,𝑘𝑘

′ ≠ " − "

1 , 𝑎𝑎0,𝑘𝑘
′ ≠ " − "  𝑎𝑎𝑛𝑛𝑎𝑎 𝑏𝑏0,𝑘𝑘

′ = " − "
 (11), 

 𝑃𝑃�𝑎𝑎ℎ,𝑘𝑘
′ �𝑎𝑎0,𝑘𝑘

′ , 𝑏𝑏0,𝑘𝑘
′ � =

⎩
⎨

⎧ 𝜋𝜋𝑝𝑝ℎ,𝑘𝑘
′
ℎ  , 𝑎𝑎0,𝑘𝑘

′ , 𝑏𝑏0,𝑘𝑘
′ ≠ " − "

𝜑𝜑𝐵𝐵0ℎ 𝑔𝑔0,𝑝𝑝ℎ,𝑘𝑘
′ (𝑝𝑝) + 𝜑𝜑𝐵𝐵1ℎ 𝑔𝑔1,𝑝𝑝ℎ,𝑘𝑘

′ (𝑝𝑝) , 𝑎𝑎0,𝑘𝑘
′ ≠ " − "  𝑎𝑎𝑛𝑛𝑎𝑎 𝑏𝑏0,𝑘𝑘

′ = " − "

1 , 𝑎𝑎0,𝑘𝑘
′ = " − "  𝑎𝑎𝑛𝑛𝑎𝑎 𝑏𝑏0,𝑘𝑘

′ ≠ " − "

 (12). 

At this point, all the terms in the LCZ model have been specified. Equations (11) and (12) specify 

Model N, where epigenomic changes are independent of sequence changes.  
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Model M. In this model, epigenomic changes are dependent of sequence mutations but 

independent of indels (Model M, Figure 2). On a matched (no mutation) base at the 𝑘𝑘P

th position in 

the alignment, namely 𝑎𝑎0,𝑘𝑘
′ = 𝑏𝑏0,𝑘𝑘

′ , the epigenomic change is modeled with the Poisson process 

𝑔𝑔𝑝𝑝ℎ,𝑘𝑘
′ ,𝑏𝑏ℎ,𝑘𝑘

′ (𝑝𝑝)  (Equation (4)), whereas on a position with mutation ( 𝑎𝑎0,𝑘𝑘
′ ≠ 𝑏𝑏0,𝑘𝑘

′  and  

𝑎𝑎0,𝑘𝑘
′ ,𝑏𝑏0,𝑘𝑘

′ ≠ " − "), the descendent epigenomic state is modeled by global equilibrium probabilities,  

 𝑃𝑃�𝑏𝑏ℎ,𝑘𝑘
′ |𝑎𝑎ℎ,𝑘𝑘

′ ,𝑎𝑎0,𝑘𝑘
′ , 𝑏𝑏0,𝑘𝑘

′ � = 𝜋𝜋𝑏𝑏ℎ,𝑘𝑘
′
ℎ  (13). 

On indels, the epigenomic changes is modeled with the same approach as in Model N. Taken 

together, Model M is specified as:  

 𝑃𝑃�𝑏𝑏ℎ,𝑘𝑘
′ |𝑎𝑎ℎ,𝑘𝑘

′ , 𝑎𝑎0,𝑘𝑘
′ , 𝑏𝑏0,𝑘𝑘

′ � =

⎩
⎪
⎨

⎪
⎧

𝑔𝑔𝑝𝑝ℎ,𝑘𝑘
′ ,𝑏𝑏ℎ,𝑘𝑘

′ (𝑝𝑝), 𝑎𝑎0,𝑘𝑘
′ =  𝑏𝑏0,𝑘𝑘

′

𝜋𝜋𝑏𝑏ℎ,𝑘𝑘
′
ℎ  , 𝑎𝑎0,𝑘𝑘

′ ≠  𝑏𝑏0,𝑘𝑘
′  𝑎𝑎𝑛𝑛𝑎𝑎 𝑎𝑎0,𝑘𝑘

′ , 𝑏𝑏0,𝑘𝑘
′ ≠ " − "

𝜑𝜑𝐴𝐴0ℎ 𝑔𝑔0,𝑏𝑏ℎ,𝑘𝑘
′ (𝑝𝑝) + 𝜑𝜑𝐴𝐴1ℎ 𝑔𝑔1,𝑏𝑏ℎ,𝑘𝑘

′ (𝑝𝑝) , 𝑎𝑎0,𝑘𝑘
′ = " − "  𝑎𝑎𝑛𝑛𝑎𝑎 𝑏𝑏0,𝑘𝑘

′ ≠ " − "
1 , 𝑎𝑎0,𝑘𝑘

′ ≠ " − "  𝑎𝑎𝑛𝑛𝑎𝑎 𝑏𝑏0,𝑘𝑘
′ = " − "

 (14), 

 𝑃𝑃�𝑎𝑎ℎ,𝑘𝑘
′ �𝑎𝑎0,𝑘𝑘

′ , 𝑏𝑏0,𝑘𝑘
′ � =

⎩
⎨

⎧ 𝜋𝜋𝑝𝑝ℎ,𝑘𝑘
′
ℎ  , 𝑎𝑎0,𝑘𝑘

′ , 𝑏𝑏0,𝑘𝑘
′ ≠ " − "

𝜑𝜑𝐵𝐵0ℎ 𝑔𝑔0,𝑝𝑝ℎ,𝑘𝑘
′ (𝑝𝑝) + 𝜑𝜑𝐵𝐵1ℎ 𝑔𝑔1,𝑝𝑝ℎ,𝑘𝑘

′ (𝑝𝑝) , 𝑎𝑎0,𝑘𝑘
′ ≠ " − "  𝑎𝑎𝑛𝑛𝑎𝑎 𝑏𝑏0,𝑘𝑘

′ = " − "

1 , 𝑎𝑎0,𝑘𝑘
′ = " − "  𝑎𝑎𝑛𝑛𝑎𝑎 𝑏𝑏0,𝑘𝑘

′ ≠ " − "

 (15). 

Model I. In this model, epigenomic changes depend only on sequence indels but not on mutations 

(Model I, Figure 2). On a position that is not indel (𝑎𝑎0,𝑘𝑘
′ ≠ " − " and 𝑏𝑏0,𝑘𝑘

′ ≠ " − "), we use the same 

Poisson process (Equation (4)) as that in Model N to model the epigenomic changes.  

On an insertion in the descendent sequence ( 𝑎𝑎0,𝑘𝑘
′ = " − " and  𝑏𝑏0,𝑘𝑘

′ ≠ " − " ), the transition 

probability becomes invariant of 𝑝𝑝:  

 𝑃𝑃�𝑏𝑏ℎ,𝑘𝑘
′ |𝑎𝑎ℎ,𝑘𝑘

′ ,𝑎𝑎0,𝑘𝑘
′ , 𝑏𝑏0,𝑘𝑘

′ � = 𝜋𝜋𝑏𝑏ℎ,𝑘𝑘
′
ℎ  (16), 

and since 𝑎𝑎ℎ,𝑘𝑘
′  is not observed, we denote: 
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 𝑃𝑃�𝑎𝑎ℎ,𝑘𝑘
′ �𝑎𝑎0,𝑘𝑘

′ , 𝑏𝑏0,𝑘𝑘
′ � = 1 (17). 

Similarly, on a deletion in the descendent sequence (𝑎𝑎0,𝑘𝑘
′ ≠ " − " and 𝑏𝑏0,𝑘𝑘

′ = " − "), we have:  

 𝑃𝑃�𝑎𝑎ℎ,𝑘𝑘
′ �𝑎𝑎0,𝑘𝑘

′ , 𝑏𝑏0,𝑘𝑘
′ � = 𝜋𝜋𝑝𝑝ℎ,𝑘𝑘

′
ℎ  (18), 

 𝑃𝑃�𝑏𝑏ℎ,𝑘𝑘
′ |𝑎𝑎ℎ,𝑘𝑘

′ ,𝑎𝑎0,𝑘𝑘
′ ,𝑏𝑏0,𝑘𝑘

′ � = 1 (19). 

Altogether, 𝑃𝑃�𝑎𝑎ℎ,𝑘𝑘
′ �𝑎𝑎0,𝑘𝑘

′ ,𝑏𝑏0,𝑘𝑘
′ � and 𝑃𝑃�𝑏𝑏ℎ,𝑘𝑘

′ |𝑎𝑎ℎ,𝑘𝑘
′ ,𝑎𝑎0,𝑘𝑘

′ , 𝑏𝑏0,𝑘𝑘
′ � are given by: 

 𝑃𝑃�𝑏𝑏ℎ,𝑘𝑘
′ |𝑎𝑎ℎ,𝑘𝑘

′ , 𝑎𝑎0,𝑘𝑘
′ , 𝑏𝑏0,𝑘𝑘

′ � = �

𝑔𝑔𝑝𝑝ℎ,𝑘𝑘
′ ,𝑏𝑏ℎ,𝑘𝑘

′ (𝑝𝑝) , 𝑎𝑎0,𝑘𝑘
′ , 𝑏𝑏0,𝑘𝑘

′ ≠ " − "

𝜋𝜋𝑏𝑏ℎ,𝑘𝑘
′
ℎ  , 𝑎𝑎0,𝑘𝑘

′ = " − "  𝑎𝑎𝑛𝑛𝑎𝑎 𝑏𝑏0,𝑘𝑘
′ ≠ " − "

1  , 𝑎𝑎0,𝑘𝑘
′ ≠ " − "  𝑎𝑎𝑛𝑛𝑎𝑎 𝑏𝑏0,𝑘𝑘

′ = " − "

 (20), 

 𝑃𝑃�𝑎𝑎ℎ,𝑘𝑘
′ �𝑎𝑎0,𝑘𝑘

′ , 𝑏𝑏0,𝑘𝑘
′ � = �

𝜋𝜋𝑝𝑝ℎ,𝑘𝑘
′
ℎ  , 𝑎𝑎0,𝑘𝑘

′ ≠ " − "

1 , 𝑎𝑎0,𝑘𝑘
′ = " − "  𝑎𝑎𝑛𝑛𝑎𝑎 𝑏𝑏0,𝑘𝑘

′ ≠ " − "
 (21). 

Model B. Model B assumes that epigenomic changes depend on both sequence mutations and 

indels (Model B, Figure 2). Similar to Model M, the epigenomic change is modeled with the 

Poisson process 𝑔𝑔𝑝𝑝ℎ,𝑘𝑘
′ ,𝑏𝑏ℎ,𝑘𝑘

′ (𝑝𝑝) on a matched base (𝑎𝑎0,𝑘𝑘
′ = 𝑏𝑏0,𝑘𝑘

′ ), whereas on a position with mutation 

(𝑎𝑎0,𝑘𝑘
′ ≠ 𝑏𝑏0,𝑘𝑘

′  and 𝑎𝑎0,𝑘𝑘
′ ,𝑏𝑏0,𝑘𝑘

′ ≠ " − "), the descendent epigenomic state is modeled by the equilibrium 

probabilities. On indels (𝑎𝑎0,𝑘𝑘
′ = " − " or 𝑏𝑏0,𝑘𝑘

′ = " − "), the epigenomic state is modeled using the 

equilibrium probability following Equations (16) – (19). 

 𝑃𝑃�𝑏𝑏ℎ,𝑘𝑘
′ |𝑎𝑎ℎ,𝑘𝑘

′ , 𝑎𝑎0,𝑘𝑘
′ , 𝑏𝑏0,𝑘𝑘

′ � = �

𝑔𝑔𝑝𝑝ℎ,𝑘𝑘
′ ,𝑏𝑏ℎ,𝑘𝑘

′ (𝑝𝑝), 𝑎𝑎0,𝑘𝑘
′ = 𝑏𝑏0,𝑘𝑘

′

𝜋𝜋𝑏𝑏ℎ,𝑘𝑘
′
ℎ 𝑎𝑎0,𝑘𝑘

′ ≠ 𝑏𝑏0,𝑘𝑘
′  𝑎𝑎𝑛𝑛𝑎𝑎 𝑏𝑏0,𝑘𝑘

′ ≠ " − "

1 , 𝑎𝑎0,𝑘𝑘
′ ≠ " − "  𝑎𝑎𝑛𝑛𝑎𝑎 𝑏𝑏0,𝑘𝑘

′ = " − "

 (22), 

 𝑃𝑃�𝑎𝑎ℎ,𝑘𝑘
′ �𝑎𝑎0,𝑘𝑘

′ , 𝑏𝑏0,𝑘𝑘
′ � = �

𝜋𝜋𝑝𝑝ℎ,𝑘𝑘
′
ℎ , 𝑎𝑎0,𝑘𝑘

′ ≠ " − "

1 𝑎𝑎0,𝑘𝑘
′ = " − "  𝑎𝑎𝑛𝑛𝑎𝑎 𝑏𝑏0,𝑘𝑘

′ ≠ " − "
 (23). 
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A unified evolutionary model incorporating all four hypotheses  

We express the probably of two homologous genomic regions as a mixture of the four models, 

thus obtained a general probabilistic model that do not depend on any of the specific hypothesis 

as follows:   

 𝑃𝑃(𝐴𝐴,𝐵𝐵) = 𝑃𝑃(𝐴𝐴,𝐵𝐵|𝑀𝑀)𝑃𝑃(𝑀𝑀) + 𝑃𝑃(𝐴𝐴,𝐵𝐵|𝑁𝑁)𝑃𝑃(𝑁𝑁) + 𝑃𝑃(𝐴𝐴,𝐵𝐵|𝐼𝐼)𝑃𝑃(𝐼𝐼) + 𝑃𝑃(𝐴𝐴,𝐵𝐵|𝐵𝐵)𝑃𝑃(𝐵𝐵) (24), 

where 𝑃𝑃(𝐴𝐴,𝐵𝐵|𝑀𝑀), 𝑃𝑃(𝐴𝐴,𝐵𝐵|𝑁𝑁), 𝑃𝑃(𝐴𝐴,𝐵𝐵|𝐼𝐼), and 𝑃𝑃(𝐴𝐴,𝐵𝐵|𝐵𝐵) are the four probability density functions 

for Models M, N, I, and B, respectively.  

Development of a MLE algorithm for parameter estimation 

We implemented a maximum likelihood estimation (MLE) algorithm for model fitting. The input 

data for the MLE algorithm are a list of pairs of homologous regions, hereafter termed homologous 

pairs, each of which contains two homologous sequences, and on each position of each sequence 

a binary indicator of state of each histone mark. The model parameters include equilibrium 

probabilities 𝜋𝜋 and 𝜑𝜑, birth and death rates 𝜆𝜆 and 𝜇𝜇, substitution rate 𝑠𝑠, and the rate of change for 

each histone modification 𝜅𝜅ℎ. Our MLE calculation algorithm is a downhill simplex algorithm. 

The key for application of downhill simplex algorithm is being able to evaluate the likelihood 

function with given model parameters, which requires summing over all possible evolutionary 

paths between the two sequences, which was achieved by a dynamic program algorithm (Methods).  

Evaluation with simulation datasets 

We tested performances of the models and the MLE algorithm with simulation data. First, we 

tested the convergence by comparing the estimated parameters at each iteration with the true 

parameters (Figure S1A). We simulated data with 8 sets of model parameters (Table S1, Methods) 

under each of the 4 models (Model M, N, B, I), resulting in a total of 32 datasets. Each dataset 

contained 100 pairs of 500bp-long homologous sequences and one histone modification on each 

sequence. We ran the MLE estimation algorithm twice with two initial values on each simulation 

dataset. Regardless of the initial values, the estimated parameters converged to true values in all 

simulated datasets (Figure S1A), and the negative log-likelihood function decreased 

monotonically (Figure S1B).  
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For a more comprehensive test, we simulated 10 datasets under each of the 4 models with each of 

the 8 sets of model parameters (Table S1), resulting in a total of 320 datasets. For each dataset we 

ran the MLE algorithm to convergence, and quantified the difference between the estimated 

parameters (𝜃𝜃) with true values (𝜃𝜃∗) with percent error (𝑒𝑒), defined as 𝑒𝑒 = (𝜃𝜃 − 𝜃𝜃∗) 𝜃𝜃∗⁄ . We 

summarized the percent errors from all the simulations for each true value (Figure S2). Regardless 

of the true values for 𝑠𝑠, 𝜇𝜇, 𝜅𝜅, the majority of the percent errors of all simulations were contained 

within 20% (|𝑒𝑒| < 0.2). Greater variation of 𝑒𝑒 were observed when the true values were very small 

(0.01). As the true values increased to 0.1 or 1, nearly all percent errors were contained within 10% 

(|𝑒𝑒| < 0.1). We note that the estimated 𝜅𝜅 (rate of H3K4me3 switch) from real data was much 

larger than 0.1 (Table S2), and thus in the range where the estimated values nearly always converge 

to true values.      

Next, we tested the capability of identifying the underlying model by comparison of likelihood 

functions. We generated 5 datasets (columns, Figure S3) under each hypothesis (Hypothesis M, N, 

I, or B, Figure S3), resulting in a total of 20 datasets. For each dataset, we computed the likelihood 

using every model (Model M, N, I, or B), resulting in four computed likelihoods (four dots in each 

column, Figure S3). In all simulation datasets, the model that resulted in the largest likelihood 

corresponded to the actual hypothesis from which the data were generated, suggesting that the true 

model corresponding the correct hypothesis could be identified by likelihood comparisons.  

Rates of sequence changes and H3K4me3 change between humans and rhesus 

monkeys 

Our overriding question is whether interspecies changes of histone modifications depend on 

genomic sequence changes, and whether such dependence is invariant in the entire genome. 

Toward this goal, we used H3K4me3 changes in primate spermatids as a testbed system. We 

approached the above question with two major steps. First, we estimated sequence change rates 

and H3K4me3 change rate, and assessed the sensitivity of these estimates to model assumptions 

and to data processing procedure. We retrieved public epigenomic data from rhesus macaque and 

human in round spermatids (GSE68507) [28]. We estimated the sequence change rates (𝑠𝑠, 𝜇𝜇) and 

H3K4me3 change rate (𝜅𝜅) from each of the four models. We will not separately provide 𝜆𝜆 in results 

because 𝜆𝜆 is determined by homologous sequence lengths and 𝜇𝜇 [4]. Our estimation of  𝑠𝑠, 𝜇𝜇, and 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/293076doi: bioRxiv preprint 

https://doi.org/10.1101/293076
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
13 

𝜅𝜅 were based on the union of H3K4me3 marked regions [28] and all DNase hypersensitive regions 

from 95 human cell lines [34], that was a total of 2,824,711 homologous genomic regions. The 

four models yielded nearly the same estimates for each parameter, where sequence substitution 

rate 𝑠𝑠 was approximately 0.07, deletion rate 𝜇𝜇 was approximately 0.04, and H3K4me3 change rate 

𝜅𝜅 was approximately 0.75 (Table S2). Executing the MLE algorithm 3 times with different initial 

values converged to nearly the same estimated values. These values are in line with the reports of 

large amounts of interspecies histone modification changes on homologous sequences, in the same 

cell type [35]. To assess the sensitivity of these estimates, we re-estimated the parameters with 

randomly sampled subsets of the homologous genomic regions (Table S2), and also with re-

defined peak regions by applying different thresholds in ChIP-seq peak calling (Table S3). The 

estimated parameters by large were insensitive to these alternations, with an expected exception 

that 𝜅𝜅 exhibited a modest decrease when stringency for peaking calling drastically increased. This 

is because when few peaks were called from either species (q-value = 0.001, Table S3), the histone 

modification would not appear to change (no modification in either species).         

Epigenome-to-genome dependency in evolution is not uniform across the 

genome 

Next, we compared the four evolutionary hypotheses on every homologous sequence pair and 

derived a genome-wide catalogue of the correspondence between genomic region and the best fit 

evolutionary model. Nearly the entire mappable portion of the human genome (effective genome) 

has homologous sequence in rhesus macaque genome. Approximately 5.5% of the homologous 

sequences were covered by H3K4me3 peaks in either species, accounting for 132,294 homologous 

pairs. For every pair, we computed the likelihood under each of the four models, and classified 

each homologous pair to one of the models according to the largest likelihood. A total of 73% of 

homologous pairs were classified to Model M, I, or B, where histone modification variation is 

dependent of DNA sequence changes (Figure 3A). The majority of these homologous pairs were 

classified to Model B, where histone modification variation is dependent of both sequence 

mutation and indel. On the other hand, a total of 27% of homologous pairs were classified with 

Model N, where histone modification variation does not depend on DNA sequence changes. These 

data are in line with an idea that the evolutionary changes of the genome may not completely 

determine all evolutionary changes of the epigenome.  
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Separating contributions of mutations and indels to epigenome-to-genome 

dependence 

We asked whether sequence mutation or indel better accounts for epigenome-to-genome 

dependence in evolution. Toward this goal, we derived two metrics 𝑟𝑟𝑚𝑚𝑚𝑚𝑝𝑝 and 𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖 to quantify the 

degrees of dependence of histone changes on mutations and on indels, respectively (Methods). 

These metrics were derived from a variation of likelihood-ratio test, where 𝑟𝑟𝑚𝑚𝑚𝑚𝑝𝑝  quantifies the 

overall fit of a homologous pair to Models N or I (independent of mutations) versus to Models M 

or B (mutation dependent), and 𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖 quantifies the overall fit to Models N or M (independent of 

indels) versus to Models I or B (indel dependent). We quantified 𝑟𝑟𝑚𝑚𝑚𝑚𝑝𝑝  and 𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖  for every 

homologous pair, and used a scatterplot to visualize the degrees of H3K4me3-to-mutation 

dependence (𝑟𝑟𝑚𝑚𝑚𝑚𝑝𝑝, y axis) and H3K4me3-to-indel dependence (𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖, x axis, Figure 3B) of all the 

analyzed homologous pairs (132,294 in total). Overall, the homologous pairs exhibited greater 

variations of 𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖  than 𝑟𝑟𝑚𝑚𝑚𝑚𝑝𝑝 . The majority of homologous pairs exhibited 𝑟𝑟𝑚𝑚𝑚𝑚𝑝𝑝  close to 0, for 

example 110,400 (83%) homologous pairs exhibited |𝑟𝑟𝑚𝑚𝑚𝑚𝑝𝑝| < 0.004. Data of these homologous 

pairs cannot clearly infer H3K4me3-to-mutation dependence. A greater number of homologous 

pairs exhibited non-zero 𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖 , including 8,965 homologous pairs with 𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖  > 0.01, in which 

H3K4me3 changes are likely attributable to indels. Nearly no homologous pair exhibited 

H3K4me3 variation that is solely depend mutation (2nd quadrant, Figure 3B), and in some 

homologous pairs neither mutation or indel appeared to relate to interspecies variation of 

H3K4me3 (3rd quadrant in Figure 3B, Figure S4).  

Contribution of transposon induced indels to DNA-dependent H3K4me3 

changes 

We asked to whether indels induced by different transposon families exhibit similar impacts to 

interspecies variation of epigenome. To this end, we first classified species-specific transposon 

insertions into three groups, that are with no change to H3K4me3 (conserved peak), transposon 

insertion together with addition (transposon-induced peak) or removal (transposon-disrupted peak) 

of H3K4me3 (Figure 4A). Next, for each group we identified the number of contributing 

transposons from every transposon family.  
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A total of 3,415 homologous pairs exhibited evidence (𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖 < −0.02) of H3K4me3 variation being 

independent of DNA changes, of which 330 (9.7%) contained species-specific transposons. 

Among these species-specific transposons that do not appear to interfere with H3K4me3, the 

endogenous retrovirus 1 (ERV1) family of long terminal repeats (LTR) was the most abundant 

transposon family, accounting for 143 (43%) of the conserved peaks (Figure 4B). This trend did 

not change when we altered the threshold into 𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖 < −0.04 (Figure S5). 

A total of 8,965 homologous pairs exhibited evidence (𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖 > 0.01) of DNA-dependent H3K4me3 

changes, including 975 homologous pairs with transposon-induced peaks, and 631 homologous 

pairs with transposon-disrupted peaks. The ERV1 family was the most abundant transposon family 

with transposon-induced peaks, accounting for 598 (61%) of all transposon-induced peaks (Figure 

4C). This trend did not change when we altered the threshold into 𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖 > 0.025 (Figure S5). The 

promoter region of the SLC30A8 gene is an example in case (Figure 4E). This promoter region 

harbors two homologous pairs, with one in the upstream regions of human and macaque 

transcription start sites (pink regions, Figure 4E) and the other in the downstream of TSSs in both 

species (orange regions, Figure 4E). An ERV1 transposon was inserted in the human upstream 

region, on which is a clear H3K4me4 peak, whereas the macaque upstream region did not contain 

the ERV1 sequence and did not exhibit H3K4me3 (pink regions, Figure 4E). Furthermore, another 

ERV1 sequence was inserted in the downstream region in macaque, where H3K4me3 was installed, 

whereas the human homologous sequence did not have the ERV1 sequence and did not harbor any 

H3K4me3 peak (orange regions, Figure 4E).  

Unlike transposon-induced peaks that were primarily concentrated to ERV1, transposon-disrupted 

peaks were contributed from a larger variety of transposons, including L1, ERV1, ERVK, simple 

repeat, L2, and ERVL-MaLR (Figure 4D). The L1 family was most abundant in this group, 

accounting for 265 (42%) of all transposon-disrupted peaks (Figure 4D). This trend did not change 

when we altered the threshold to 𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖 > 0.025 (Figure S5). A case in point is at the ZNF630-AS1 

promoter, where a L1 transposon (a, Figure S6) was inserted specifically in the macaque promoter 

between two ERVL-MaLR family repeats (b, c, Figure S6), which was coupled with disappearance 

of H3K4me3. In summary, ERV1, L1, L2, ERVK, ERVL, simple repeat, SVA, and ERVL-MaLR 

are the most abundant transposons near H3K4me3 peaks. Transposon-induced peaks were most 

strongly associated with, and transposon-disrupted peaks were most strongly associated with L1 
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transposons.  

Discussion 

In parallel to the plethora of evidence on DNA-dependent installation and removal of histone 

modifications, a smaller but increasing amount of data suggest trans-generation DNA-independent 

inheritance of histone modifications [32, 33]. It remains unclear how many generations could 

DNA-independent epigenetic inheritance endure, or more importantly whether it is preserved in 

evolutionary timescale. By initiating probabilistic models of epigenome-genome evolution, this 

work begins to offer a quantitative framework to address the above question. Future developments 

of epigenome-genome evolution models may begin to address questions including whether any 

evolutionary selection acts on the epigenome independently of the genome, and whether any 

selection forces were received jointly by genome and epigenome. Therefore, we anticipate 

integrated analyses of genome-epigenome data to expand the domain of evolutionary biology, and 

the development and deployment of epigenome-genome evolution models to be essential for this 

expansion. 

We foresee a number of improvements to this initial attempt of modeling. First, in this work we 

have only considered binary states of histone modifications. To remove this assumption, 𝑎𝑎ℎ,𝑘𝑘
′  and 

𝑏𝑏ℎ,𝑘𝑘
′  can be allowed to take any finite discrete numbers, in which case the form of Equation (4) 

does not change and hence the forms of the rest of the models do not change. Second, the 

conditional independence assumption can be removed. To model the dependent changes of two 

histone modifications, for example H3K4me2 and H3K4me3, the two modifications can be coded 

with the same index (ℎ) and let 𝑎𝑎ℎ,𝑘𝑘
′  and 𝑏𝑏ℎ,𝑘𝑘

′  to take the following form: 

 𝑎𝑎ℎ,𝑘𝑘
′ ,𝑏𝑏ℎ,𝑘𝑘

′ = �

0 ,
1 ,
2 ,
3 ,

        

H3K4me2 = 0, H3K4me3 = 0
H3K4me2 = 1, H3K4me3 = 0
H3K4me2 = 0, H3K4me3 = 1
H3K4me2 = 1, H3K4me3 = 1

 (25). 

 

Transposon insertions were associated with gains and losses of H3K4me3 peaks. While H3K4me3 

losses were associated with a variety of transposon families, H3K4me3 gains were enriched with 

the ERV1 family of transposons. The latter may be a result of species-specific recruitment of 
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transcription factors. In line with this idea, ERV1 was the most notable transposon family involved 

in species-specific binding of pluripotency regulators OCT4 and NANOG in embryonic stem cells 

[36]. Our de novo motif search revealed a total of 31 DNA motifs that were enriched in ERV1 

transposons as compared to other LTRs (Homer p-value < 10-40), where the most significant motifs 

resembled the binding motifs of NFYB (a.k.a. CCAAT box, Homer p-value < 10-94), HOXC13 (p-

value < 10-90), BARX1 (p-value < 10-89), and LIN28A (p-value < 10-84). According to gene 

expression data of 37 human tissues from Genotype-Tissue Expression (GTEx) [37] and Human 

BodyMap 2.0 that were normalized and visualized by Genecards (www.genecards.org), Nfyb was 

expressed in nearly all human tissues, whereas Hoxc13, Barx1, and Lin28a were all most strongly 

expressed in testis. Lin28a exhibited 10 times greater expression in testis than in any other analyzed 

human tissues. The CCAAT box is capable of recruiting ASH2L, a component of the MLL histone 

methyltransferase complex responsible for H3K4 methylation [38]. These data suggest a model 

for ERV1 mediated induction of species-specific H3K4me3 in spermatids. ERV1 harbors binding 

motifs of testis-expressed transcription factors as well as the CCAAT box. Species-specific ERV1 

sequences recruit testis-induced HOXC13, BARX1, LIN28A that help to recruit NFYB and the 

MLL complex, which in turn establish species-specific H3K4me3 peaks (Figure S7). Finally, the 

human-specific and macaque-specific insertions of two copies of ERV1 appeared to have induced 

H3K4me3 in respective insertion regions, near the Slc30a8 promoter in both species (Figure 4E), 

providing a potential example of convergent evolution mediated by species-specific transposon 

insertions.        

Methods 

Maximum likelihood estimates 

The MLE of 𝜋𝜋 and 𝜑𝜑 are calculated by frequency estimates. Due to the relationship 𝜆𝜆 = 𝜇𝜇×(𝑠𝑠𝐴𝐴+𝑠𝑠𝐵𝐵)
𝑠𝑠𝐴𝐴+𝑠𝑠𝐵𝐵+2

 

[4], the MLE of 𝜆𝜆 is determined as long as the MLE of 𝜇𝜇 is determined. Evolutionary time 𝑝𝑝 is set 

to 1. The remaining parameters 𝜇𝜇, 𝑠𝑠, and 𝑘𝑘, collectively denoted as 𝜃𝜃, are obtained by minimizing 

the negative log-likelihood function, 
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 𝑙𝑙(𝜃𝜃|𝐴𝐴,𝐵𝐵) = −ln 𝑝𝑝(𝐴𝐴,𝐵𝐵|𝜃𝜃) (26). 

We used simplex downhill algorithm for this optimization. In each iteration, a number of new 

parameter sets 𝜃𝜃new were generated. The algorithm iteratively evaluated each 𝑙𝑙(𝜃𝜃new|𝐴𝐴,𝐵𝐵) and 

compared it with 𝑙𝑙(𝜃𝜃old|𝐴𝐴,𝐵𝐵)  to select the best one, until the minimum was achieved. We 

developed a dynamic program algorithm to evaluate 𝑙𝑙(𝜃𝜃|𝐴𝐴,𝐵𝐵) for each model.   

Dynamic programming algorithms 

Model I and Model B 

The dynamic programming algorithm was implemented following the idea described in [39], 

which was a simplification of the procedure described in [4]. This procedure has been shown to 

vastly reduce the runtime of the algorithm. Since 𝑃𝑃(𝐴𝐴,𝐵𝐵) = 𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵|𝐴𝐴) , and 𝑃𝑃(𝐴𝐴)  can be 

directly computed, only the computation of 𝑃𝑃 (𝐵𝐵|𝐴𝐴) requires dynamic programming. Denote the 

(𝑠𝑠𝐴𝐴 + 1) × (𝑠𝑠𝐵𝐵 + 1)  matrix in the dynamic programming algorithm by 𝐿𝐿 , 𝐿𝐿  was computed 

following rules listed below. 

Boundary conditions 

 𝐿𝐿0,0 = 𝑝𝑝1′′(𝑝𝑝) (27) 

 𝐿𝐿𝑚𝑚,0 =  𝑝𝑝1′′(𝑝𝑝) 𝑝𝑝0′ (𝑝𝑝)𝑚𝑚 (28) 

 𝐿𝐿0,𝑛𝑛 = 𝑝𝑝𝑛𝑛+1′′ (𝑝𝑝)��𝜋𝜋𝑏𝑏0,𝑖𝑖�𝜋𝜋𝑏𝑏ℎ,𝑖𝑖 
ℎ

𝐻𝐻

ℎ=1

�
𝑛𝑛

𝑖𝑖=1

 (29) 
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Recursive procedure 

 

𝐿𝐿𝑚𝑚,𝑛𝑛 = 𝑝𝑝0′ (𝑝𝑝)𝐿𝐿𝑚𝑚−1,𝑛𝑛 + 𝜆𝜆𝜆𝜆𝜋𝜋𝑏𝑏0,𝑛𝑛 ��𝜋𝜋𝑏𝑏ℎ,𝑛𝑛
ℎ

𝐻𝐻

ℎ=1

� 𝐿𝐿𝑚𝑚,𝑛𝑛−1

+ �𝑓𝑓𝑝𝑝0,𝑚𝑚,𝑏𝑏0,𝑛𝑛(𝑝𝑝)𝑝𝑝1(𝑝𝑝)�𝐺𝐺�𝑎𝑎ℎ,𝑚𝑚, 𝑏𝑏ℎ,𝑛𝑛,𝑎𝑎0,𝑚𝑚, 𝑏𝑏0,𝑛𝑛�
𝐻𝐻

ℎ=1

+ �𝑝𝑝1′ (𝑝𝑝) − 𝜆𝜆𝜆𝜆𝑝𝑝0′ (𝑝𝑝)�𝜋𝜋𝑏𝑏0,𝑛𝑛�𝜋𝜋𝑏𝑏ℎ,𝑛𝑛
ℎ

𝐻𝐻

ℎ=1

� 𝐿𝐿𝑚𝑚−1,𝑛𝑛−1  

(30) 

All of the functions 𝑝𝑝, 𝑝𝑝′,𝑝𝑝′′ are given by [4]. For Model I, the term 𝐺𝐺�𝑎𝑎ℎ,𝑚𝑚, 𝑏𝑏ℎ,𝑛𝑛,𝑎𝑎0,𝑚𝑚, 𝑏𝑏0,𝑛𝑛� is 

𝑔𝑔𝑝𝑝ℎ,𝑚𝑚,𝑏𝑏ℎ,𝑛𝑛
(𝑝𝑝). For Model B, the term is the same as for Model I on matched bases, while it becomes 

𝜋𝜋𝑏𝑏ℎ,𝑛𝑛
ℎ  on mismatches. 

Model N and Model M 

The dynamic programming algorithm was implemented using a similar idea as for Model I and B, 

except that the computation of 𝑃𝑃(𝐴𝐴ℎ) became part of the recursive procedure, and the function 𝐺𝐺 

changed. Given equations (13) and (14) in the main text: 

𝛷𝛷𝐵𝐵�𝑎𝑎ℎ,𝑘𝑘
′ � = 𝜑𝜑𝐵𝐵0ℎ 𝑔𝑔0,𝑝𝑝ℎ,𝑘𝑘

′ (𝑝𝑝) + 𝜑𝜑𝐵𝐵1ℎ 𝑔𝑔1,𝑝𝑝ℎ,𝑘𝑘
′ (𝑝𝑝) 

𝛷𝛷𝐴𝐴�𝑏𝑏ℎ,𝑘𝑘
′ � = 𝜑𝜑𝐴𝐴0ℎ 𝑔𝑔0,𝑏𝑏ℎ,𝑘𝑘

′ (𝑝𝑝) + 𝜑𝜑𝐴𝐴1ℎ 𝑔𝑔1,𝑏𝑏ℎ,𝑘𝑘
′ (𝑝𝑝) 

The matrix 𝐿𝐿 was computed following rules listed below. 

Boundary conditions 

 𝐿𝐿0,0 = 𝑝𝑝1′′(𝑝𝑝) (31) 
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 𝐿𝐿𝑚𝑚,0 =  𝑝𝑝1′′(𝑝𝑝) 𝑝𝑝0′ (𝑝𝑝)𝑚𝑚�𝛷𝛷𝐵𝐵�𝑎𝑎ℎ,0� 
𝐻𝐻

ℎ=1

 (32) 

 𝐿𝐿0,𝑛𝑛 = 𝑝𝑝𝑛𝑛+1′′ (𝑝𝑝)��𝜋𝜋𝑏𝑏0,𝑖𝑖�𝛷𝛷𝐴𝐴�𝑏𝑏ℎ,0�
𝐻𝐻

ℎ=1

�  
𝑛𝑛

𝑖𝑖=1

 (33) 

Recursive procedure 

 

𝐿𝐿𝑚𝑚,𝑛𝑛 = 𝑝𝑝0′ (𝑝𝑝)��𝛷𝛷𝐵𝐵�𝑎𝑎ℎ,𝑚𝑚�
𝐻𝐻

ℎ=1

� 𝐿𝐿𝑚𝑚−1,𝑛𝑛 + 𝜆𝜆𝜆𝜆𝜋𝜋𝑏𝑏0,𝑛𝑛 ��𝛷𝛷𝐴𝐴�𝑏𝑏ℎ,𝑛𝑛�
𝐻𝐻

ℎ=1

� 𝐿𝐿𝑚𝑚,𝑛𝑛−1

+ �𝑓𝑓𝑝𝑝0,𝑚𝑚,𝑏𝑏0,𝑛𝑛(𝑝𝑝)𝑝𝑝1(𝑝𝑝)�𝜋𝜋𝑝𝑝ℎ,𝑚𝑚 
ℎ 𝑔𝑔𝑝𝑝ℎ,𝑚𝑚,𝑏𝑏ℎ,𝑛𝑛

(𝑝𝑝) 
𝐻𝐻

ℎ=1

+ �𝑝𝑝1′ (𝑝𝑝) − 𝜆𝜆𝜆𝜆𝑝𝑝0′ (𝑝𝑝)�𝜋𝜋𝑏𝑏0,𝑛𝑛�𝛷𝛷𝐴𝐴�𝑏𝑏ℎ,𝑛𝑛�𝛷𝛷𝐵𝐵�𝑎𝑎ℎ,𝑚𝑚�
𝐻𝐻

ℎ=1

� 𝐿𝐿𝑚𝑚−1,𝑛𝑛−1  

(34) 

The term 𝐺𝐺�𝑎𝑎ℎ,𝑚𝑚, 𝑏𝑏ℎ,𝑛𝑛,𝑎𝑎0,𝑚𝑚, 𝑏𝑏0,𝑛𝑛� is 𝑔𝑔𝑝𝑝ℎ,𝑚𝑚,𝑏𝑏ℎ,𝑛𝑛
(𝑝𝑝) for Model N (same as Model I). The term for 

Model M is the same as for Model N on matched bases, while it becomes 𝜋𝜋𝑏𝑏ℎ,𝑛𝑛
ℎ  on mismatches 

(same as Model B). 

Generating simulation datasets 

In the simulation test, we used only one histone modification. The equilibrium probabilities were 

set to 𝜋𝜋𝛢𝛢 = 𝜋𝜋𝐶𝐶 = 𝜋𝜋𝐺𝐺 = 𝜋𝜋𝑇𝑇 = 0.25, 𝜋𝜋0 = 0.9,𝜋𝜋1 = 0.1. The simulation data contains 100 500-

base-long sequence pairs unless otherwise specified. 

Model I and Model B 

The simulation data was generated based on the corresponding hypotheses of models. The ancestor 

was first generated by drawing bases and histone modification states randomly based on the 

equilibrium probabilities. For each link in the ancestral sequence, the number of its descendent 

link was drawn from the following distribution:  
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Immortal link 

Assume that random variable 𝑛𝑛 represents the number of descendent links of an immortal link. 𝑛𝑛 

follows the distribution: 

 𝑃𝑃(𝑛𝑛) = 𝑒𝑒−𝜇𝜇𝑝𝑝[1 − 𝜆𝜆𝜆𝜆(𝑝𝑝)][𝜆𝜆𝜆𝜆(𝑝𝑝)]𝑛𝑛−1 (35) 

Normal link 

Assume that the random variable 𝑛𝑛 represents the number of descendent links of a normal link. 𝑛𝑛 

follows the distribution: 

 𝑃𝑃(𝑛𝑛) = �
𝜇𝜇𝜆𝜆(𝑝𝑝) , the original link is alive, 𝑛𝑛 = 0 

[1− 𝑒𝑒−𝜇𝜇𝑝𝑝 − 𝜇𝜇𝜆𝜆(𝑝𝑝)][1 − 𝜆𝜆𝜆𝜆(𝑝𝑝)][𝜆𝜆𝜆𝜆(𝑝𝑝)]𝑛𝑛−1 ,  the original link is alive, 𝑛𝑛 > 0
[1− 𝜆𝜆𝜆𝜆(𝑝𝑝)][𝜆𝜆𝜆𝜆(𝑝𝑝)]𝑛𝑛−1 , the original link is dead, 𝑛𝑛 > 0

 (36) 

where 𝜆𝜆(𝑝𝑝) = 1−𝑚𝑚(𝜆𝜆−𝜇𝜇)𝑡𝑡

𝜇𝜇−𝜆𝜆𝑚𝑚(𝜆𝜆−𝜇𝜇)𝑡𝑡. 

On insertions, the bases and histone modification states were drawn based on the equilibrium 

probabilities. On matches, the bases and histone modification states were determined based on the 

substitution probabilities. On mismatches, the bases and histone modification states were also 

determined based on the substitution probabilities for Model I, while they were drawn based on 

the equilibrium probabilities for Model B. 

Model N and Model M 

For each region pair, the ancestral sequence was first generated by drawing bases randomly based 

on the equilibrium probabilities. Local equilibrium probabilities 𝜑𝜑0ℎ,𝜑𝜑1ℎ were drawn from a beta 

distribution 𝐵𝐵 (1.5, 1.5(1−𝜋𝜋1)
𝜋𝜋1

)  and assigned to the ancestral region. After that, the path was 

determined using equation (35) and (36). On insertions, the descendent nucleotides were drawn 

based on the equilibrium probabilities, and the histone modification states were drawn based on 

the local equilibrium probabilities. On matches, the bases and histone modification states were 

determined based on the substitution probabilities. On mismatches, the bases and histone 
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modification states were also determined based on the substitution probabilities for Model N, while 

they were drawn based on the equilibrium probabilities for Model M. 

Analysis of human and rhesus macaque H3K4me3 ChIP-Seq data 

We first fitted the four models and obtained MLE from each model. Our training set consisted of 

a set of homologous region pairs that were potentially marked by H3K4me3. These regions were 

identified by merging three types of regions: (1) The DNase I hypersensitivity peak clusters 

derived from 95 human cell lines[34], as cis-regulatory elements marked by histone modifications 

are usually hypersensitive to DNase I; (2) H3K4me3 peak regions identified from the human RS 

H3K4me3 ChIP-Seq data using MACS2 [40]; (3) H3K4me3 peak regions identified from the 

macaque RS H3K4me3 ChIP-Seq data. The merged regions were remapped to rhesus macaque’s 

genome using liftOver [41] to find their homologous regions, which yielded 2,824,711 region pairs. 

After that, 8,000 region pairs were randomly sampled for parameter estimation to reduce the 

runtime of our MLE program. We always started from two initial guesses to avoid local minima. 

All estimated parameters converged to the same values regardless of initial guesses, showing that 

the global minima of the negative log-likelihood functions were achieved. We randomly sampled 

the data for three times, and the estimated parameters remained nearly the same with coefficient 

of variation smaller than 0.05, showing that the data sampling didn’t lead to biases to estimated 

parameters (Table S2).  

To assess to what extent the MLE was sensitive to peak calling results, we also conducted 

parameter estimation with Model I and B using two other q-value cutoffs for MACS2 peak calling. 

None of the parameters changed vastly as the q-value changed, showing that the parameter 

estimation process was not very sensitive to peak calling results (Table S3). 

ChIP-Seq data pre-processing 

ChIP-Seq datasets were mapped to human genome assembly hg38 and rhesus macaque genome 

assembly rheMac8 using bowtie2 with default settings. Duplicated reads and reads with MAPQ<6 

were then removed from the data. Peaks were identified using MACS2 with the “broadpeak” 

option.  
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Sensitivity test of MACS2 q-value threshold 

We used three different q-value thresholds when using MACS2 to identify peaks to test the 

sensitivity of our models to MACS2 q-values. As the q-value cutoff decreased, fewer peaks were 

detected from the data, leading to decreased equilibrium probability 𝜋𝜋1 . Among the three 

parameters, 𝑠𝑠  and 𝜇𝜇  remained identical regardless of the cutoff used, as the two parameters 

described changes of DNA sequences and wouldn’t change as long as the sequences were unaltered. 

On the other hand, 𝜅𝜅  decreased slightly as the cutoff decreased, which was because the data 

became more conserved when fewer peaks were identified. The results are shown in Table S3. 

Generating candidate regions for parameter estimation and model competition 

Peak regions identified in rhesus macaque RS H3K4me3 ChIP-Seq data were first remapped to 

human genome using liftOver with minMatch=0.5. For parameter estimation, three files: (1) The 

DNase I hypersensitivity peak clusters derived from 95 human cell lines; (2) H4K3me3 peaks 

identified in the human RS H3K4me3 ChIP-Seq data; (3) remapped H3K4me3 peaks identified in 

the macaque RS H3K4me3 ChIP-Seq data were merged. The merge regions were trimmed to no 

longer than 500bp, and remapped to rhesus macaque genome using liftOver with minMatch=0.5 

to find their homologous regions. After that, the H3K4me3 ChIP-Seq data was distributed to these 

region pairs based on the identified peak regions. Finally, 8,000 regions were randomly sampled 

for parameter estimation.  

For region classification, only human and rhesus H3K4me3 peaks were merged. The merged 

regions were trimmed to no longer than 2,000bp, and remapped to rhesus genome using liftOver 

with minMatch=0.1. Remapped regions with less than 90% realigned successfully were extended 

to the length of the original ones. The H3K4me3 ChIP-Seq data was then distributed to these region 

pairs based on the identified peak regions. 

Classification of H3K4me3 peak regions in human and rhesus macaque 

With the estimated parameters, we focused on H3K4me3 peak regions identified from human and 

rhesus macaque RS ChIP-Seq data to test the effects of sequence changes on epigenomic changes. 

Among all sequences in the human genome with homologous sequences in rhesus macaque, 

around 5.5% showed H3K4me3 in either species. These peak regions were merged together, 

trimmed to no longer than 2,000bp, and remapped to find their homologous regions, which yielded 
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132,294 region pairs. For each homologous pair, four likelihoods were obtained using the four 

models, leading to a 132,294 by 4 likelihood matrix. Each homologous pair was categorized to 

one model by the largest likelihood.  

Separating evolutionary impacts of sequence mutations and indels  

We leveraged the four models to evaluate the relative impacts on interspecies epigenomic 

variations from mutations and that from indels. By integrating out mutation’s impacts from the 

probabilities models, we obtained the overall impacts of indels, and vice versa. We introduce the 

binary variable 𝑚𝑚𝑚𝑚𝑝𝑝 to indicate independence 𝑚𝑚𝑚𝑚𝑝𝑝 = 0 and dependence 𝑚𝑚𝑚𝑚𝑝𝑝 = 1 to mutations, 

and binary variable 𝑖𝑖𝑛𝑛𝑎𝑎  to indicate independence of dependence to indels. The probability of 

observing a region pair given 𝑚𝑚𝑚𝑚𝑝𝑝 or 𝑖𝑖𝑛𝑛𝑎𝑎 can be expressed as a combination of likelihoods yielded 

by different models:  

 
𝑃𝑃(𝐴𝐴,𝐵𝐵|𝑚𝑚𝑚𝑚𝑝𝑝 = 0) = � 𝑃𝑃(𝐴𝐴,𝐵𝐵, 𝑖𝑖𝑛𝑛𝑎𝑎|𝑚𝑚𝑚𝑚𝑝𝑝 = 0)

𝑖𝑖𝑛𝑛𝑖𝑖
= � 𝑃𝑃(𝐴𝐴,𝐵𝐵|𝑖𝑖𝑛𝑛𝑎𝑎,𝑚𝑚𝑚𝑚𝑝𝑝 = 0)𝑃𝑃(𝑖𝑖𝑛𝑛𝑎𝑎)

𝑖𝑖𝑛𝑛𝑖𝑖
 

= 𝑎𝑎𝑃𝑃𝑁𝑁(𝐴𝐴,𝐵𝐵) + (1 − 𝑎𝑎)𝑃𝑃𝐼𝐼(𝐴𝐴,𝐵𝐵) 

(37) 

 (38) 

The coefficient 𝑎𝑎 was estimated using the frequency of regions within which epigenomic changes 

are independent to indels. Similarly, we also have  

 𝑃𝑃(𝐴𝐴,𝐵𝐵|𝑚𝑚𝑚𝑚𝑝𝑝 = 1) = 𝑎𝑎𝑃𝑃𝑀𝑀(𝐴𝐴,𝐵𝐵) + (1 − 𝑎𝑎)𝑃𝑃𝐵𝐵(𝐴𝐴,𝐵𝐵) 

𝑃𝑃(𝐴𝐴,𝐵𝐵|𝑖𝑖𝑛𝑛𝑎𝑎 = 0) = 𝑏𝑏𝑃𝑃𝑁𝑁(𝐴𝐴,𝐵𝐵) + (1 − 𝑏𝑏)𝑃𝑃𝑀𝑀(𝐴𝐴,𝐵𝐵) 

𝑃𝑃(𝐴𝐴,𝐵𝐵|𝑖𝑖𝑛𝑛𝑎𝑎 = 1) = 𝑏𝑏𝑃𝑃𝐼𝐼(𝐴𝐴,𝐵𝐵) + (1 − 𝑏𝑏)𝑃𝑃𝐵𝐵(𝐴𝐴,𝐵𝐵) 

(39) 

 (40) 

 (41) 

The coefficient 𝑏𝑏 was estimated using the frequency of regions within which epigenomic changes 

are independent to mutations.  

We proposed two normalized likelihood ratios, 𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖 and 𝑟𝑟𝑚𝑚𝑚𝑚𝑝𝑝 to assess the effect of indels and 

mutations:   
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 𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖 =
𝑙𝑙(𝑖𝑖𝑛𝑛𝑎𝑎 = 1) − 𝑙𝑙(𝑖𝑖𝑛𝑛𝑎𝑎 = 0)

|𝑙𝑙(𝑖𝑖𝑛𝑛𝑎𝑎 = 1) + 𝑙𝑙(𝑖𝑖𝑛𝑛𝑎𝑎 = 0)|
, 𝑟𝑟𝑚𝑚𝑚𝑚𝑝𝑝 =

𝑙𝑙(𝑚𝑚𝑚𝑚𝑝𝑝 = 1) − 𝑙𝑙(𝑚𝑚𝑚𝑚𝑝𝑝 = 0)
|𝑙𝑙(𝑚𝑚𝑚𝑚𝑝𝑝 = 1) + 𝑙𝑙(𝑚𝑚𝑚𝑚𝑝𝑝 = 0)|

 (42) 

where 𝑙𝑙(𝑖𝑖𝑛𝑛𝑎𝑎) = log𝑃𝑃(𝐴𝐴,𝐵𝐵|𝑖𝑖𝑛𝑛𝑎𝑎) , 𝑙𝑙(𝑚𝑚𝑚𝑚𝑝𝑝) = log𝑃𝑃 (𝐴𝐴,𝐵𝐵|𝑚𝑚𝑚𝑚𝑝𝑝) . 𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖  and 𝑟𝑟𝑚𝑚𝑚𝑚𝑝𝑝  represented the 

dependency of epigenomic changes on indels and mutations. The extent of independence increased 

as the ratios increased. 

Searching for species-specific transposon insertions 

We first selected 789 indel-independent regions with  𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖 > 0.04 and 1,441 indel-dependent 

regions with 𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖 < −0.025 for transposon analysis. We downloaded RepeatMasker files for hg38 

and rheMac8 as transposon annotations. For each region pair, transposons longer than 500bp 

within the two regions were compared. Transposons with the same family, class and name were 

removed to keep species-specific transposon insertions. Regions with either human-specific or 

macaque-specific transposon insertions were kept and classified into three categories: conserved 

peak regions, transposon-induced peak regions and transposon-disrupted peak regions. Families 

and classes of species-specific transposon insertions were then summarized in each category. This 

analysis was repeated with 3,416 indel-independent regions with  𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖 > 0.02 and 8,966 indel-

dependent regions with 𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖 < −0.01. 

Motif analysis 

Sequence motifs were identified within 589 LTR-ERV1 transposons found in the 598 transposon-

induced peaks with 𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖 > 0.01 (target transposons). All LTR transposons in the ERV1 family 

longer than 500bp were used as background (background transposons). The De novo motif 

discovery was performed using Homer [39] with default parameters.  
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Figure Legends 
Figure 1. Data types and annotations. A pair of homologous sequences (𝐴𝐴0,𝐵𝐵0) are aligned, 

where −, | (black) and | (red) are indels, matches and mismatches, respectively. Base locations on 

each original sequence are indexed by 𝑚𝑚  and 𝑛𝑛  (indices on sequence). Base locations after 

sequence alignment are indexed by 𝑘𝑘 (indices on path). Peak regions of two histone modifications 

𝐴𝐴1, 𝐵𝐵1, and 𝐴𝐴2, 𝐵𝐵2 are shown as yellow and blue bands, respectively. A given histone modification 

on a given sequence, for example 𝐴𝐴1, is recorded by binary values on each base, with 1 being 

inside a peak and 0 being outside the peaks. Insert: notations and values of a specific position. On 

the 8th position of sequence 𝐴𝐴0, the base is A (𝑎𝑎0,𝑚𝑚=8 = A). This base becomes the 9th base after 

alignment (𝑎𝑎0,𝑘𝑘=9
′ = A). This base is inside a peak of the first (yellow) histone modification 

(𝑎𝑎ℎ=1,𝑚𝑚=8 = 1) but outside any blue peaks (𝑎𝑎ℎ=2,𝑚𝑚=8 = 0). If we use the base index after sequence 

alignment (𝑘𝑘), that include indels, the above notations and values become 𝑎𝑎1,𝑘𝑘=9
′ = 1 and 𝑎𝑎2,𝑘𝑘=9

′ =

0.   

 

Figure 2. Dependency structures reflecting different evolutionary hypotheses. (A) 

Interspecies changes of the ℎP

th histone modification (𝐴𝐴ℎ → 𝐵𝐵ℎ) depend on genomic sequence 

changes (𝐴𝐴0 → 𝐵𝐵0). (B) Interspecies epigenomic changes do not depend on sequence changes. (C) 

A 2×2 table summarizing assumed dependencies to specific types of sequence changes in each 

model. Upper (bottom) row: models assuming independence (dependence) of sequence mutations. 

Left (right) column: models assuming independence (dependence) of sequence indels.  

 

Figure 3. Classifications of homologous genomic regions into four models. (A) Proportions of 

human-macaque homologous regions classified into each model. (B) Scatterplot of all homologous 

regions showing the degree of dependence to indels (𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖, x axis) versus the degree of dependence 

to mutations (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚, y axis). Actual data for selected homologous regions (red circles) are given in 

Figures 4E, S4, and S6. Insert: the numbers of homologous regions in each quadrant.   

 

Figure 4. Classes of interspecies covariations of transposons and H3K4me3 peaks. (A) Three 

classes of covariations of transposon and H3K4me3 peaks. Shaded bands between two species 

indicate homologous sequences. Light green sequence: insertion of a transposon in Species 1. (B-
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D) Transposon copy number of each transposon family in conserved peaks (B), transposon-

induced peaks (C) and transposon-disrupted peaks (D). (E) A homologous genomic region where 

interspecies variation of H3K4me3 peaks was associated with ERV1 insertions. Pink bands: a pair 

of homologous sequences in humans (upper panel) and macaque (lower panel), with a human-

specific insertion (ERV1:LTR12C) as well as a human-specific H3K4me3 peak. Orange bands: 

another pair of homologous sequences, with a macaque-specific copy of ERV1 (ERV1:LTR12) 

and macaque-specific H3K4me3 peaks.        
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