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Abstract 
Billions of animals cross the globe each year during seasonal migrations, but efforts to monitor them are hampered by 
the irregularity and relative unpredictability of their movements. We developed a bird migration forecast system with 
continental scope by leveraging 23 years of spring observations to learn associations between atmospheric conditions 
and bird migration intensity. Our models explained up to 81% of variation in migration intensity across the United 
States at altitudes of 0-3000 m, and performance remained high when forecasting events 24-72 h into the future (68-
72% variation explained). We infer that avian migratory movements across the United States frequently exceed 200 
million individuals per night and exceed 500 million individuals per night during peak passage. Accurately forecasting 
bird migration will allow stakeholders to reduce collisions with illuminated buildings, airplanes, and wind turbines, 
predict movements under climate change scenarios, and engage the public. 
 

Billions of birds migrate to distant breeding and wintering sites 
each year through landscapes and airspaces that are increasingly 
transformed by humans. Hundreds of millions die annually from 
anthropogenic hazards such as collisions with buildings, 
automobiles, and energy installations (1), and these effects are 
exacerbated by light pollution (2). Bird migration is characterized 
by dramatic pulses of movement interspersed with stopover 
periods of relative calm (e.g. 3, 4). Targeted efforts to reduce 
negative impacts on birds in flight (e.g. turning off lights and wind 
turbines at strategic times (5)) would be most effective if they 
focused on the few nights with large migration events. However, 
bird movements are challenging to accurately predict days or even 
hours in advance. 

For decades, scientists have attempted to understand the 
drivers of avian migration. It is well known that wind, 
temperature, barometric pressure, and precipitation play key roles 
(6–8). However, it has been challenging to translate general 
associations into migration forecasts for continental extents while 
also being accurate at fine spatial and temporal resolutions (e.g. 
3, 9, 10). General relationships between conditions and migration 
intensity are modified by local topography, regional geography, 
time of season, and finer properties of the atmosphere (11). 
Furthermore, hundreds of species with remarkably diverse 
behaviors frequently pass through a single location during the 
migration season. This complexity makes predicting continental 
bird migration at the assemblage level a grand challenge, 
requiring the integration of large environmental and behavioral 
datasets with methods that can capture complex associations (12).  
 Amassing behavioral data that appropriately characterize 
the spatial and temporal scale of continental bird migration has 
been a primary impediment. Doppler radar, which has been used 
across the world as a tool to study animal migration (4, 13–17), 
offers a realistic solution to characterize the system-wide 
behaviors of hundreds of migratory species (18). In the 

continental United States, the NEXRAD radar network comprises 
143 weather surveillance radars (19), and its data archive contains 
two decades of continuous observation. Although designed for 
meteorology, these radars measure energy reflected by a diversity 
of aerial targets, including birds. However, only recently have 
advances in computational methods (e.g. 20) made it possible to 
use the entire radar archive for longitudinal studies of bird 
migration at large spatial scales.  

Using the NEXRAD archive, we quantified 23 years 
(1995-2017) of spring bird migration from 143 radar stations 
across the US (Fig. 1). We developed a classifier to eliminate 

Fig. 1. Illustration of methodology for generating migration forecasts. 
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radar scans contaminated with precipitation. We then trained 
gradient boosted trees (21) to predict bird migration intensity from 
atmospheric conditions reported by the North American Regional 
Reanalysis (NARR) (22). Our model’s predictors were 19 
variables, including zonal and meridional wind components, air 
temperature, barometric pressure, and relative humidity (Fig. S1), 
which we used to predict a cube-root transformed index of 
migration intensity (cm2 km-3). The cube root transform reduces 
skewness but is less extreme than a log-transformation, which 
would have given considerable weight to biologically 
unimportant differences between small values. We measured 
migration intensity in 100-m height bins up to an altitude of 3 km, 
allowing us to model the three-dimensional distribution of 
migrating birds over the continent. 

Our migration forecast model explained 78.2% of 
variation in migration intensity over the US using instantaneous 
conditions information from NARR (Figs. 2 and 3B). We 
quantified the importance of each predictor by calculating the 

gain, a measure of how much a tree’s predictions improve by 
adding a given variable. Air temperature was the most important 
predictor, with an average gain nearly three times that of the next 
most-important predictor, date (Fig. S2). As a predictor of bird 
migration, temperature likely plays a dual role as an index of 
spring phenology (i.e. the advancing “green wave”) and a short-
term signal for movement, as favorable southerly winds usually 
accompany warmer air masses. Migration intensity varied closely 
with temperature (Fig. 4); on a given day, the highest intensities 
occurred where temperatures were warmest (Fig. S3). This effect 
of temperature was also distinct from the effect of wind: given 
similar wind conditions, more birds took flight when temperatures 
were warmer (Fig. S4). Other important predictors included 
altitude, longitude, surface pressure, latitude, and wind (Fig. S2). 

Next, we asked how far in advance our model could 
accurately forecast bird migration. To achieve this, we processed 
archived weather forecasts from the North American Mesoscale 
Forecast System (NAM). Migration predictions based on NAM 

Fig. 2. Two examples of migration forecasts (24-h and 48-h) made using test data, and their corresponding observed values. (A) Country-wide migration 
forecast surfaces showing the predicted mean migration intensity across altitudes. (B) Altitudinal profiles at four stations, showing predicted and observed 
intensity values. (C) Mean migration intensity observed at all radar stations. Gray circles show stations where migration intensity could not be measured 
due to the presence of precipitation. 
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could form the basis of an operational migration forecast product. 
We evaluated our model’s performance with 24-h, 48-h, and 72-
h NAM weather forecasts, expecting performance to degrade with 
time due to the decreasing accuracy of longer-range weather 
forecasts. Indeed, performance decreased for more distant 
forecasts, but our model still explained the vast majority of 
variation in observed migration intensity when using NAM for 
prediction (e.g. 72% variation explained with 24-h forecast) (Fig. 
S5). Even 72-h forecasts explained 68% of variation in the test 
dataset. The relatively small decline in accuracy from 24 to 72 h 
suggests that even longer-range forecasts may perform similarly.  

To examine our ability to accurately predict migration 
over areas without nearby radar coverage, we iteratively removed 
the data from each radar station, retrained the model on the 
remaining data, and tested predictive performance on data from 
the withheld station. For this analysis, we increased the learning 
rate parameter of the model to make computation tractable. 
Compared to validation benchmarks of RMSE=1.424 (root mean 
square error; smaller values indicate more accurate predictions) 
and R2 = 0.756, the median RMSE and R2 for withheld stations 
were 1.426 and 0.680, respectively (Fig. S6). For 75% of withheld 
stations, R2 was 0.52 or higher. We therefore conclude that the 
model captures patterns of bird migration across the United States 
with high spatial accuracy, particularly in the Central and Eastern 
regions (Fig. S7); spatial variation in performance likely stems 
from local influences on migratory behavior (e.g. topography), 
which our model did not explicitly incorporate.  

Previous research has suggested that migration behavior 
and weather conditions in the days immediately preceding a focal 
day can predict migration intensity (e.g. 10). We found that 
including atmospheric data from the preceding night and 24-h 
changes in conditions did improve performance, but not 
dramatically. Compared to our original specification (R2 = 0.782, 
RMSE = 1.318), a model that included atmospheric conditions 24 
h before the focal time explained 79.5% of variation in the test 
data (RMSE = 1.279). Further including observed migration 
intensity from the previous night increased R2 to 80.7% (RMSE = 
1.241). Despite these improvements, we favored the original 

specification because it could translate a single continental 
weather forecast into a continental migration forecast without 
additional inputs. 

We used our model’s predictions to estimate the total 
number of birds actively migrating each night across the United 
states, assuming a cross-sectional area per bird of 11 cm2 (14), 
typical of a medium-sized songbird. Summing predictions across 
the country, we infer that nightly movements frequently exceed 
200 million birds (Fig. 3B). Peak passage occurred in the first half 
of May, when the median predicted movement size was 520 
million birds per night. These are the first size estimates of nightly 
migratory movements on a continental scale. Our estimates are 
directly informed by a validated model that incorporates 
atmospheric conditions and geography, which is an advantage 
over simple interpolation between radar stations. Further, these 
estimates are likely conservative because our model tended to 
underpredict the largest observed movements (Fig. 3A).  

Migration forecasts will further ecological research 
while aiding monitoring and mortality mitigation efforts. For 
example, scientists can leverage our predictive framework to 
investigate how future changes in environmental conditions (e.g. 
air temperature) may influence migratory behavior. Biologists 
working with migratory birds and global health workers 
monitoring avian borne diseases (23) can use migration forecasts 
to anticipate bird movements. Further integration of large citizen 
science datasets with radar observations will provide the means to 
study species-specific patterns of behavior at a large scale (12). 
For environmental monitoring, accurate migration predictions can 
inform decisions to temporarily shut down lights on skyscrapers 
and communication towers, elevate the cut-in speed of wind 
turbines, halt gas flares, and take other actions to prevent avian 
mortality. Our model provides predictions at 100-m altitudinal 
resolution, which will be valuable for aircraft pilots and operators 
of turbines and towers. Finally, educators and birdwatchers can 
use migration forecasts to connect themselves and others with one 
of the world’s most impressive natural phenomena.  

Fig. 3. (A) Mean predicted migration 
intensity versus observed migration 
intensity for test data, with points 
colored by observed intensity. The 
scatterplot shows values after 
averaging across altitudes. R2 for the 
full dataset (before averaging) was 
0.78. Shading shows empirical 90% 
prediction intervals, which covered 
91.0% of observed values. (B) Nightly 
peak migration magnitude estimated 
across the continental United States 
for 2013-2017. Numbers of individuals 
estimated using a cross-sectional 
area per bird of 11 cm2 (14). Note that 
the size of migratory movements 
varied dramatically from night to night 
during the peak of the migration 
season. 
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Methods 

Doppler radar  
We used the United States Next Generation Radar (NEXRAD) network to 
characterize spring migratory movements (March 1st to May 31st) from 
1995 to 2017. These radars scan 360° at multiple elevation angles (e.g. 
0.5°, 1.5°… 4.5°), fully sampling the airspace every 5 to 10 minutes. We 
downloaded radar scans from Amazon Web Services 
(https://s3.amazonaws.com/noaa-nexrad-level2/index.html), selecting 
those in a 30-minute window centered on three hours after local sunset. 
We processed scans using the WSRLIB software package (24). To 
characterize migration intensity, we used radar reflectivity factor, a 
measure of reflectance to the radar. To sample the airspace from 0-3 km 
above ground level, we extracted radar reflectivity factor values 5-37.5km 
from each radar (25) and cast them into vertical profiles with 100-m 
altitudinal resolution. We converted radar reflectivity factor (dBZ) to radar 
reflectivity (dBη) using the equation η[dB] = Z[dBZ] + β, where β = 
10log10(103π5|Km|2/λ4). We set the radar wavelength (λ) to 10.71 cm, the 
average for NEXRAD radars and set the refractive index (|Km|2 ) to 0.93 for 
liquid water. This yielded β = 13.35. We converted dBη to η using the 
equation η= 10dBη/10, yielding units of cm2km-3. To estimate numbers of 
birds from η, we selected a cross section (σ) of 11cm2, a representative 
average cross-section across all bird species within a migratory season 
(14). Dividing η by σ resulted in units of birds km-3. 
To mitigate the influence of time-invariant clutter (e.g., buildings, terrain, 
wind turbines), we applied binary clutter masks to each low elevation scan 
prior to the construction of the vertical profile of migrant intensity. Masks 
were generated by summing a minimum of 100 low elevation scans (0.5° 
elevation), starting on January 1st (16:00 UTC to 18:00 UTC) and 

continuing to January 15th. This time window falls well outside typical 
migration periods. If 100 samples were not tallied by January 15th the 
window of selection was expanded until the threshold was met. We 
classified any pixel above the 85th percentile of the summed reflectivity as 
clutter and masked it from our calculation of migration intensity.  
To discriminate radar scans contaminated with precipitation from those 
containing only clear air or bird-dominated signal (hereafter termed “clear”), 
we created a random forest classifier using the package “randomForest” 
(26). We trained the classifier on 157,279 manually classified nocturnal 
scans selected from a 3-hour period on March 15th, April 15th, and May 
15th for every radar and every year in the training set. We designed this 
sampling to capture any geographic, seasonal, and longitudinal patterns in 
the data. We extracted derived predictor variables from profiles of radar 
reflectivity, groundspeed, migrant track, and summaries of the number of 
density values above 35 dBZ (extreme densities characteristic of intense 
precipitation). We generated 1,000 trees and set the minimum terminal 
node size to 50. Overall, the model showed a 5.6% classification error. We 
used the algorithm to classify a total of 979,326 scans. As an additional 
step to reduce the inclusion of precipitation incorrectly classified as clear, 
we used only scans with a probability of being clear of 70% or higher (rather 
than a majority rule, i.e. >50%).  

Weather reanalysis   
The North American Regional Reanalysis, or NARR (22), compiles data 
from numerous observational data sources to produce a best estimate of 
weather conditions that occurred in North America. The reanalysis is 
published in 3-hour intervals across a 32-km grid. We downloaded NARR 
data for 1995-2017 and extracted the following parameters at pressure 
levels from the surface to 600 mb: geopotential height (gpm), zonal and 
meridional wind components (m/s), temperature (K), relative humidity (%), 

Fig. 4. (A) Model predictions of migration 
intensity versus air temperature and date, the 
two most important predictors. Each data point 
on the scatterplot beneath the heatmap 
represents one night from one radar. Only well-
supported predictions and corresponding data 
points shown (the outer 10% of temperature 
and date values are excluded). (B) For a given 
date, the model predicts migration intensity to 
vary closely with temperature. 
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vertical velocity (Pa/s), turbulent kinetic energy (J/kg), total cloud cover 
(%), visibility (m), albedo (%), total precipitation (kg/m2), mean sea level 
pressure (Pa), convective available potential energy (J/kg), and snow 
cover (%). To match weather data to radar stations, we averaged data 
within 37.5 km of each radar station. We then calculated height above 
ground level by subtracting surface geopotential height from the 
geopotential height at each pressure level, and we matched radar 
observations to weather data using nearest neighbor interpolation (i.e. 
taking the weather observation closest in time and altitude for each radar 
bin). Pairwise correlations among predictor variables were generally low 
(Fig. S1). 

Weather forecasts 
The North American Mesoscale Forecast System, or NAM 
(https://www.ncdc.noaa.gov/data-access/model-data/model-
datasets/north-american-mesoscale-forecast-system-nam), generates 
weather forecasts out to 84 hours; forecasts are hourly from 1-36 hours 
and subsequently every 3 hours until hour 84. Forecast models are run 
every 6 hours. NAM predictions are made on a 12-km grid. We downloaded 
0Z NAM forecast data for 2008-2017, extracted the same parameters as 
for NARR, and matched NAM data to radar stations in the same manner 
as for NARR.  

Supervised learning 
We used gradient boosted trees to predict bird migration from weather data 
(Fig. 1). We used the R implementation of XGBoost (21, 27), a highly 
efficient and scalable gradient boosting framework. The algorithm 
automatically detects nonlinear effects and complex interactions among 
predictors, and it is not hindered by predictor collinearity. We trained an 
XGBoost model on NARR weather data, with the cube root of bird density 
as our response variable.  
We divided our dataset into three groups: a training set, for learning; a 
validation set, for hyperparameter tuning; and a test set, to evaluate 
performance. We split the dataset by whole days instead of individual data 
points to prevent any spatial autocorrelation from inflating performance 
metrics. From 2,115 total days (comprising 5,272,618 altitude bins across 
143 radar stations), we randomly selected 75% of days for training, 10% 
for validation, and 15% for testing.  
We tuned model hyperparameters with grid searches across 
hyperparameter space. For our first grid search, we varied maximum tree 
depth max_depth (10-16) and learning rate eta (0.05, 0.10, or 0.20), as 
these hyperparameters generally have the largest effect on performance. 
In all cases, we used the early_stopping_rounds argument to stop the 
algorithm after 10 boosting iterations in which performance on the 
validation set failed to improve. After selecting the values of maximum tree 
depth and learning rate that resulted in the best performance on the 
validation set, we tested the following modifications to additional 
parameters with a second search: decreasing subsample from 1.0 to 0.70, 
increasing min_child_weight from 1 to 5, and increasing gamma from 0 to 
1, 10, or 30. We tried all 16 combinations of these modifications. Using the 
best combination of hyperparameters, we further lowered the learning rate 
to 0.01 and set early_stopping_rounds to 50 to determine the optimal 
number of boosting iterations for that learning rate. With this information, 
we fit a final model with learning rate = 0.01 on the combined training and 
validation sets. We then evaluated its performance on the test dataset 
(15% of data), which had been withheld from all training. To assess 
performance, we calculated two metrics: root mean square error and the 
coefficient of variation (or R2). We found R2 by first calculating the relative 
squared error (the sum of squared errors divided by the sum of squares 
explained by the mean value of the response), and then subtracting this 
value from 1. Therefore, an R2 value of 0 indicates that the model does not 
explain the observed data any better than a simple null model of the mean 
value of the observed data, while a negative R2 value indicates that the 
model explains the data worse than this null model.  
We trained and tested two further modifications to the final model: one 
which also included additional conditions variables from the previous night 
(wind, temperature, surface pressure, precipitation) and their 24-h 
changes, and another which included these lagged weather variables plus 
migration intensity measured during the previous night. Our aim here was 
to determine how much additional explanatory power we could achieve 

with a model that takes into account recently observed conditions and 
behavior. 

Assessing performance 
To assess performance of the final model using weather forecasts instead 
of NARR (i.e. reanalysis) data, we tested the model using archived NAM 
forecasts made 24 h, 48 h, and 72 h in advance. 
To assess model performance at unobserved spatial locations, we 
performed a cross-validation where we randomly removed one station (out 
of 143 total) from the dataset, retrained the model on the remaining data, 
and tested its performance on the withheld station. To speed up 
computation, we increased the learning rate hyperparameter to 0.20 and 
maximum tree depth to 14; this resulted in a small decrease in overall 
performance (<2%) but sped up computation by an order of magnitude, 
allowing us to compare performance at all 143 sites.  

Predictor importance and partial dependencies  
We identified the predictor variables that were most important for model 
predictions using variable importance metrics calculated by the xgboost 
package. Specifically, we calculated the gain, which measures how much 
a tree improves by adding a split on a given variable and is therefore a 
measure of the variable’s importance in making accurate predictions. We 
also generated partial dependence plots using the R package mlr (28) to 
explore how these variables influence predictions. As for the station cross-
validation procedure, we increased the learning rate and tree depth to 
make computation tractable.  

Prediction intervals 
We constructed empirical prediction intervals using residuals from 
XGBoost predictions for the validation dataset. We fitted a generalized 
additive model (29) on squared XGBoost residuals against the XGBoost-
predicted value to account for an error variance that increased with the 
magnitude of the predicted value. The generalized additive model 
produced an estimated error variance for each predicted value, which we 
used to construct 90% prediction intervals using 0.05/0.95 Gaussian 
quantiles. We constructed separate models for upper and lower limits to 
allow for asymmetry in the width of the interval, and we used the Gamma 
distribution family in the generalized additive model to constrain the 
predicted variances to be non-negative.  

Forecast output and estimation of nightly migration magnitude 
Using our validated migration forecast model, we made predictions across 
the entire 12-km NAM grid. For smooth presentation, we averaged 
predictions across 9×9 cell blocks. We also used our model to estimate the 
total number of birds migrating over the continental United States each 
night. For this we used the NARR dataset because it is the best 
retrospective estimate of occurred conditions. For each 32-km NARR grid 
cell covering the continental United States, we multiplied the bird density 
estimate by the area of the cell, and we summed totals across all grid cells 
for each night.  
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Supplementary Figures 
 
 
 

 

 

Fig. S1. 
Spearman rank correlations among all pairs of predictor variables. Only one pair, Temp and Surface temp [Air 
temperature and surface temperature], had Spearman or Pearson correlation coefficients greater than 0.70. 
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Fig. S2. (A) Predictor importance, measured by gain. Gain is a measure of each variable’s importance in making 
accurate predictions. (B) One-dimensional partial dependence plots for the six most important predictor variables, 
evaluated for the middle 90% of predictor values. Solid lines show the mean and shading shows the middle 50% of 
predicted values. Narrower shading indicates that the predictor explains a greater proportion of variance in the 
predicted values. 
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Fig. S3. 
Mean observed migration intensity by date and surface temperature. For a given date, the highest migration intensities 
occurred where surface temperatures were warmest, especially at higher latitudes.  
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Fig. S4. 
Mean observed migration intensity by surface temperature and wind direction.  
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Fig. S5. 
Model performance using NAM weather forecast data compared to NARR reanalysis data. 
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Fig. S6. 
Model performance at unobserved locations. Histograms show the distribution of performance metrics for radar 
stations that were withheld from the training dataset. The blue tick marks show the median value across sites, and the 
red tick marks show the corresponding value for the randomly-selected validation set (all locations included). 
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Fig. S7. 
(A) Relative and (B) absolute performance at radar stations withheld from the training dataset. Performance was best 
at interior sites, especially in the Central and Eastern United States. Relative performance was poor (R2 < 0) at small 
minority (4%) of withheld sites, which may be due to local influences such as topography (e.g. see Florida Keys). 
However, at most of these sites, absolute performance (RMSE) was not substantially worse than at nearby locations. 
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