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Abstract
A fitness landscape is a map between the genotype and its reproductive success in a given 
environment. The topography of fitness landscapes largely governs adaptive dynamics, 
constraining evolutionary trajectories and the predictability of evolution. Theory suggests 
that this topography can be “deformed” by mutations that produce substantial changes to 
the environment. In spite of its importance, the deformability of fitness landscapes has not 
been systematically studied beyond abstract models, and little is known about its reach and
consequences in empirical systems. Here we have systematically characterized the 
deformability of the genome-wide metabolic fitness landscape of the bacterium E. coli. 
Deformability is quantified by the non-commutativity of epistatic interactions, which we 
experimentally demonstrate in mutant strains on the path to an evolutionary innovation. 
Our analysis shows that the deformation of fitness landscapes by metabolic mutations 
rarely affects evolutionary trajectories in the short-range. However, mutations with large 
environmental effects leave these as a “legacy”, producing long-range landscape 
deformations in distant regions of the genotype space that affect the fitness of later 
descendants.  Our methods and results provide the basis for an integration between 
adaptive and eco-evolutionary dynamics with complex genetics and genomics. 
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Introduction

When a new genotype appears in a population its reproductive success is largely governed 
by the environment. Although it is often thought of as an external driver of natural 
selection, the environment can also be shaped by the population itself, for instance through 
its metabolic activity, or through interactions with the abiotic habitat or other species (F. 
John Odling-Smee, Kevin N. Laland, Marcus W. Feldman, 2003; Laland et al., 2014; 
Lewontin, 1983). These population-driven environmental changes can in turn modify the 
fitness effects of future mutations, closing in an “eco-evolutionary” feedback loop (Post and 
Palkovacs, 2009). Eco-evolutionary feedbacks are well documented in natural (Hendry, 
2016) and experimental populations (Jones et al., 2009), and at all scales of biological 
organization: from the cellular scale, e.g. in the evolution of cancer (Basanta and Anderson, 
2017) and microbial populations (Sanchez and Gore, 2013), to the organismal scale in 
animal (Matthews et al., 2016) and plant evolution (terHorst and Zee, 2016). 

The one-to-one “map” between each genotype and its adaptive value in a given 
environment is known as the fitness landscape (Wright, 1932). Since populations actively 
modify their environment, new mutations can in principle have environmental as well as 
fitness effects. Thus, evolving populations may reshape or “deform” the fitness landscapes 
on which they are adapting (Kauffman and Johnsen, 1991). Though they are often used only
metaphorically to depict or visualize adaptation, fitness landscapes are a major 
determinant of evolution. In particular, the topography of a fitness landscape (i.e. the 
location of fitness peaks and valleys and their connectivity) plays a pivotal role, as it 
governs the accessibility of evolutionary trajectories (Hartl, 2014; Poelwijk et al., 2007; 
Weinreich et al., 2006); the role of population structure on evolution (Nahum et al., 2015); 
the degree of evolutionary convergence among populations (Van Cleve and Weissman, 
2015); the expected role of drift, selection, and sex in the evolutionary process 
(Moradigaravand and Engelstädter, 2012; Rozen et al., 2008); the discovery of evolutionary 
innovations (Barve and Wagner, 2013); and the predictability of evolution (de Visser and 
Krug, 2014), a subject of growing importance for the management of pathogens and cancer 
treatment (Barber et al., 2015; Lässig et al., 2017; Luksza and Lässig, 2014; 
Nourmohammad et al., 2013; Zhao et al., 2016). Given the critical role it plays in adaptation,
if populations do indeed change the topography of their fitness landscapes as they evolve, it
is imperative to understand precisely how. Do mutations that alter the environment 
generally deform the fitness of every other subsequent mutation, or just a subset of them? 
If the latter, where are those “deformations” localized in the genotype space, and how 
strong are they? All of these questions remain open as the deformability (or “rubberness”) 
of fitness landscapes has never been systematically studied beyond abstract theoretical 
models (Kauffman and Johnsen, 1991).
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Substantial experimental evidence suggests that microbial fitness landscapes are likely to 
exhibit deformability (Friesen et al., 2004; Gac and Doebeli, 2010; Good et al., 2017; Paquin 
and Adams, 1983; Rosenzweig et al., 1994), making microbes an ideal system with which to
address this issue. Microbial metabolism leads to large-scale environmental construction 
through the uptake and release of metabolites (Good et al., 2017; Rosenzweig et al., 1994). 
Which nutrients are uptaken, which byproducts are produced and released, and in what 
amounts, are all governed by the structure of the metabolic network and, therefore, by the 
genotype (Paczia et al., 2012; Quandt et al., 2015). Therefore, new mutations that change 
the metabolic network can also change the patterns of metabolic uptake and secretion, 
altering the environment and potentially also the fitness of future mutations (Rosenzweig 
et al., 1994). Microbial physiology and growth can be explicitly simulated using genome-
scale metabolic models (Lewis et al., 2010; O’Brien et al., 2015; Orth et al., 2011). Due to 
their excellent predictive capabilities (Orth et al., 2011) and ability to easily and rapidly 
screen millions of genotypes, these genome-wide metabolic models have been successfully 
used to systematically explore the genotype space (Matias Rodrigues and Wagner, 2009). 
Recent advances in dynamic metabolic modeling make it possible to explicitly simulate the 
growth of microbial communities and their environmental feedbacks with evolution 
(Harcombe et al., 2014; Mahadevan et al., 2002), making genome-wide dynamic metabolic 
modeling of microbial genotypes a promising method to examine the deformability of 
fitness landscapes (Fig. 1A). 

Here we have used such an approach, as well as experiments with the bacterium E. coli, to 
show that fitness landscape deformability can profoundly alter the definition of epistasis, 
which becomes dependent on the order in which mutations occur.  By systematically 
screening the in silico metabolic fitness landscape of E. coli, we are able to offer a precise 
view of how deformability by eco-evolutionary feedbacks plays out over short and long 
mutational ranges.

Results

Non-commutative epistasis characterizes fitness landscape deformability. To 
investigate the effect of metabolic secretions on the fitness landscape, we used dynamic 
Flux Balance Analysis (dFBA) to determine the distribution of fitness and environmental 
effects of new mutations in the local mutational neighborhood of a recently curated, 
genome-scale metabolic model of E. coli  (Orth et al., 2011). Our screen included all possible
single addition and deletion mutants (Methods), whose growth was simulated on anaerobic
glucose media until saturation was reached. Of all non-essential mutations, 147 (3.3%) 
affected growth rate, either positively or negatively (Fig. 1B). All of these mutations also 
altered the chemical composition of the environment (see Fig. 1C for a representative 
subset; Fig. S1 for the full set, Methods), and the magnitude of the environmental and 
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fitness effects were strongly correlated  (Pearson’s  =  0.61, P<10ρ -6, Fig. S2). This suggests 
that as new mutations fix in the population, the extracellular environment will change, 
which in turn could alter the fitness effects of new mutations thus deforming the fitness 
landscape.

We explored the extent of fitness landscape deformability in a dataset that consisted of ~ 
107 single and double mutants, representing the entire second-order metabolic mutational 
neighborhood of E. coli. The fitness of each mutant was determined in competition with its 
immediate ancestor as FM = log([X'M/XM]/[X'A/XA])(Lenski et al., 1991; Travisano and 
Lenski, 1996); where XA and XM represent initial densities of ancestor and mutant, and X'A 
and X'M their final densities after 10 hours of competition, respectively (see Methods). All 
competitions were performed at an initial mutant frequency of 0.01. Using this measure, 
the fitness of two mutations is expected to combine additively when they act independently
(Fig 1D). As shown in Fig. 1E, when two mutations without an environmental effect interact
with one another, epistasis (ε) will cause the fitness of the double mutant to deviate from 
additivity. This is the usual definition of epistasis in the literature, and epistasis is, as usual, 
invariant with respect to the order in which mutations occur (Poelwijk et al., 2007).  In 
contrast, when at least one of the single mutants has an environmental effect, the double 
mutant experiences a different extracellular environment depending on which of the two 
single mutants is its immediate ancestor. For example, a double mutant could crossfeed on 
one of its possible single-mutant ancestors, but not on the other (Fig. 1F).  The result is a 
gene-by-environment-by-gene (G×E×G) interaction in which the magnitude of epistasis 
depends on the order in which mutations occur. In other words, epistasis becomes non-
commutative.  The value of that non-commutative fitness shift ( ) characterizes the δ
deformation of a two-step mutational trajectory(Fig. 1F). 

Deformability in the path to an evolutionary innovation in E. coli. To experimentally 
validate this concept and assess the potential relevance of landscape deformability in 
experimental evolution, we studied two mutations on the path to the evolutionary 
innovation of strong aerobic growth on citrate (Cit++) in the Ara-3 population of the E. coli 
Long-Term Evolution Experiment (LTEE)(Blount et al., 2008). The two principal mutations 
underlying this phenotype are known to have profound ecological consequences, 
suggesting that non-commutative epistasis may be present (Fig. 2A). The first mutation is a 
tandem amplification overlapping the citrate fermentation operon, cit, which occurred after
31,000 generations. This amplification caused aerobic expression of the CitT transporter, 
producing a weak citrate growth phenotype (Cit+)(Blount et al., 2012). CitT is an antiporter 
that imports citrate, which is present in large amounts in the LTEE’s DM25 growth medium,
while exporting intracellular C4-dicarboxylate TCA intermediates, including succinate and 
malate (Quandt et al., 2015), thereby increasing their concentration in the extracellular 
environment. A subsequent mutation causes high level, constitutive expression of DctA, a 
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proton-driven dicarboxylic acid transporter. This mutation refines the Cit+ trait to Cit++ by 
allowing recovery of the C4-dicarboxylates released into the medium by both the progenitor
and the double mutant itself during growth on citrate (Quandt et al., 2014) (Fig. 2A). We 
reasoned that these mutations together enable the exploitation of environments built by 
progenitor strains, producing a stronger increase in fitness than expected in the absence of 
environmental construction (Fig. 2B). In contrast, had the DctA mutation occurred prior to 
the CitT-activating duplication, it would have conferred no fitness benefit, and would not 
have produced any changes in the environment relative to the ancestral strain (Fig. 2B).

We tested this prediction by performing competitive fitness assays with different 
combinations of a spontaneous Cit– mutant and dctA– knockout strains derived from ZDB89,
a 35,000 generation Cit++ clone that possesses both the DctA-activating and CitT-activating 
mutations (see Methods). Competitions were carried out with equal volumes of each 
combination of competitors, and relative fitness determined using colony counts obtained 
after 0 and 24 hours of growth (Lenski et al., 1991). In parallel, we used dynamic FBA 
modeling to simulate these competitions, relying solely on known parameters from the 
experiments, as well as published parameters pertaining to the physiology of E. coli (Gallet 
et al., 2017; Harcombe et al., 2014)(see Methods). Confirming our expectations, dynamic 
FBA predicts strong non-commutative epistasis (  =1.50) (Fig. 2C). This is confirmed by theδ
experimental results ( =1.78δ ±0.15) (Fig. 2D). The agreement between the empirically 
calibrated computational model and the experiments is not only qualitative but 
quantitative: with no fitting parameters, dynamic FBA is predictive of the outcome of the 
experimental pairwise competitions, explaining 52% of the variance in colony counts from 
all experiments (N=120; Fig. S3).

Short-range deformability in E. coli is weak and rare. Although the above examples 
demonstrate the potential presence of fitness landscape deformability, its pervasiveness in 
empirical fitness landscapes remains unclear. To shed light onto this question, we screened 
the entire second order mutational neighborhood of E. coli using our computational model  
(Fig. 3A). In Fig. 3B we represent all pairs of mutations that exhibit deformability as nodes 
in a network that are connected if their non-commutative fitness shift ( ) is larger than 1% δ
of the fitness effects (FMAX). These represent only a small subset (203/3343, or 6.1%) of all 
epistatic interactions, which for the most part are not altered by the environmental effects 
of mutations. 

Non-commutative interactions also tend to be unevenly distributed: most of the mutations 
do not deform the fitness of any other mutation, and only 15 of them (0.3% of all), deform 
the fitness of 5 or more other mutations (Fig. 3B-C). These few highly connected “hubs” on 
the network tend to be the mutations with the strongest environmental effects (Fig. S4; 
Pearson’s correlation = 0.79, P<10-6). Non-commutative epistatic effects also tend to be 
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small in magnitude (Fig. 3D); only 1.6% (55/3343) of epistatic pairs have a non-
commutative epistatic shift larger than 10% of the total fitness increase ( /Fδ MAX >0.1, Fig. 
3D). This reveals that deformability of the local mutational neighborhood of the E. coli 
metabolic landscape is both generally weak, rare, and highly anisotropic (i.e. non 
homogenous), with deformations limited to localized directions in genotype space.

Long-range deformability of the E. coli metabolic fitness landscape. The low 
deformability of the local mutational neighborhood could be explained by the strong 
genetic similarity between the mutants and the ancestral genotype: genotypically close 
descendants will rarely be able to use metabolites that are discarded by their immediate 
ancestors. By the same logic, one may predict that over longer mutational distances 
metabolic differences might accumulate that enable the use of extracellular metabolites 
that are left as a “legacy” by previous mutations. Thus, we hypothesize that changes to the 
extracellular environment produced by a given mutation will primarily deform the fitness 
landscape at distant positions on the genotype space.

To test this hypothesis, we set out to introduce a mutation with a strong environmental 
effect and measure the deformation it causes at different distances in the genotype space. 
We chose the ACKr mutation (the deletion of the acetate kinase gene), which as shown in 
Fig. 1C modifies the environment by releasing large amounts of lactate at the expense of 
lower secretions of formate, acetate and ethanol. To quantify the deformation introduced 
by this mutation, we compared the fitness of thousands genotypes at increasing mutational 
distances from the ancestor, in competition with either the ancestor E. coli model (A) or the 
ACKr mutant (M) (Fig. 4A). The results are shown in Fig. 4B-C. Consistent with our 
hypothesis, we found that the fitness landscape deformation introduced by ACKr is 
negligible at short genotypic distances from it (e.g. 16 mutations or less), but it becomes 
stronger at longer distances. Fifteen other mutants (M) in addition to ACKr were also 
tested, with similar results (Fig. S5). Furthermore, by comparing the growth rate of 
thousands of genotypes in the environments constructed by A and M, we found that 
increasingly distant genotypes become increasingly sensitive to the differences between 
both environments. This explains the observed pattern of deformation as a function of 
genotypic distance (Fig. 4D, Fig S5). 

Discussion

Darwin was perhaps the first to recognize that the environment experienced by a 
population can also be shaped by the population itself (Darwin, 1881). Long neglected, this 
concept was revived by Lewontin (Lewontin, 1978, 1983), and has gained added 
momentum in recent years as the important role played by eco-evolutionary feedbacks in 
both ecology and evolution has become better appreciated (Laland et al., 2014; Post and 
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Palkovacs, 2009; Rudman et al., 2018). Due to technical limitations, experimental studies of 
eco-evolutionary feedbacks and the adaptive dynamics models that seek to explain them 
often lack explicit, genome-wide representations of the adaptive landscape, in particular 
with regard to complex traits and gene-gene interactions (Rudman et al., 2018). The exact 
state of the environment, which is intrinsically complex and multi-dimensional (Lawrence 
et al., 2012) , is also rarely measured experimentally or explicitly  included in eco-
evolutionary models. In return, and in spite of early abstract models of species coevolution, 
which introduced the idea of fitness landscape deformability (also referred to as  
“rubberness”, ((Kauffman and Johnsen, 1991; Solé and Sardanyés, 2014)), and the many 
examples of the importance in co-evolutionary arms races and other forms of coevolution 
(Morran et al., 2011; Stern and Sorek, 2011; Strauss et al., 2005), genotype-fitness maps 
have largely ignored the effects of eco-evolutionary feedbacks. This is particularly 
important in light of the argument, made by many authors, that the deformability of fitness 
landscapes (or its consequences, in the form of frequency dependent selection) would 
erode their practical and conceptual utility (Doebeli et al., 2017; Moran, 1964; Schuster, 
2012). 

The work presented above seeks to reconcile both perspectives on empirical grounds. 
Encouragingly, our results show that fitness landscapes may retain their local properties 
even in the presence of mutations that significantly alter the environment. By 
systematically mapping an empirical fitness landscape, we have found that ignoring 
deformability and assuming a “rigid” (i.e. non-deformable) landscape is a good 
approximation over short genotypic distances. This is because closely related genotypes are
unlikely to differ from one another in their physiological response to the built environment.
In contrast, over longer mutational distances, landscapes are likely to be affected by 
environmental construction, an effect that is shaped by complex genetic interactions. This 
suggests a new, ecologically-mediated mechanism by which historical contingency may 
shape downstream evolution even in clonal populations. In summary, our work suggests 
that depending on the resolution, fitness landscapes can behave as either a fixed externally 
determined topography on which adaptation proceeds, or become a dynamic property of 
the populations adapting on them  (Doebeli et al., 2017; Moran, 1964).

Our results indicate that simulating cellular adaptive dynamics with an explicit and 
biologically realistic representation of the genotype-phenotype map is within reach. Such 
an approach will shed light into the role played by dynamic niche construction on cellular 
evolution. We believe that it will also create multiple opportunities to incorporate genomics
into the study of eco-evolutionary dynamics, and thus reveal the genetic, biochemical and 
environmental constraints that simultaneously govern the ecology and evolution of cellular 
populations.
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METHODS

Reconstruction of a prokaryotic genotype space. All in silico explorations of genotype 
space in this work took as a reference the E. coli model iJO1366 and consisted of both gene 
additions or deletions. Gene deletions were performed by constraining both upper and 
lower bounds of the reaction to zero. Gene additions were performed from a set of all 
known prokaryotic reactions. We used the BiGG database (King et al., 2016) to compile a 
dataset of all known reactions found across prokaryotic species. Conflicts in reaction 
directionality were resolved as follows i) if a reactions is found in the well benchmark E. 
coli iJO1366 model, use the properties given by this model, ii) if a reaction conflicts in 
directionality, only accept directions found across all models (e.g. if there is one model 
where a given reaction is irreversible, we set it as irreversible). We used this dataset to 
create a “universal” metabolic model that included all reactions found in E. coli iJO1366 as 
well as a set of all potential novel reactions. We removed reactions that would lead to 
erroneous energy-generating cycles using the ModelFit algorithm (Fritzemeier et al., 2017).
The algorithm was constrained to conserve reactions present in the original E. coli model. 
Removing any futile cycles from this “universal” model ensures that there will not be any 
futile cycles in any subset. The resulting network contains 4999 metabolic reactions and 
585 nutrient uptake or sink reactions, of which 2758 and 255 were not found in the 
original E. coli model. 

In silico simulation of growth through metabolic modeling. Dynamic Flux Balance 
Analysis simulations were performed using the COMETS package ( “Computation of 
Microbial Ecosystems in Time and Space”, (Harcombe et al., 2014)) and the gurobi 
optimizer software. For computationally intensive simulations, we used the High 
Performance Facility at Yale University. For standard (non dynamic) FBA simulations, we 
used the COBRApy python package (Ebrahim et al., 2013). Both Dynamic and Standard FBA 
optimizations were done using the parsimonious algorithm, in which a first optimization is 
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done to maximize biomass yield, and a second one fixes this yield and minimizes total 
fluxes throughout the network (Lewis et al., 2010). Unless otherwise stated, the default Vmax

was set in dynamic FBA simulations to 10 mmol×gr-1×hr-1 for all uptake reactions. Inorganic
ions and gases where kept at high concentrations and where kept undepleted throughout 
the simulation (i.e lower bound :  -1000 mmol×gr-1×hr-1,  amount of metabolite: 1000 
mmol). This was done to constrain our analysis to situations where growth is limited only 
by uptake of carbon sources. The unbounded nutrients are: ca2_e, cbl1_e, cl_e, co2_e, 
cobalt2_e, cu2_e, fe2_e, fe3_e, h_e, h2o_e, k_e, mg2_e, mn2_e, mobd_e, na1_e, nh4_e, ni2_e, 
pi_e, sel_e, slnt_e, so4_e, tungs_e, zn2_e. For the citrate simulation to avoid oxygen, nitrogen 
or proton limitation uptake was unconstrained by setting the vmax to 1000 mmol×gr-1×hr-1.
Analysis of results was performed using GNU R language (R Core Team, 2017).

Fitness, environmental effects and deformability measurements. To measure fitness, 
we use here (in both experiments and simulations) the Malthusian fitness measure that 
allows for a quantitative comparison across environments (Wagner, 2010). Fitness of 
mutant M relative to ancestor A is therefore given as FM = log([X'M/XM]/[X'A/XA]), where X 
and X’ represent initial and final densities. For a pair of mutations, deformability can be 
then measured as δij = Fij

(i) + Fi
(A)- (Fij

(j)+ Fj
(A)), where Fx

(y) represents the fitness of  genotype 
x in competition with genotype y. To compute environmental effects of mutations, the 
difference in secretion profile of mutants (as shown in Fig. 1C and Fig. S1) is computed for a
given released molecule as sign(D) * (log(D)+1) where D is the amount released by the 
mutant minus that secreted by Ancestral E. coli. This log-modulus transformation (John and
Draper, 1980) is applied to help visualization of the generally small differences in released 
amount, which can be either positive or negative. To measure environmental effect of a 
mutation (as used in Fig. S2 and Fig. S4) , we use the Euclidean distance in the profile of 
released metabolic byproducts between a mutant and the E. coli ancestor using standard 
Flux Balance Analysis (Ebrahim et al., 2013).

Simulation of the fitness landscape of E.coli citrate utilization. Starting with E.coli 
model iJO1366 we constructed metabolic models of the four mutants necessary to predict 
the fitness landscape involved in the evolution of aerobic citrate utilization in the Ara3 
population of the LTEE. Unlike the LTEE ancestral strain REL606 (and E. coli generally), 
which possess the necessary genes for citrate utilization but do not express them in aerobic
conditions, iJO1366 is able utilize both citrate and succinate if these reactions are 
unbounded (as FBA optimizes precisely regulation). Thus, the ancestral phenotype was 
recreated by knocking out three reactions CITt7pp (citT), SUCCt2_2pp (dctA) and 
SUCCt2_3pp (dcuA or dcuB). The reactions encoded by the first two genes (citT and dctA) 
are known to be involved in the evolution of citrate utilization in the LTEE whereas dcuA 
and dcuB are involved in dicarboxylate uptake in anaerobic conditions and are inactive in 
aerobiosis (Six et al., 1994). This triple knockout represents the pre-citrate E. coli ancestor 
strain. The addition of CITt7pp simulates the promoter capture and consequent aerobic 
expression of CitT. Similarly, the addition of SUCCt2_2pp is equivalent to the first mutation 
(aerobic expression of dctA). We used dynamic FBA to predict the fitness landscape of these
two mutations, calibrating the simulations to reflect the the experimental conditions. This 
involved i) setting the in silico media to reflect DM25 minimal glucose media (0.139mM 
glucose, 1.7mM citrate). Aerobic condition was simulated by keeping oxygen (o2_e) 
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undepleted.  ii) using published parameters pertaining to the physiology of E. coli 
(Harcombe et al., 2014) and iii) estimating the initial biomasses of each mutant prior to 
competition. Initial biomass for citrate simulations was determined using initial plate 
counts from pairwise competitions experiments (see also Fig. S3). We assume that average 
cell dry mass is 3.9 * 10-13 g which is the empirically measured cell dry mass of REL606 the 
ancestral strain used in the LTEE (Gallet et al., 2017)

E. coli Long-Term Evolution Experiment. Briefly, twelve populations of E. coli B were 
founded in 1988 from clone REL606. The populations were initially identical, save for half 
having a mutation that permitted growth on arabinose. (See below.) These have since been 
evolved in DM25 minimal glucose medium under conditions of daily, 100-fold serial 
transfer, and incubation at 37°C with 120 rpm orbital shaking. Samples of each population 
are frozen every 500 generations 38. DM25 is Davis-Mingioli broth supplemented with 25 
mg/L glucose. (Per liter: 7g potassium phosphate dibasic trihydrate, 2g potassium 
phosphate monobasic anhydrous, 1g ammonium sulfate, 0.5g sodium citrate, 0.01% 
magnesium sulfate, and 0.01% thiamine.)

Isolation and Preparation of Test Strains. ZDB89 is a Cit++ clone isolated from the Ara-3 
population sample frozen for generation 35,000 during the LTEE. Cit– revertants arise 
spontaneously from Cit+ and Cit++ clones due to recombination-mediated collapse of the 
tandem cit amplification to the ancestral genotype at that locus. We isolated a Cit– revertant,
ZDB757, by first passaging ZDB89 in a glucose-only medium for five days. This passaging 
does not constitute a selection, but nonetheless enriches for Cit– revertants by eliminating 
the selective penalty for losing the ability to grow on citrate. Passage cultures were spread 
on LB plates, and Cit– mutants screened for by patching colonies to LB and Minimal Citrate 
(MC) plates to identify clones that no longer grew on citrate. The Cit– phenotype was 
confirmed by streaking on Christensen’s Citrate Agar. Recombineering with the pKO3 
suicide plasmid (Link et al., 1997) was used to delete the dctA gene from ZDB89 and 
ZDB757, producing the Cit+ dctA– and Cit– dctA– constructs, ZDB912 and ZDB904, 
respectively. To permit differentiation of competitors during fitness assays, we isolated Ara+

revertants of each of the aforementioned clones and constructs. Briefly, Ara– strains lack the
ability to use arabinose, and form red colonies on Tetrazolium Arabinose (TA) plates, while 
Ara+ revertants are mutants with restored ability to grow on arabinose, and form white 
colonies on TA. The ancestral strain of the Ara-3 population and its descendants are Ara–. 
We isolated Ara+ revertants by plating clone or construct cultures on Minimal Arabinose 
(MA) plates. Revertants were competed against their Ara– parents to verify marker state 
neutrality. Clones, constructs, and revertants are listed in Supplementary Table 1. 
Derivation of constructs and revertants are shown in Supplementary Figure S7.

Experimental fitness Assays. Fitness was assayed in pairwise competitions. Competitors 
with opposite Ara marker states were inoculated from frozen stocks into 10 mL LB broth, 
and incubated overnight at 37°C with 120 rpm orbital shaking to permit revival and 
elimination of traces of glycerol cryoprotectant. To precondition the competitors, each 
competitor revival culture was then diluted 100-fold in 0.85% saline, and 100 L of the 
diluted culture used to inoculate 9.9 mL DM25 with ten-fold replication. These culture were
grown for 24 hours at 37°C with 120 rpm orbital shaking, after which they were 
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transferred via 100-fold dilution into 9.9 mL volumes of fresh DM25, and grown for another
24 hours under the same conditions. Ten competition cultures were prepared for each 
competitor pairing by inoculating each 9.9 mL DM25 with 50 L of each preconditioned 
competitor. A single replicate preconditioning culture of each competitor for each 
competition was inoculated so that each competition was inoculated from a single 
preconditioned culture of the competitors. Upon inoculation with the competitors, 100 L of 
a 100-fold dilution of each was spread on TA to permit enumeration of the initial frequency 
of each competitor. 100 L of a 1000-fold dilution was also plated for each competition 
including at least one Cit+ or Cit++ competitor. Colonies were counted following 48 hours of 
plate incubation at 37°C. Following 24 hours incubation under the same conditions used for
preconditioning, 100 L of 10,000-fold dilutions of each competition were plated on TA to 
permit final enumeration of the competitors. 100,000-fold dilutions were also plated for 
competitions including at least one Cit+ or Cit++ competitor.

Exploration of deformability in the local mutational neighborhood of E. coli. To 
systematically analyze the local mutational neighborhood of E.coli we construct a set of 
metabolic models consisting of every viable single and double mutation, considering both 
additions and deletions from our universal reaction set and using as a reference the E. coli 
iJO1366 model (4389 and 9636050 genotypes, respectively). We removed from the final 
analysis essential genes, as well as those genes leading to artifacts (H2 or CO2 limitation). 
We used dynamic flux balance analysis to simulate competition assays of each mutant with 
its immediate ancestor. The simulations assayed co-culture growth during 10hr, a period 
during which glucose was never exhausted, i.e. growth remained exponential, to simplify 
the interpretation of the results. All simulations were done with the mutant starting at low 
frequency (1%, 10-10 gr. dry cell weight, for 9.9 × 10-9 gr. for the ancestor) in anaerobic 
glucose minimal media (unless otherwise stated, see detailed parameters in supplement 
and supplementary tables ST2-ST4). 

Simulation of long-range fitness landscape deformation. In order to explore the long-
range effects of landscape deformation, we started from a one-step mutation from ancestor 
E. coli model and performed random walks in genotype space by sampling 1024 mutations 
(without replacement) among both deletions and additions. To speed-up simulations, the 
sampling procedure ignored all reactions that were essential in a minimal model built by 
sequentially removing reactions while possible, following (Pál et al., 2006)). At regular 
intervals, fitness was measured as before in  competition with the mutant and the ancestor 
(wild-type) using dynamic flux balance analysis (COMETS (Harcombe et al., 2014)).  To 
determine the growth rates of genotype in ancestral vs mutant environments we repeated 
this procedure except at each step, growth rate was measured in the environment provided 
by the mutant and the ancestor using standard flux balance analysis (COBRApy (Ebrahim et
al., 2013)). These environments were simulated by setting uptake rates for each secreted 
metabolites to the excretion rate of the respective ancestor.  
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FIGURES 

Fig. 1. Measuring deformability in the E. coli metabolic fitness landscape. A . Schematic 
depiction of dynamic Flux Balance Analysis (dFBA) simulations. Given an input in the form of 
nutrients, metabolic fluxes through an explicit and empirically curated metabolic model are 
optimized to maximize the biomass growth yield. The optimal metabolic fluxes produce metabolic 
byproducts that are released to the external environment, becoming part of it and of future inputs. 
B. A small subset of genotypes differing from our E. coli metabolic model in a single mutation (an 
added or deleted reaction), colored according to its effect on fitness in competition with the 
ancestor (A). C. Environmental effects of a subset of mutants, expressed as the variation in the 
profile of secreted metabolites compared to ancestral E. coli genotype (computed as log-modulus 
transformed difference in the amount of a given secreted molecule; see Methods). Mutant names 
given as reaction names in BIGG database notation. D. Two loci fitness landscape in the absence of 
gene-gene interactions, where the fitness of each mutation is the same in both the ancestral and the 
other mutant’s genetic backgrounds. Fitness of each genotype was calculated in direct competition 
with its immediate ancestor. Mutations A and B correspond to the addition of  GLYCL_2 (in BiGG 
database notation) glycine cleavage system) and AIRCr (phosphoribosylaminoimidazole 
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carboxylase) respectively. E. Two-loci fitness landscape with gene-gene interactions giving rise to 
epistasis (ε). Mutations A and B were respectively SO3R (sulfite reductase) and PAPSSH 
(phosphoadenylylsulfatase), simulated in a constant environment. F. Two-loci fitness landscape 
where one of the mutants transforms the environment, leading to cross-feeding towards the double 
mutant. Mutations A and B correspond to the addition of PAPSSH and HADPCOADH (3-
hydroxyadipyl-CoA dehydrogenase), simulated in conditions where environmental construction 
was allowed. In addition to regular epistasis, this leads to a non-commutative epistatic shift ( ).δ
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Fig. 2. Non-commutative epistasis in the evolution of aerobic citrate use in E. coli. A. Function 
of the two transporters involved in the innovation of strong aerobic growth on citrate (Cit++) in E. 
coli. CitT is an antiporter that exchanges extracellular citrate for internal C4-dicarboxylates (e.g. 
succinate, fumarate, malate). DctA is a carboxylic acid transporter that imports C4-dicarboxylates 
from the extracellular space into the cytoplasm. B. The two possible mutational trajectories leading 
to the Cit++ trait. If the mutation leading to expression of citT (+citT) occurs first, it will transform 
the environment leading to cross-feeding towards the double mutant. This should not occur if the 
dctA overexpression mutation (+dctA) occurs first. Simulated (C) and experimentally measured (D) 
fitness landscapes in the DM25 medium used in the LTEE (see Methods). Experimentally obtained 
values are reported as mean ± SEM (N=10).
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Fig. 3. Short-range deformability in E. coli is rare, weak, and directional. A Systematic 
exploration of the second-degree mutational neighborhood of E. coli. We used our model to 
exhaustively simulate every possible mutational trajectories starting from the “ancestral”(A) 
metabolism and ending in each double-mutant, including all nonessential reaction deletions and 
additions. Non-commutative epistasis ( ) was measured for each pair of mutants, and normalized δ
by FMAX , i.e. the maximal cumulative fitness effect of the double mutant: FMAX = max[ |Fi

(A)+ Fij
(i)|, |Fj

(A)

+Fij
(j)| ], where e.g.  Fx

(y) denotes the fitness of mutant x when invading its immediate ancestor y at 
low frequency  (see also Methods for simulation details). B. Network representation of all non-
commutative epistatic pairs. Nodes represent single mutations, and two nodes are joined by edges if

/Fδ MAX > 0.01 for that epistatic pair. Node names represent reaction names from BIGG database. C. 
Distribution of deformability for each gene in the network, measured as the number of other genes 
with which it has a non-commutative epistatic interaction. D. Strength of all non-commutative 
epistatic interactions. Percentage of epistatic pairs with /Fδ MAX >T as a function of T. 
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Fig. 4. Long-range deformability of the E. 
coli metabolic fitness landscape. A. We 
performed random walks (length = 1000 
mutations) in genotype space starting from a 
E. coli ancestor (A; gray) and first passing 
through a mutant (M; orange) with large 
environmental effect. B-C. Fitness of mutants 
along these random walk was measured in 
competition with A (gray), and in the 
environment it generates (EA), as well as in 
competition with M (orange) in the 
environment it generates (EM). In B we show 
the result for a single example random walk. 
Note that fitness in competition with M is 
shifted by the difference in fitness between M
and A so all observed differences in fitness 
( Fitness) are due to deformation. In Δ C we 
plot the average Fitness at increasing Δ
mutational distances from A in over N=100 
random walks (error bars represent SEM; 
N=100). The non-commutative epistasis  δ
exhibits a similar trend as Fitness (inset). Δ D.
Average difference (absolute value) in growth
rate between environments EM and EA (in 
grams of dry cell weight × hr-1) at varying 
genotype distances (gray line, shading 
represents SEM; N=100).
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