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ABSTRACT 1 
Atomic Force Microscopy (AFM) is the technique of choice to measure mechanical properties 2 
of molecules, cells, tissues and materials at the nano and micro scales. However, unavoidable 3 
calibration errors of AFM make it cumbersome to quantify modulation of mechanics. Here, we 4 
show that concurrent AFM measurements enable relative mechanical characterization with an 5 
accuracy that is independent of calibration uncertainty. To demonstrate calibration-independent 6 
AFM, we have achieved concurrent single-molecule nanomechanical profiling of two different 7 
proteins. Using orthogonal fingerprinting strategies to sort individual unfolding events, 8 
differences in mechanical unfolding forces can be obtained with a 6-fold improvement in 9 
accuracy and a 30-fold increase in throughput. Importantly, the performance of calibration-10 
independent AFM is maintained even when averaging data from multiple, independent 11 
experiments.  12 
  13 
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INTRODUCTION 1 
The development of Atomic Force Microscopy (AFM) has enabled imaging the nanoscale with 2 

unprecedented length resolution, revolutionizing nanotechnology, materials science, chemistry 3 

and biology 1,2. AFM is based on the detection of interaction forces between a sample and a 4 

microfabricated cantilever, the force probe of the technique. The ability of AFM to measure 5 

forces at the nano and micro scales can be exploited to image surface topology, while 6 

simultaneously quantifying mechanical parameters such as stiffness, viscoelasticity, and 7 

adhesion forces 2-4. Traditionally, low-scanning speeds have limited the reach of AFM; 8 

however, recent developments involving miniaturized cantilevers have achieved imaging at 9 

video frame rates, launching the field of high-speed AFM 5. Due to its force sensitivity down to 10 

picoNewtons (pN), AFM is also used in force-spectroscopy mode to examine single-molecule 11 

dynamics and ligand-receptor interactions under force 6-8, of relevance for cellular stiffness, 12 

mechanosensing and mechanotransduction 9-12. 13 

 14 
A key limitation of quantitative AFM stems from uncertain calibration of the spring constant 15 

(𝑘𝑠𝑐) of the cantilever, which is needed to determine force values 13. Different calibration 16 

methods to estimate 𝑘𝑠𝑐  have been developed, differing in their simplicity, damage to the 17 

cantilever tip, experimental compatibility and associated uncertainty. Estimates of calibration 18 

uncertainty up to 25% are usually reported 14; however, even higher inaccuracies can result from 19 

defects in individual cantilevers, and from unpredictable changes in 𝑘𝑠𝑐 during experimentation 20 

due to material deposition, mechanical drift and wear 6,15.  21 

 22 

Force calibration uncertainties in AFM lead to inaccurate quantification of mechanical 23 

properties, a situation that is worsened in AFM modes where the elusive geometry of the 24 

cantilever tip is required to extract mechanical information 16. Indeed, comparative AFM studies 25 

to characterize mechanical modulation of proteins, materials and cells are challenging, since 26 

they necessitate multiple experiments, each one affected by different calibration errors 17,18. As a 27 

result, there is a pressing need to develop methods that can overcome inaccurate AFM 28 

calibration 17. The traditional approach to increase statistical power of AFM mechanical 29 

determinations is to repeat experiments, since individual calibration errors are more probable to 30 

be averaged out as more experiments are included in the analysis 19. The drawback is a 31 

considerable loss of throughput of the technique. 32 

 33 

Theoretically, a manner to overcome calibration errors in comparative AFM studies is to 34 

measure the samples concurrently in the same experiment, using the same cantilever and under 35 

the same calibration parameters 20-22. Concurrent measurements would also increase the 36 

throughput of AFM since no additional experiments would be needed to compensate for 37 

individual calibration errors. Here, we use error propagation analysis, Monte Carlo simulations, 38 

protein engineering, and single-molecule force-spectroscopy AFM to understand how 39 

calibration errors impact determination of mechanical properties by AFM, and develop 40 

orthogonal fingerprinting as a simple and widely applicable strategy for concurrent 41 

nanomechanical profiling of proteins under the same calibration parameters. Concurrent 42 

measurements lead to drastically improved accuracy and throughput of single-molecule force-43 

spectroscopy AFM. We propose that similar strategies can be easily implemented in other AFM 44 

modes to achieve equivalent improvements in performance.   45 
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Figure 1. Concurrent mechanical profiling by AFM circumvents inaccurate force calibration. (A) Left: 

Schematic representation of the traditional strategy used to measure mechanical stability of proteins by AFM, in 

which data are obtained in multiple, independent AFM experiments under different force calibration parameters 

(see also Supplementary Figure 1). Middle: Results from two independent AFM experiments in which a (C3)8 

polyprotein is pulled under a 40 pN/s linear increase in force. Due to uncertain calibration of the cantilever’s 

spring constant (𝑘𝑠𝑐), force values are affected by errors that differ between experiments. We show two individual 

unfolding traces of the (C3)8 polyprotein, in which mechanical unfolding events of individual C3 domains are 

detected by increases of 24 nm in the length of the polyprotein. Right: Experimental cumulative unfolding 

probability distributions obtained from 117 (Experiment 1) and 191 (Experiment 2) C3 unfolding events. The 

corresponding  𝑚𝐹𝑢 values are 98.7 and 82.9 pN, respectively. (B) Distributions of ∆𝑚𝐹𝑢 obtained by Monte 

Carlo simulations, considering the same total number of experiments and unfolding events for both traditional 

(blue) and concurrent measurements (black). We considered 2 experiments, 200 total unfolding events per protein, 

and a 3.6% calibration uncertainty (C.U.) (C) Keeping the number of experiments constant (nexp=2), the Relative 

Standard Deviation (RSD) of the distribution of ∆𝑚𝐹𝑢 decreases with the total number of unfolding events both in 

traditional (blue) and in concurrent measurements (black). (D) Keeping the same number of events per experiment 

(nevents per experiment = 200, in the traditional approach, and 100 in the concurrent strategy), the RSD of the distribution 

of ∆𝑚𝐹𝑢 decreases with the number of experiments (blue: traditional strategy; black: concurrent measurements). 

(E) The relative improvement in the RSD of ∆𝑚𝐹𝑢 distributions obtained by the concurrent strategy increases with 

the number of events per experiment, and remains fairly insensitive to the number of averaged experiments. (F) 

RSD of the distributions of ∆𝑚𝐹𝑢 at increasing calibration uncertainties for the traditional (blue) and the 

concurrent (black) strategies. The remaining simulation parameters are the same as in panel B. In panels B-F, the 

number of events per experiment and protein in the concurrent approach was half of the number of events in the 

traditional strategy so that RSDs were compared between conditions with equal total number of events. 
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RESULTS 1 

Interexperimental variation of mechanical properties obtained by traditional AFM  2 

To understand how errors in calibration of atomic force microscopes lead to inaccurate 3 

determination of mechanical properties, we have measured protein mechanical stability by 4 

single-molecule force-spectroscopy AFM 6 (Figure 1A, Supplementary Figure 1). This AFM 5 

mode is very well suited to examine propagation of calibration errors since protein unfolding 6 

forces are obtained directly from experimental data and do not depend on further modelling or 7 

approximations. 8 

 9 

We first measured the resistance to mechanical unfolding of the same protein in different, 10 

independently calibrated AFM experiments. We produced a polyprotein containing eight 11 

repetitions of the C3 domain of human cardiac myosin-binding protein C (Supplementary 12 

Figure 2, Supplementary Text 1) and subjected individual (C3)8 polyproteins to a linear increase 13 

in force of 40 pN/s using a force-clamp atomic force microscope. Results from two independent 14 

experiments are shown in Figure 1A. Mechanical force triggers the stochastic unfolding of 15 

individual C3 domains. These unfolding events are detected as 24 nm step increases in the 16 

length of the polyprotein (Figure 1A, middle; Supplementary Figure 3A). We measured the 17 

force at which the unfolding events occur and calculated distributions of unfolding forces 23. 18 

Despite the fact that both distributions are well defined (n > 115 events), the difference in their 19 

mean unfolding force (∆𝑚𝐹𝑢) is 19% (Figure 1A, right). The magnitude of this 20 

interexperimental variation is in agreement with the spread of 𝑚𝐹𝑢 values reported in the 21 

literature for other proteins 19. These differences can mask comparable changes in mechanical 22 

properties induced by disease-causing mutations 18 or posttranslational modifications 24, which 23 

is a key limitation of traditional AFM. 24 

 25 

Interexperimental variations in 𝑚𝐹𝑢 of proteins are typically interpreted in terms of different 26 

errors in the calibration of AFM cantilevers, a procedure that can entail 25% uncertainty 6,13,14,20. 27 

We used Monte Carlo simulations to examine how errors originating from uncertain cantilever 28 

calibration propagate to 𝑚𝐹𝑢 (See Methods). Briefly, in each simulated experiment we impose 29 

an error to the force that is randomly drawn from a normal distribution defined by a Relative 30 

Standard Deviation (RSD) that is equal to the considered calibration uncertainty. After 31 

definition of the error in force for a cycle, a kinetic Monte Carlo algorithm is used to obtain 32 

distributions of unfolding forces for a given number of protein domains subjected to a nominal 33 

40 pN/s increase in force. For each one of the 1,000 cycles of the simulation, we calculate the 34 

corresponding ∆𝑚𝐹𝑢 considering a certain number of independent experiments, each one 35 

affected by a different calibration error. Simulations return the distribution of ∆𝑚𝐹𝑢 values 36 

obtained in the 1,000 cycles. The spread of the distribution, which is a measure of the accuracy 37 

of AFM experiments, is quantified by its RSD. 38 

 39 

Using our Monte Carlo procedure, we have simulated mechanical protein unfolding under a 40 
modest 3.6% force calibration uncertainty. This value is a good estimate of the lowest 41 
uncertainty that can be achieved by the thermal fluctuations method, typically used in single-42 
molecule AFM studies (Supplementary Text 2, Supplementary Figure 4) 6. Figure 1B shows the 43 

simulated distribution of ∆𝑚𝐹𝑢 obtained from two independent AFM experiments in which the 44 
same protein is probed (200 unfolding events per experiment). It is remarkable that two mean 45 
unfolding forces obtained in different cycles can differ by more than 25% (Supplementary 46 
Figure 5A). Hence, although conservative, a mere 3.6% inaccuracy in cantilever calibration can 47 
explain considerably higher differences in 𝑚𝐹𝑢 obtained in traditional AFM experiments.  48 
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Accuracy of concurrent AFM experiments is insensitive to calibration uncertainty 1 

It has been argued that concurrent determination of ∆𝑚𝐹𝑢using a single cantilever, in the same 2 

experiment, could minimize the error associated with force calibration 20-22. However, to the best 3 

of our knowledge, the resulting improvement in accuracy has not been quantified. We have used 4 

our Monte Carlo simulations to estimate the accuracy achieved by concurrent measurement of 5 

mechanical unfolding of two proteins. Considering equal total number of events and 6 

experiments, and a 3.6% calibration uncertainty, we find that the RSD of the distribution of 7 

∆𝑚𝐹𝑢 decreases from 5.0% to 3.2% when measurements are taken concurrently (Figure 1B). 8 

RSD values are further reduced at higher number of unfolding events, as expected from better 9 

definition of the distribution of unfolding forces (Figure 1C, Supplementary Figure 5B). 10 

Unexpectedly, averaging multiple concurrent experiments leads to further reductions in RSD, 11 

despite the fact that each individual experiment is performed under different calibration 12 

parameters (Figure 1D). Increasing the number of events or experiments also results in better 13 

accuracy when proteins are probed in traditional, separate experiments (Figure 1 C,D). We find 14 

that the relative improvement in accuracy achieved by concurrent over traditional AFM 15 

increases with the number of unfolding events per experiment, and remains fairly constant at 16 

increasing number of experiments (Figure 1E). Hence, we conclude that averaging independent 17 

AFM experiments in which two proteins are probed concurrently retains statistical power, even 18 

if those experiments are affected by different calibration errors.  19 

 20 

All our simulations in Figure 1B-E were run considering a 3.6% uncertainty in force calibration, 21 

which is much smaller than usually reported 6,13,14,20. Hence, we estimated the RSD of the 22 

distribution of ∆𝑚𝐹𝑢 at increasing calibration uncertainties. As expected, higher calibration 23 

uncertainties lead to much increased RSD in traditional AFM, whereas the RSD of concurrent 24 

distributions remains insensitive to the calibration uncertainty (Figure 1F), even when data from 25 

several independent experiments are averaged (Supplementary Figure 6A).  26 

 27 

Orthogonal fingerprinting enables concurrent characterization of proteins by AFM 28 

Results in Figure 1D show that under a modest 3.6% uncertainty in force, concurrent AFM 29 

measurements can reach the same level of accuracy with 2-4 times less experiments than the 30 

traditional approach. Furthermore, at high values of calibration uncertainty, the accuracy of 31 

concurrent measurements can be 6 times higher than in the traditional approach (Figure 1F). 32 

These remarkable improvements in throughput and accuracy prompted us to design a general 33 

strategy to enable concurrent measurement of mechanical properties of proteins. 34 

 35 

Having methods to identify single-molecule events is a fundamental requirement of force-36 

spectroscopy AFM. In the case of mechanical characterization of proteins, this need is fulfilled 37 

by the use of polyproteins, which provide molecular fingerprints that easily discriminate single-38 

molecule events from spurious, non-specific interactions 25,26 (Supplementary Figure 3). As 39 

exemplified in Figure 1A, mechanical unfolding of polyproteins produce repetitive events 40 

whose length fingerprints the domain of interest. If two polyproteins are to be measured 41 

concurrently in the same experiment, it is imperative that they have different fingerprinting 42 

unfolding lengths. Here, we propose a widely applicable manner of achieving such orthogonal 43 

fingerprinting (OFP) through the use of heteropolyproteins, in which marker proteins are fused 44 

to the proteins of interest 27. Since OFP identifies proteins through the unfolding length of the 45 

marker domains, proteins of interest to be compared in concurrent AFM measurements can have 46 

the same unfolding length (e.g. mutant proteins). To test whether heteropolyproteins can be 47 
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employed to achieve OFP during concurrent measurement of proteins by AFM, we have 1 

measured the mechanical stability of the C3 domain in different polyprotein contexts.  2 

 3 

We first followed a single-marker strategy using the heteropolyprotein (C3-L)4 (Figure 2, 4 

Supplementary Figure 2 and Supplementary Text 1). In (C3-L)4, we used protein L as a marker 5 

since its unfolding length is different from the one of C3 19. Indeed, mechanical unfolding of 6 

(C3-L)4 under a 40 pN/s ramp results in the appearance of 16 and 24 nm steps, which 7 

correspond, respectively, to the unfolding of L and C3 domains (Figure 2B, left, Supplementary 8 

Figure 3B). We selected unfolding traces of (C3)8 and (C3-L)4, obtained in independent, 9 

traditional fingerprinting (TFP) experiments, and classified them according to the number of 16 10 

and 24 nm events they contain. Our results show that a gating criterion of n(16nm) = 0 and 11 

n(24nm) > 2 unambiguously identifies traces coming from (C3)8, whereas traces resulting from 12 

(C3-L)4 can be safely assigned when n(16nm) > 1 and 0 <  n(24nm) < 5 (Figure 2B, right). We 13 

analyzed 17 such TFP experiments and obtained distributions of unfolding forces for C3 in the 14 

 
Figure 2. Orthogonal fingerprinting enables concurrent measurement of proteins in AFM. (A) 
Schematic representation of the traditional and orthogonal fingerprinting (FP) strategies. Left: in traditional 

FP, (C3)8 and (C3-L)4 are measured in different AFM experiments. Right: In orthogonal FP both polyproteins 

are measured concurrently in the same experiment. (B) Left: representative unfolding traces of one (C3)8 

molecule (red), in which five 24 nm unfolding events are detected, and one (C3-L)4 polyprotein (black) in 

which two 24 nm and three 16 nm unfolding events are observed. Right: Mechanical unfolding of (C3)8 (red) 

and (C3-L)4 (black) were measured in separate experiments. Individual traces were classified according to the 

number of 16 and 24 nm steps they contain. The plot shows the frequency of the traces that have different 

combinations of unfolding events, as indicated by the size of the dots. The rectangles represent gating 

strategies that unequivocally identify traces coming from (C3)8  or (C3-L)4. (C) Experimental cumulative 

unfolding probability distribution of the C3 domain in the context of (C3)8 (11 experiments, 1334 events, red) 

and (C3-L)4 (6 experiments, 177 events, black), following TFP. (D) (C3)8 and (C3-L)4 polyproteins were 

measured concurrently in the AFM. Resulting traces were classified according to the number of 16 and 24 nm 

events they have.  The plot shows the frequency of the traces that have different combinations of unfolding 

events, as indicated by the size of the dots. The gating criterion defined in panel B allows the classification of 

individual traces as resulting from (C3)8 (red rectangle) or (C3-L)4 (black rectangle). (E) Experimental 

cumulative unfolding probability distribution of the C3 domain in the context of (C3)8 (625 events, red) and 

(C3-L)4 (311 events, black), resulting from unfolding data obtained in 5 independent OFP experiments. RSD 

values in the insets of panels C and E are estimated using Monte Carlo simulations that consider extreme 

values of calibration uncertainty (C.U.) (see also Supplementary Figure 7A). The pulling rate in all 

experiments was 40 pN/s. 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 11, 2018. ; https://doi.org/10.1101/293506doi: bioRxiv preprint 

https://doi.org/10.1101/293506


8 
 

context of both polyproteins, which we found to be very similar (𝑚𝐹𝑢 = 90. 7 and 88.4 pN for 1 

the homo and the heteropolyproteins, respectively, Figure 2C). We used our Monte Carlo 2 

simulations to estimate the RSD associated to ∆𝑚𝐹𝑢 that is expected from the actual number of 3 

experiments and events obtained (Figure 2C, Supplementary Figure 7A, Supplementary Table 4 

1). 5 

 6 

Following validation of the polyprotein gating criterion (Figure 2B), we measured (C3)8 and 7 

(C3-L)4 concurrently in OFP experiments. Single-molecule traces were classified according to 8 

the number of 16 and 24 nm steps they contain, and sorted as coming from the (C3)8 or (C3-L)4 9 

before analysis of unfolding data (Figure 2D). As in the case of TFP experiments, the unfolding 10 

probability distributions of C3 in the context of (C3)8 and (C3-L)4 are very similar (𝑚𝐹𝑢 = 96.3 11 

and 93.4 pN for the homo and the heteropolyproteins, respectively, Figure 2E). However, only 5 12 

OFP experiments were required to reach a lower RSD than in TFP, a 3 times higher speed of 13 

data acquisition (Figure 2C,E, Supplementary Figure 7A). 14 

 15 

Dual-marker orthogonal fingerprinting overcomes confounding protein dimerization 16 

In the AFM experiments reported in Figures 1 and 2, polyproteins are picked up by the 17 
cantilever through non-specific physisorption. Hence, experimental traces can contain different 18 
number of unfolding events (Figure 2B). Non-specific protein pickup also leads to the 19 
occasional appearance of traces containing more unfolding events than engineered domains in 20 
the polyprotein, an effect that results from polyprotein dimerization 28. For instance, in Figure 21 
2B a few traces with n(24 nm) > 8 are identified when pulling from (C3)8. Comparison of 22 
Figures 2B and 2D identifies a new population of events at n(24nm) > 4 and n(16nm) > 1 that 23 
appear only when (C3)8 and (C3-L)4 are measured concurrently in the same experiment, which 24 
we interpret as heterodimers between (C3)8 and (C3-L)4. In the context of OFP, 25 
heterodimerization hampers proper assignment of traces, since there is a non-zero probability 26 
that some heterodimers are included in the gating region of (C3-L)4. As a result, a fraction of 27 
events coming from (C3)8 could be mistakenly assigned to (C3-L)4  28 
 29 
In general, the degree of protein dimerization in single-molecule AFM is dependent on the 30 
particular experimental conditions. Hence, heterodimerization poses a challenge to OFP, whose 31 
extent may vary depending on the system to study. However, we hypothesized that difficulties 32 
coming from protein dimerization could be overcome by using a second protein marker, since 33 
traces originating from dimers would be fingerprinted by the presence of both marker proteins. 34 
We chose the protein SUMO1 as a second marker because its unfolding length is different from 35 
those ones of C3 and protein L 29. We engineered the heteropolyprotein (C3-SUMO1)4 and 36 
pulled it in the AFM (Supplementary Figure 2). Two population of unfolding steps, at 20 nm 37 
and 24 nm are detected, corresponding to the unfolding of SUMO1 and C3, respectively 38 
(Supplementary Figure 3C).  39 
 40 
Having two marker proteins enables gating criteria that are based exclusively on the presence of 41 
the marker domains, in a manner that protein dimers can be identified and excluded from the 42 
analysis (Figure 3A,B, Supplementary Figure 8). According to experiments in which (C3-L)4 43 
and (C3-SUMO1)4 are measured separately, we used the gating criterion that n(16nm) > 1 and 44 
n(20nm) = 0 marks unfolding of (C3-L)4, and n(20nm) > 1 and n(16nm) = 0 defines unfolding 45 
of (C3-SUMO1)4, which only misclassifies 1 out of 136 traces. Following this gating criterion, 46 
we determined the distribution of unfolding forces of C3 in the context of (C3-SUMO1)4 and 47 
compared the results with C3 unfolding in the context of (C3-L)4, both in TFP and OFP (Figure 48 
3C,D). Although the 𝑚𝐹𝑢 of C3 in (C3-L)4 appears to be 12% higher in TFP experiments (𝑚𝐹𝑢 49 
= 79.2 and 88.4 pN for the SUMO1- and L-containing heteropolyproteins, respectively), 50 
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differences vanish in OFP experiments (𝑚𝐹𝑢 = 89.5 and 90.0 pN for the SUMO1- and L-1 

containing heteropolyproteins, respectively). The RSD of the distribution of ∆𝑚𝐹𝑢, as estimated 2 

from Monte Carlo simulations fed with the actual number of experiments and events, is 2-3 3 
times smaller in OFP than in TFP (Figure 3C,D, Supplementary Figure 7B, Supplementary 4 
Table 1) 5 
 6 

Improvement in accuracy by balancing concurrent AFM datasets 7 
Our Monte Carlo simulations show that the improvement in accuracy of concurrent AFM is 8 
independent of calibration uncertainty, and is preserved when multiple AFM experiments are 9 
averaged (Figure 1E,F). Here, we propose a model for the propagation of calibration errors in 10 
concurrent single-molecule AFM experiments that accounts for both observations. Considering 11 

that every unfolding force measured in the AFM is affected by an error , the following 12 

equation for the measured ∆𝑚𝐹𝑢 can be derived (Supplementary Text 3): 13 

 14 

 

 
Figure 3. Dual-marker orthogonal fingerprinting overcomes confounding protein dimerization in 

concurrent AFM experiments. (A) Mechanical unfolding of (C3-SUMO1)4 and (C3-L)4 are measured in 

separate experiments by TFP. Individual traces are classified according to their number of 16 and 20 nm 

unfolding events, which mark the mechanical unfolding of protein L and SUMO1, respectively. The plot shows 

the frequency of the traces that have different combination of unfolding events, as indicated by the size of the 

dots. Traces coming from mechanical unfolding of (C3-SUMO1)4 are assigned when n(16nm) = 0 and n(20nm) 

> 1 (green rectangle), whereas (C3-L)4 events are identified by n(16nm) > 1 and n(20nm) = 0. (B)  Mechanical 

unfolding of (C3-SUMO1)4 and (C3-L)4, as measured concurrently in OFP experiments.  The plot shows the 

frequency of the traces that have different combination of unfolding events, as indicated by the size of the dots. 

The gating strategy defined in panel A allows the classification of the traces as originating from (C3-SUMO1)4 

(green rectangle) or (C3-L)4 (black rectangle). (C) Experimental cumulative unfolding probability distribution of 

the C3 domain in the context of (C3-L)4 (6 experiments, 177 events, black; data is also presented in Figure 2C) 

and (C3-SUMO1)4 (8 experiments, 742 events, green), as measured in TFP. (D) Experimental cumulative 

unfolding probability distribution of the C3 domain in the context of (C3-L)4 (873 events, black) and (C3-

SUMO1)4 (1043 events, green), resulting from unfolding data obtained in 14 independent OFP experiments. 

RSD values in the insets of panels C and D are estimated using Monte Carlo simulations that consider extreme 

values of calibration uncertainty (C.U.) (see also Supplementary Figure 7B). The pulling rate in all experiments 

was 40 pN/s. 
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∆𝑚𝐹𝑢
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = ∆𝑚𝐹𝑢

𝑟𝑒𝑎𝑙 + ∑ 𝛿𝑗̅ · (
𝑛𝑝𝑟𝑜𝑡1,𝑗

𝑛𝑒𝑣𝑒𝑛𝑡𝑠,𝑝𝑟𝑜𝑡1
−

𝑛𝑝𝑟𝑜𝑡2,𝑗

𝑛𝑒𝑣𝑒𝑛𝑡𝑠,𝑝𝑟𝑜𝑡2
)

𝑛𝑒𝑥𝑝

𝑗=1

 Equation 1 

 1 

In Equation 1, ∆𝑚𝐹𝑢
𝑟𝑒𝑎𝑙 is the value of ∆𝑚𝐹𝑢 that would be measured if there was no error in 2 

calibration, 𝑛𝑒𝑥𝑝 is the number of experiments, 𝑛𝑝𝑟𝑜𝑡1,𝑗 and 𝑛𝑝𝑟𝑜𝑡2,𝑗 are the number of 3 

unfolding events for both proteins being compared in concurrent experiment j, 𝑛𝑒𝑣𝑒𝑛𝑡𝑠,𝑝𝑟𝑜𝑡1 and 4 

𝑛𝑒𝑣𝑒𝑛𝑡𝑠,𝑝𝑟𝑜𝑡2 are the total number of unfolding events for each protein considering all 5 

experiments, and 𝛿𝑗̅ is the average value of the error in force in experiment j, which is 6 

considered to be equivalent for two proteins measured concurrently. 7 
 8 

Equation 1 shows that in concurrent measurements, ∆𝑚𝐹𝑢
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 can differ from ∆𝑚𝐹𝑢

𝑟𝑒𝑎𝑙 9 
according to the specific number of unfolding events obtained for each protein probed in the 10 

different AFM experiments contributing to the dataset, and to the magnitude of 𝛿𝑗̅ values, which 11 

originate from the uncertainty in calibration. Importantly, if the proportion of events for both 12 
proteins is constant in all experiments contributing to the dataset (“balanced” condition: 13 

𝑛𝑝𝑟𝑜𝑡1,𝑗 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ·  𝑛𝑝𝑟𝑜𝑡2,𝑗), Equation 1 leads to ∆𝑚𝐹𝑢
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = ∆𝑚𝐹𝑢

𝑟𝑒𝑎𝑙  , i.e. the 14 

measured unfolding force in concurrent experiments is not affected by errors in calibration, 15 
independently of the number of experiments contributing to the dataset. Our Monte Carlo 16 
simulations readily confirm this prediction. While simulations of 2 concurrent experiments with 17 
100 events per protein show that the resulting RSD of the distribution of ∆𝑚𝐹𝑢 does not depend 18 

on the uncertainty in calibration, breaking the balanced condition by considering 𝑛𝑝𝑟𝑜𝑡1,𝑒𝑥𝑝1 =19 

𝑛𝑝𝑟𝑜𝑡2,𝑒𝑥𝑝2 = 150 and 𝑛𝑝𝑟𝑜𝑡1,𝑒𝑥𝑝2 = 𝑛𝑝𝑟𝑜𝑡2,𝑒𝑥𝑝1 = 50, results in a dramatic increase of RSD 20 

especially at higher calibration uncertainties (Figure 4A). Under these unbalanced conditions, 21 
the performance of the concurrent strategy diminishes drastically and the obtained RSD 22 
approaches the one obtained in traditional AFM (Figure 4A).  23 
 24 
Since unbalanced datasets result in poorer performance of concurrent AFM, we examined 25 
whether balancing datasets through data removal could result in improved accuracy. We did 26 

Monte Carlo simulations of 2 concurrent experiments in which 𝑛𝑝𝑟𝑜𝑡1,𝑗 = 𝑛𝑝𝑟𝑜𝑡2,𝑗 = 50, i.e. we 27 

trimmed 100 extra events per protein so that both experiments had the same number of 28 
unfolding events for both proteins. As expected, the RSD of the distribution of ∆𝑚𝐹𝑢 after 29 

trimming becomes independent of the calibration uncertainty (Figure 4A). Even though having 30 
less events per experiment results per se in poorer definition of distributions of unfolding forces 31 

(Figure 1C, Supplementary Figure 5B), the RSD of the distribution of ∆𝑚𝐹𝑢 obtained using 32 

trimmed datasets becomes lower than in the case of more populated, unbalanced dataset at 33 
calibration uncertainties higher than 6% (Figure 4A).  34 
 35 
We have tested whether balancing experimental datasets also leads to improved performance of 36 
concurrent AFM. To this end, we have removed unfolding events so that every concurrent 37 

experiment verifies the balanced condition 𝑛𝑝𝑟𝑜𝑡1 =  𝑛𝑝𝑟𝑜𝑡2. Using Monte Carlo simulations, 38 

we estimate that the RSD of the distribution of ∆𝑚𝐹𝑢 obtained from the trimmed datasets 39 

becomes lower than the original RSD also at calibration uncertainties higher than 6-7% 40 
(Supplementary Figure 7). In the two different datasets analyzed, the differences between the 41 
balanced and the unbalanced conditions are less prominent than in Figure 4A. Indeed, we find 42 
that the extent of improvement in RSD by dataset trimming depends on the number of AFM 43 
experiments (Supplementary Figure 9). Hence, we recommend that improvement in accuracy by 44 
trimming datasets is estimated on a case-by-case basis using Monte Carlo simulations fed with 45 
actual experimental data, as we have done here. 46 
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 1 
DISCUSSION 2 
In this report, we address a main limitation of AFM arising from uncertain calibration of 3 
cantilevers. We show that concurrent measurements result in remarkable improvements in the 4 
determination of relative mechanical properties by AFM. Prompted by our findings, we have 5 
developed widely-adaptable orthogonal fingerprinting strategies for concurrent nanomechanical 6 
profiling of proteins by AFM, leading to more accurate comparison of protein unfolding forces. 7 
Hence, OFP can define mechanical hierarchies in multidomain, elastic proteins with higher 8 
accuracy, and lead to better descriptions of the mechanical effects of mutations, 9 
posttranslational modifications and the chemical environment on proteins and their complexes 10 
22,30-34. Our results pave the way for similar strategies to improve mechanical characterization of 11 
cells, materials and tissues using AFM. 12 
 13 
Concurrent AFM outperforms traditional AFM in three key aspects (Figures 4, 5): 14 
 15 

(i) The accuracy of concurrent AFM measurements is independent of calibration 16 
uncertainty even when multiple experiments are averaged (Figures 1F,4A, Supplementary 17 
Figure 6). Although the uncertainty of cantilever calibration is usually considered to lie in the 18 
range of 5-25% depending on the calibration method 14, real uncertainties are extremely 19 
challenging to estimate. We have provided an experimental lower bound of 3.6% uncertainty in 20 
cantilever calibration by the commonly-used thermal fluctuations method (Supplementary Text 21 
2). Uncertainties in spring constant calibration by the thermal fluctuations method have also 22 
been estimated by interlaboratory experiments, finding a value of up to 11% 35. However, 23 
neither of these approaches addresses more fundamental assumptions of the calibration 24 
procedures that can lead to higher calibration uncertainties 36. The improvements of OFP 25 
measurements with respect to traditional AFM in Figure 5 have been estimated considering a 26 
realistic calibration uncertainty of 10.8%. Due to its insensitiveness to calibration errors, 27 
concurrent AFM avoids the effects of artifacts that originate from difficult-to-detect defects in 28 
individual cantilevers, variations in the geometry of the cantilever tip that influence mechanical 29 
characterization of materials and cells 16, or changes in 𝑘𝑠𝑐 during experimentation. 30 

 
Figure 4. Improved accuracy and throughput of concurrent AFM. (A) Monte Carlo simulations show that 

balancing datasets obtained in concurrent AFM experiments improves RSD of distributions of ∆𝑚𝐹𝑢 at 

calibration uncertainties >6%. Balanced simulations (solid lines, 100 events per experiment and protein) 

considered 2 experiments per protein in traditional (blue), and 2 experiments in concurrent AFM (black). To 

simulate unbalanced datasets, uneven number of unfolding events (50/150) were considered for both proteins in 

the first simulated experiment, and the order was reversed in the second simulated experiment (dashed blue line). 

The effects of balancing datasets (“trimming”) was examined by running simulations at the lowest number of 

events for both experiments (50, dashed black line). (B) The experimental 𝑚𝐹𝑢 of C3 in the context of (C3-L)4 

and (C3-SUMO1)4 is compared in 14 individual OFP experiments, and the corresponding ∆𝑚𝐹𝑢 is represented 

(solid black circles). Using the same dataset, the equivalent ∆𝑚𝐹𝑢 in traditional AFM was calculated from 

pairwise comparisons of  𝑚𝐹𝑢 values from different experiments (open blue circles). (C) Improvement in the 

speed of data acquisition (red) and RSD in the distribution of ∆𝑚𝐹𝑢 (black) by concurrent measurements are 

estimated using Monte Carlo simulations at 10.8% calibration uncertainty (100 events per experiment and 

protein). The reference is a situation where the  𝑚𝐹𝑢 of two proteins are measured in 5 traditional experiments 

per protein.  
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Furthermore, the impact of concurrent AFM may be more relevant in the light of the advent of 1 
next generation cantilevers, which are pushing the AFM into ranges of force, stability and time 2 
resolution that are not accessible to conventional cantilevers, such in the case of high-speed 3 
AFM 37-40. These high-performance cantilevers are more challenging to calibrate 13, so we 4 
foresee that combination of concurrent strategies and next-generation cantilevers is set to 5 
expand the reach of AFM.  6 
 7 
(ii) Concurrent AFM shows much improved accuracy (Figures 1E,F, 4A,C). The 8 
increase in accuracy captured by Monte Carlo simulations is also observed in our limited 9 
experimental dataset, since the spread of ∆𝑚𝐹𝑢 in pairs of OFP experiments is lower than in 10 
traditional experiments (SD = 8.0 vs 11.2 pN, respectively) (Figure 4B). Keeping the speed of 11 
data acquisition constant at high calibration uncertainties, the accuracy achieved by OFP 12 
measurements can be 6 times higher than in traditional AFM (Figure 5, Supplementary Figure 13 
6B). 14 
 15 
(iii) The throughput of concurrent AFM is much increased. We estimate that OFP can 16 
obtain the same accuracy in the determination of ∆𝑚𝐹𝑢 over 30 times faster than traditional 17 
AFM at high calibration uncertainties (Supplementary Figure 6C). In addition, orthogonally 18 
fingerprinted proteins can be purified simultaneously (Supplementary Figures 2, 10), which 19 
results in extra savings in working time and reagents while ensuring equal experimental 20 
conditions for both proteins (Figure 5).   21 
 22 
The increase in throughput and accuracy of concurrent AFM come at the expense of each other. 23 
Hence, depending on the goals of a particular study, the experimenter can choose to favor one or 24 
the other, or to find a balance between both. In this regard, our Monte Carlo simulations can 25 
help experimental design. For instance, in Figure 4C, we show that different gains in accuracy 26 
and throughput can be achieved depending on the number of OFP experiments carried out to 27 
compare unfolding forces of two proteins.  28 
 29 

A direct application of our OFP data is to examine how neighboring domains affect protein 30 

nanomechanics. Indeed, the use of heteropolyproteins relies on the assumption that the effect of 31 

neighboring marker domains in the mechanics of a protein is negligible 27,41-43. Our highly 32 

accurate OFP experiments show that the mechanical stabilities of the C3 domain in the context 33 

of a (C3)8 homopolyprotein, or within a (C3-L)4 or (C3-SUMO1)4 heteropolyproteins, are very 34 

similar (Figures 2E, 3D). Hence, our data lend strong support to the use of heteropolyproteins in 35 

force-spectroscopy AFM. In particular, since we have shown that the mechanical properties of 36 

the C3 domain are independent of the flanking domains, the mechanical effects of mutations in 37 

C3 that cause heart disease can be directly tested using OFP strategies 44. 38 

 39 
Mechanical characterization of proteins under the same calibration has been achieved before 40 

using microfluidics, on-chip protein expression and AFM measurements in a combined atomic 41 

force/total internal reflection fluorescence microscope 20,21. An advantage of OFP is that it can 42 

be readily implemented in any force-spectroscopy AFM setup. In addition, different 43 

fingerprinting lengths provide additional reassurance of the identity of the probed proteins. In 44 

this regard, OFP is very well suited to compare mechanical properties of proteins with similar 45 

unfolding lengths, such as mutants of the same protein31,34. In those cases where proteins have 46 

different unfolding lengths, concurrent AFM measurements are of immediate application and 47 

can lead to the increase in accuracy and throughput described here. Examples include 48 

examination of the effect of disulfide bonds, protein misfolding, multimerization, and pulling 49 

geometry in the mechanical stability of proteins and their complexes 45-52, and determination of 50 
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rates of force-activated chemical reactions 53. In these examples, our Monte Carlo simulations 1 

can be applied to guide experimental design and interpretation (code is provided as 2 

Supplementary Material).  3 

 4 

We envision two features of OFP that will be subject of future optimization. Since the relative 5 

performance of OFP is better at high number of events (Figure 1E, Supplementary Text 4), we 6 

propose that even better accuracy can be achieved by taking advantage of high-strength single-7 

molecule tethering strategies, which can capture more unfolding events per experiment 21,28,54. In 8 

addition, OFP strategies hold the promise of further parallelization by the use of multiple 9 

marker proteins, which can take force-spectroscopy AFM to the realm of high-throughput 10 

single-molecule techniques 55. 11 

 12 

METHODS 13 

Monte Carlo simulations 14 

Monte Carlo simulations were programmed in Igor 6 (Wavemetrics). Simulations randomly 15 

assign an error in force according to a set uncertainty in the calibration between 3.6% and 18% 16 

(Supplementary Text 2). Every simulated AFM experiment is therefore affected by a different 17 

calibration error, except under the condition of OFP, in which two proteins are measured in the 18 

same AFM experiment and share error in force. Each cycle of the simulations returns a value of 19 

∆𝑚𝐹𝑢 for two proteins using Gaussian fits to their distribution of unfolding forces, obtained 20 

from a given number of independent experiments and unfolding events. We used a bin size of 21 

25 pN when simulating artificial datasets, or 5 pN when feeding simulations with real datasets 22 

 
Figure 5. Overview of concurrent single-molecule force-spectroscopy AFM. In the traditional approach, 

comparison of the mechanical stability of Protein a and Protein b involves independent purification and several 

AFM experiments to compensate for inaccurate calibration of the AFM. OFP is based on the production of 

heteropolyproteins composed of the proteins of interest fused to marker domains. Since the markers provide 

unequivocal fingerprints in single-molecule pulling experiments, OFP enables simultaneous purification and 

concurrent measurement in the AFM, circumventing errors in force calibration. Concurrent measurements can 

achieve the same accuracy as conventional single-molecule AFM with much better throughput (left). 

Alternatively, by keeping the speed of data acquisition constant, concurrent AFM by OFP considerably 

improves the accuracy of single-molecule AFM (right). The improvement in throughput and accuracy are 

estimated from Monte Carlo simulations at 10.8% calibration uncertainty (100 events per experiment and 

protein). 
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for better comparison with experimental distributions. Simulations calculate the RSD of the 1 

∆𝑚𝐹𝑢 distribution obtained from 1,000 cycles of the Monte Carlo procedure. RSD is defined as 2 

the SD of the distribution of ∆𝑚𝐹𝑢, normalized by the theoretical value of 𝑚𝐹𝑢 23. 3 

 4 

Distributions of unfolding forces are calculated through a kinetic Monte Carlo routine that 5 

considers that protein unfolding is exponentially dependent on force according to the Bell’s 6 

model 56:  7 

 8 

𝑟 =  𝑟0 · 𝑒𝐹·∆𝑥/𝑘𝑏·𝑇   Equation 2 9 

 10 

In Equation 2, 𝑟 is the rate of protein unfolding, 𝑟0 is the rate of unfolding at zero force, 𝐹 is the 11 

force experienced by the protein, ∆𝑥 is the distance to the transition state, 𝑘𝑏 is the Boltzmann 12 

constant and 𝑇 is the absolute temperature. In the simulations, we considered that 𝑘𝑏 · 𝑇 = 4.11 13 

pN·nm, 𝑟0 = 0.01 s-1and ∆𝑥 = 0.2 nm. We chose these values because they are a good estimate 14 

of mechanical unfolding parameters of C3. We checked that values of RSD are fairly insensitive 15 

to small variations in 𝑟0 and ∆𝑥 and therefore one single set of parameters is enough to calculate 16 

RSD of distributions of ∆𝑚𝐹𝑢 even if the mechanical parameters of the proteins to be compared 17 

are slightly different (Supplementary Table 2). 18 

 19 

The kinetic Monte Carlo to obtain distribution of unfolding forces compares a random number 20 

with the instantaneous probability of unfolding at a given force. If the unfolding probability is 21 

higher than the random number, unfolding is considered to happen at that force. Instantaneous 22 

probabilities of unfolding are calculated following a linear approximation 57: 23 

 24 

𝑃𝑢 = 𝑛 · 𝑟0 · 𝑒𝐹·𝜀·∆𝑥/𝑘𝑏·𝑇 · ∆𝑡  Equation 3 25 

 26 

In Equation 3, 𝑛 is the number of domains that remain folded at a particular force, 𝜀 is the error 27 

in force due to the uncertain cantilever calibration (Supplementary Text 2) and ∆𝑡 is the time 28 

step of the Monte Carlo. In the simulations, we used ∆𝑡 = 10-4 s, which ensures validity of the 29 

linear approximation, since 𝑛 · 𝑟 · ∆𝑡 is kept under 0.05 (Supplementary Text 5). Pilot 30 

simulations show that results do not vary if we use a smaller time step of 10-5 s.  31 

 32 

Protein production and purification 33 

The cDNAs coding for the C3-L and C3-SUMO1 constructs were produced by gene synthesis 34 

(NZY-Tech and Gene Art, respectively). The cDNA coding for the C3 domain was obtained by 35 

PCR. cDNAs coding for polyproteins were produced following an iterative strategy of cloning 36 

using BamHI, BglII and KpnI restriction enzymes, as described before 26,58. Final cDNAs were 37 

inserted in the pQE80L expression plasmid using BamHI and KpnI and the resulting plasmids 38 

were verified by Sanger sequencing. Full protein sequences are reported in Supplementary Text 39 

1. Polyproteins were expressed in BLR (DE3) E. coli strain. Briefly, fresh cultures (OD600 = 0.6-40 

1.0) are induced with 1mM IPTG for 3 hours at 37ºC and at 250 rpm. Cells are lysed by a 41 

combination of tip sonication and passes through a French Press. Polyproteins are purified from 42 

the soluble fraction through Ni-NTA agarose chromatography (Qiagen), following the 43 

recommendations of the supplier and adding 10 mM DTT to the buffers. Further purification is 44 

achieved by size-exclusion chromatography in an AKTA Pure 25L system using a Superose 6 45 

Increase 10/300 GL or a Superdex 200 Increase 10/300 GL column (GE Healthcare). The 46 

proteins are eluted in 10 mM Hepes, pH 7.2, 150 mM NaCl, 1 mM EDTA, which is also the 47 
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buffer used in AFM experiments. Purity of samples was evaluated using SDS-PAGE gels (a 1 

typical result is shown in Supplementary Figure 2). 2 

 3 

Force-spectroscopy by AFM 4 

Single-molecule AFM measurements were obtained in an AFS setup (Luigs & Neumann) 5 

according to established protocols 6.We used silicon nitride MLCT-C cantilevers with a 60-nm 6 

gold back side coating (Bruker), which we calibrated according to the thermal fluctuations 7 

method 59. Typical spring constant values ranged between 15 and 20 pN/nm. A small aliquot (2-8 

10 L) of the purified protein is deposited on the surface of a gold coated cover slip (Luigs & 9 

Neumann), or directly into the Hepes buffer contained in the fluid chamber of the AFS. The 10 

cantilever is brought in contact to the surface for 1-2 s at 500-2000 pN to favor formation of 11 

single-molecule tethers. Then, the surface is retracted to achieve the set point force. If a single-12 

molecule tether is formed, the force is increased linearly at 40 pN/s for 5 s while the length of 13 

the polyprotein is measured. This protocol ensures full unfolding of C3, L and SUMO1 domains 14 

(Supplementary Figure 3). Unfolding events are detected as increases in the length of the 15 

protein. In the initial characterization of polyproteins, we analyze all traces that contain at least 16 

two events of the same size, which allows to set a fingerprinting length for the domains (24 ± 1 17 

nm for C3, 16 ± 1 nm for protein L, and 20 ± 1 nm for SUMO1, see Supplementary Figure 3). 18 

For the rest of the analyses, we only considered traces that contain fingerprinting unfolding 19 

lengths. Unfolding forces were recorded and plotted as cumulative distributions. 𝑚𝐹𝑢 values 20 

were obtained from Gaussian fits to histograms of unfolding forces. Force inaccuracy due to 21 

laser interference was lower than 40 pN in all experiments (peak-to-peak height in baseline 22 

force-extension recordings) 6.  23 

  24 
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