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Abstract 22	
Growth differentiation factors 1 (GDF1) and 3 (GDF3) are members of the 23	
transforming growth factor superfamily (TGF-β) that is involved in 24	
fundamental early-developmental processes that are conserved across 25	
vertebrates. The evolutionary history of these genes is still under debate due 26	
to ambiguous definitions of homologous relationships among vertebrates. 27	
Thus, the goal of this study was to unravel the evolution of the GDF1 and 28	
GDF3 genes of vertebrates, emphasizing the understanding of homologous 29	
relationships and their evolutionary origin. Surprisingly, our results revealed 30	
that the GDF1 and GDF3 genes found in amphibians and mammals are the 31	
products of independent duplication events of an ancestral gene in the 32	
ancestor of each of these lineages. The main implication of this result is that 33	
the GDF1 and GDF3 genes of amphibians and mammals are not 1:1 34	
orthologs. In other words, genes that participate in fundamental processes 35	
during early development have been reinvented two independent times during 36	
the evolutionary history of tetrapods. 37	
 38	
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Introduction 44	
Growth differentiation factors 1 (GDF1) and 3 (GDF3) are members of the 45	
transforming growth factor superfamily (TGF-β) that were originally isolated 46	
from mouse embryonic libraries 1,2. They perform fundamental roles during 47	
early development, GDF1 has been mainly associated to the regulation of the 48	
left-right patterning, whereas GDF3 is mainly involved in the formation of the 49	
anterior visceral endoderm, mesoderm and the establishment of anterior-50	
posterior identity of the body 3–20. Deficiencies in GDF1/GDF3 give rise to a 51	
broad spectrum of defects including right pulmonary isomerism, visceral situs 52	
inversus, transposition of the great arteries, and cardiac anomalies among 53	
others 17,21–25. In addition to their developmental roles, GDF1 has been 54	
described as a tumor suppressor gene in gastric cells, counteracting 55	
tumorogenesis by stimulating the SMAD signaling pathway 26, and GDF3 has 56	
been associated with the regulation of adipose tissue homeostasis and 57	
energy balance during nutrient overload 27–29. 58	

The evolutionary history of the GDF1 and GDF3 genes is still a matter 59	
of debate due to the unclear definition of homologous relationships. 60	
Understanding homology is a fundamental aspect of biology as it allows us to 61	
comprehend the degree of relatedness between genes that are associated to 62	
a given phenotype in a group of organisms. This is particularly important for 63	
GDF1 and GDF3 as these genes perform biological functions during early 64	
stages of development that define key aspects of the body plan of all 65	
vertebrates 3,4,13–20,5–12. Until now, most of the inferences of the homology 66	
relationships of these genes have been based on functional information. For 67	
example, based on the developmental processes that these genes regulate, it 68	
has been suggested that the mammalian GDF1 gene is the true ortholog of 69	
the Vg1 (GDF1) gene found in amphibians 15,17,21. Furthermore, phylogenetic 70	
analyses performed by Andersson et al., (2007) were not able to define 71	
orthologous relationships between the GDF1 and GDF3 genes among 72	
vertebrates. However after performing genomic comparisons, these authors 73	
did propose that the GDF1 gene present in mammals is the true ortholog of 74	
the Vg1 (GDF1) gene present in amphibians 30. It was also suggested that the 75	
GDF3 gene could be an evolutionary innovation of mammals, as Andersson 76	
et al., (2007) did not find GDF3 sequences in the amphibian and bird 77	
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genomes 30,31. Given this scenario, the single copy gene found in amphibians 78	
and birds would be a co-ortholog of the mammalian genes 30. More recently, a 79	
second copy of a GDF gene (derrière) has been annotated at the 3´ side of 80	
the Vg1 (GDF1) in the genome of the western clawed frog (Xenopus 81	
tropicalis), thus further complicating the definition of homologous relationships 82	
and the origin of genes that accomplish fundamental roles during early 83	
development in vertebrates.  84	

With emphasis on understanding homologous relationships and their 85	
evolutionary origin, the goal of this study was to unravel the evolution of the 86	
GDF1 and GDF3 genes of vertebrates. Surprisingly, our phylogenetic 87	
analyses revealed that the GDF1 and GDF3 genes of amphibians and 88	
mammals are the products of independent duplication events of an ancestral 89	
gene in the ancestor of each of these groups. We also found the signature of 90	
two chromosomal translocations, the first occurred in the ancestor of 91	
tetrapods whereas the second was found in the ancestor of mammals. Thus, 92	
our results support the hypothesis that in amphibians and mammals, 93	
descendent copies of the same ancestral gene (GDF1/3) have independently 94	
subfunctionalized to perform key developmental functions in vertebrates. 95	
 96	
Results and Discussion 97	
Phylogenetic analyses suggest an independent origin of the GDF1 and 98	
GDF3 genes in mammals and amphibians 99	
From an evolutionary perspective, the definition of homologous relationships 100	
among GDF1 and GDF3 genes is still a matter of debate 30,31. The resolution 101	
of this homology is important as these genes are involved in fundamental 102	
developmental processes which are conserved all across vertebrates 8,32–34. 103	
Thus, if extant species inherited these genes from the vertebrate ancestor, the 104	
developmental processes in which GDF1 and GDF3 are involved have a 105	
single evolutionary origin and are comparable among species. 106	

Based on evolutionary analyses and the developmental processes in 107	
which GDF1 has been shown to participate, it has been suggested that GDF1 108	
in mammals, birds, and amphibians are 1:1 orthologs 15,17,21,30,35. Given that it 109	
has not been possible to identify copies of the GDF3 gene in amphibians and 110	
birds, it has been proposed that this gene is an evolutionary innovation of 111	
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mammals, and the single gene copy found in amphibians and birds is co-112	
ortholog to the mammalian duplicates 30. However, a second copy of a GDF 113	
gene has been annotated in the genome of the western clawed frog (Xenopus 114	
tropicalis) 36. This newly described gene is located at the 3´ side of the GDF1 115	
gene and indicates that amphibians, like mammals, also have a repertoire of 116	
two GDF genes (GDF1 (Vg1) and GDF3 (derrière)). This new finding further 117	
complicates the resolution of homologous relationships and the origin of 118	
genes involved in the early development of all vertebrates 8,32–34. 119	

Our maximum likelihood and Bayesian reconstructions revealed that 120	
the GDF1 and GDF3 genes of amphibians and mammals were both 121	
reciprocally monophyletic (Fig. 1), indicating that these genes originated 122	
independently in each of these two lineages (Fig. 1). In agreement with the 123	
literature, we found only one gene in sauropsids (e.g. birds, turtles, lizards 124	
and allies), suggesting that they retained the ancestral condition of a single 125	
gene copy as found in non-tetrapod vertebrates (e.g. coelacanths, bony fish, 126	
chondricthyes and cyclostomes)(Fig. 1). Dot-plot comparisons provided 127	
further support for the presence of a single gene copy in sauropsids as no 128	
traces of an extra GDF gene were present in the syntenic region of 129	
representative species of the group (Fig. 2). However, we cannot rule out an 130	
alternative scenario of duplication and subsequent gene loss in the ancestor 131	
of sauropsids. Thus, our evolutionary analyses suggest that the GDF1 and 132	
GDF3 genes present in amphibians and mammals diversified independently 133	
in the ancestor of each of these lineages. In other words, genes that 134	
participate in fundamental processes during early development have been 135	
reinvented two independent times during the evolutionary history of tetrapods. 136	
As a consequence of the independent origin of these genes in amphibians 137	
and mammals, they are not 1:1 orthologs.  138	

To further test our hypothesis of the independent origins of the GDF1 139	
and GDF3 genes in amphibians and mammals we performed topology tests. 140	
In these analyses we compared our phylogenetic tree (Fig. 1 and Fig. 3B) to 141	
the topology predicted from a one-duplication model in which the duplication 142	
event that gave rise to the GDF1 and GDF3 genes in amphibians and 143	
mammals occurred in the ancestor of tetrapods (Fig. 3A). In the one-144	
duplication model, it is assumed that the ancestor of sauropsids had two gene 145	

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 16, 2018. ; https://doi.org/10.1101/293522doi: bioRxiv preprint 

https://doi.org/10.1101/293522
http://creativecommons.org/licenses/by-nd/4.0/


copies and that subsequently one of these was lost. Thus, according to the 146	
one-duplication model (Fig. 3A), the predicted phylogeny would recover a 147	
monophyletic group containing GDF1 sequences from mammals, sauropsids, 148	
and amphibians sister to a clade containing GDF3 sequences from the same 149	
groups (Fig. 3A). Alternatively, the predicted phylogeny from the two-150	
duplication model would retrieve a clade containing GDF1 and GDF3 151	
sequences from mammals sister to a clade containing GDF1/3 sequences 152	
from sauropsids; additionally a clade containing GDF1 and GDF3 sequences 153	
from amphibians would be recovered sister to the mammalian/sauropsid clade 154	
(Fig. 3B). Results of the topology tests rejected the phylogeny predicted by 155	
the one-duplication model (Weighted Shimodaira and Hasegawa, p< 10-4; 156	
Weighted Kishino Hasegawa, p< 10-4). Thus, this result provided additional 157	
support to our hypothesis that the GDF1 and GDF3 genes of amphibians and 158	
mammals are the product of lineage independent duplication events in the 159	
ancestors of each of these groups. 160	

In the literature there are other cases of groups of genes that perform 161	
similar biological functions in a diversity of species but that have originated via 162	
lineage independent duplication events 37–43. Among these, the independent 163	
origin of the β-globin gene cluster in all main groups of tetrapods (e.g. therian 164	
mammals, monotremes, birds, crocodiles, turtles, squamates, amphibians) 165	
represents a well-documented phenomenon 41–43. This case is of particular 166	
interest as the two β-globin subunits that come from a gene family that has 167	
been reinvented several times during the evolutionary history of tetrapods are 168	
assembled in a tetramer with two α-globin subunits that belong to a group of 169	
genes that possess a single origin 37,41–43. Besides this example, the 170	
independent origin of gene families makes the task of comparison difficult, as 171	
the repertoire of genes linked to physiological processes in different lineages 172	
do not have the same evolutionary origin. Additionally, the fact that the 173	
evolutionary process can give rise to similar phenotypes following different 174	
mutational pathways makes the problem of comparing even more difficult 175	
(Natarajan et al., 2016). This is particularly important when extrapolating the 176	
results of physiological studies performed in model species to other 177	
organisms. 178	
 179	
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Two translocation events during the evolutionary history of the GDF1 180	
and GDF3 genes of tetrapods 181	
Based on the chromosomal distribution of the GDF1 and GDF3 genes and the 182	
conservation pattern of flanking genes, we propose that during the 183	
evolutionary history of tetrapods, these genes underwent two chromosomal 184	
translocation events (Fig. 4). According to our analyses the genomic region 185	
that harbors the single gene copy of chondricthyes, bony fish, and 186	
coelacanths is conserved, yet this region in these groups differs from the 187	
regions in which GDF1 and GDF3 are located in tetrapods. Overall this 188	
suggests that the first translocation event occurred in the ancestor of 189	
tetrapods (Fig. 4). Interestingly, the genomic region where the single gene 190	
copy is located in non-tetrapod vertebrates, which is defined by the presence 191	
of upstream (BMP2, HAO1, TMX4 and PLCB1) and downstream genes 192	
(FERMT1, LRRN4, CRLS1), is conserved in tetrapods. Given this, it is 193	
possible to identify the chromosomal location where the gene was located in 194	
the tetrapod ancestor before the first translocation event (Fig. 4). On the other 195	
hand, the fact that the mammalian GDF1 and GDF3 genes are located in 196	
different chromosomes suggests that the second translocation event occurred 197	
in the ancestor of the group (Fig. 4). In humans, the GDF1 gene is located on 198	
chromosome 19 while GDF3 is located on chromosome 12. In opossum 199	
(Didelphis virginiana) the GDF1 and GDF3 genes are located on 200	
chromosomes 3 and 8, respectively.  201	
 202	
Evolution of GDF1 and GDF3 genes in vertebrates 203	
In this study we present compelling evidence suggesting that genes involved 204	
in the formation of the primitive streak, anterior visceral endoderm, mesoderm 205	
and the establishment of the left-right identity 3,4,14–17,20,30,5–7,9–13 in amphibians 206	
and mammals are the product of independent duplications events. As such, 207	
these results indicate that the GDF1 and GDF3 genes of amphibians and 208	
mammals are not 1:1 orthologs. 209	
 Thus, according to our results the last common ancestor of vertebrates 210	
had a repertoire of one gene (GDF1/3), and this condition is maintained in 211	
actual species of cylostomes, chondricthyes, bony fish, and coelacanths (Fig. 212	
5). In the ancestor of tetrapods, the single gene copy was translocated from a 213	
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chromosomal region defined by the presence of the BMP2, HAO1, TMX4, 214	
PLCB1, FERMT1, LRRN4, CRLS1 genes to a chromosomal region defined by 215	
the presence of the CERS1, COPE, DDX49 and HOMER3 genes (Fig. 4). 216	
After this translocation, the ancestral gene underwent a duplication event in 217	
the amphibian ancestor, giving rise to the GDF1 (Vg1) and GDF3 (derrière) 218	
genes as they are found in actual species. In the case of the western clawed 219	
frog (Xenopus tropicalis) these genes are located in tandem on chromosome 220	
28 (Fig. 4). Sauropsids, the group that includes birds, crocodiles, turtles, 221	
lizards and snakes, inherited the ancestral condition of a single gene copy as 222	
is seen in non-tetrapod vertebrates (Fig. 5). Finally, in the ancestor of 223	
mammals, the ancestral gene also underwent a duplication event, giving rise 224	
to the GDF1 and GDF3 genes found in extant species of mammals. After 225	
duplication but before the radiation of the group, a second translocation event 226	
occurred in the ancestor of the group (Fig. 5). Thus, all mammals inherited a 227	
repertoire of two genes (GDF1 and GDF3) that are located on two 228	
chromosomes. 229	
 230	
Concluding remarks 231	
This study provides a comprehensive evolutionary analysis of the GDF1 and 232	
GDF3 genes in representative species of all main groups of vertebrates. The 233	
main focus of this study was to unravel the duplicative history of the GDF1 234	
and GDF3 genes and to understand homologous relationships among 235	
vertebrates. Understanding homology in this case is particularly important as 236	
these genes perform fundamental roles during early development that are 237	
conserved across vertebrates 8,32–34. Surprisingly, our results revealed that the 238	
GDF1 and GDF3 genes present in amphibians and mammals are the product 239	
of independent duplication events in the ancestor of each of these groups. 240	
Subsequently, the GDF1 and GDF3 genes of amphibians and mammals are 241	
not 1:1 orthologs. Our results also show that all other vertebrate groups - i.e 242	
non-tetrapods and sauropsids – maintained the ancestral condition of a single 243	
gene copy (GDF1/3). 244	

From an evolutionary perspective the independent duplication events 245	
that occurred in the ancestors of mammals and amphibians could have 246	
resulted in the division of labor, with some degree of redundancy, of the 247	
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function performed by the ancestral gene. In support of this idea, it has been 248	
shown that the GDF1 and GDF3 genes of mammals have partially redundant 249	
functions during development where GDF1 can to some degree compensate 250	
for the lack of GDF3 30. Additionally, it has also been shown that double 251	
knockout animals (GDF1-/- and GDF3-/-) present more severe phenotypes 252	
than those of either single knockout (GDF1-/- or GDF3-/-)30. Detailed 253	
comparisons of the developmental roles of the GDF1 and GDF3 genes 254	
between mammals and amphibians will shed light regarding the reinvention of 255	
genes that possess fundamental roles during early development. On the other 256	
hand, comparing mammals and amphibians with sauropsids will provide 257	
useful information regarding the evolutionary fate of duplicated genes. Finally, 258	
it would be interesting to study the evolutionary history of genes that 259	
cooperate with GDF1 and GDF3 during early development (e.g. nodal) 8,33,44 260	
in order to understand the evolutionary nature of the entire developmental 261	
network. 262	
 263	
Material and Methods 264	
DNA sequences and phylogenetic analyses 265	
We annotated GDF1 and GDF3 genes in representative species of chordates. 266	
Our study included representative species from mammals, birds, reptiles, 267	
amphibians, coelacanths, holostean fish, teleost fish, cartilaginous fish, 268	
cyclostomes, urochordates and cephalochordates (Supplementary dataset 1 269	
and 2). We identified genomic pieces containing GDF 1 and GDF3 genes in 270	
the Ensembl database using BLASTN with default settings or NCBI database 271	
(refseq_genomes, htgs, and wgs) using tbalstn (Altschul et al., 1990) with 272	
default settings. Conserved synteny was also used as a criterion to define the 273	
genomic region containing GDF1 and GDF3 genes. Once identified, genomic 274	
pieces were extracted including the 5´and 3´ flanking genes. After extraction, 275	
we curated the existing annotation by comparing known exon sequences to 276	
genomic pieces using the program Blast2seq with default parameters 277	
(Tatusova and Madden 1999). Putatively functional genes were characterized 278	
by an open intact reading frame with the canonical exon/intron structure 279	
typical of vertebrate GDF1 and GDF3 genes. Sequences derived from shorter 280	
records based on genomic DNA or cDNA were also included in order to attain 281	
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a broad and balanced taxonomic coverage. Amino acid sequences were 282	
aligned using the L-INS-i strategy from MAFFT v.7 45 (Supplementary Dataset 283	
3). Phylogenetic relationships were estimated using maximum likelihood and 284	
Bayesian approaches. We used the proposed model tool from IQ-Tree 46 to 285	
select the best-fitting model (JTT+F+R5). Maximum likelihood analysis was 286	
also performed in IQ-Tree 46 to obtain the best tree. Node support was 287	
assessed with 1000 bootstrap pseudoreplicates using the ultrafast routine. 288	
Bayesian searches were conducted in MrBayes v.3.1.2 47. Two independent 289	
runs of six simultaneous chains for 10x106 generations were set, and every 290	
2,500 generations were sampled using default priors. The run was considered 291	
to have reached convergence once the likelihood scores formed an 292	
asymptote and the average standard deviation of the split frequencies 293	
remained < 0.01. We discarded all trees that were sampled before 294	
convergence, and we evaluated support for the nodes and parameter 295	
estimates from a majority rule consensus of the last 2,000 trees. Sea squirt 296	
(Ciona intestinalis) and Florida lancelet (Branchiostoma floridae) BMP2 297	
sequences were used as outgroups. 298	
 299	
Assessment of conserved synteny 300	
We examined genes found up- and downstream of GDF1 and GDF3 in 301	
species representative of vertebrates. Synteny assessment were conducted 302	
for human (Homo sapiens), chicken (Gallus gallus), western-clawed frog 303	
(Xenopus tropicalis), coelacanth (Latimeria chalumnae), spotted gar 304	
(Lepisosteus oculatus), elephant shark (Callorhinchus milii) and sea lamprey 305	
(Petromyzon marinus). Initial ortholog predictions were derived from the 306	
EnsemblCompara database 48 and were visualized using the program 307	
Genomicus v91.0149. In other cases, the genome data viewer platform from 308	
the National Center for Biotechnology information was used. 309	
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Figure legends 320	
 321	
Figure 1. Maximum likelihood tree depicting evolutionary relationships among 322	
the GDF1 and GDF3 genes of chordates. Numbers on the nodes represent 323	
maximum likelihood ultrafast bootstrap and Bayesian posterior probability 324	
support values. BMP2 sequences from urochordates (Ciona intestinalis) and 325	
cephalochordates (Branchiostoma floridae) were used as outgroups. 326	
 327	
Figure 2. Dot-plots of pairwise sequence similarity between the GDF1 and 328	
GDF3 genes of the western clawed frog (Xenopus tropicalis) and the 329	
corresponding syntenic region in the American alligator (Alligator 330	
mississippiensis), Burmese python (Python bivittatus), chicken (Gallus gallus) 331	
and green turtle (Chelonia mydas). 332	
 333	
Figure 3. Schematic representations of alternative hypotheses of the sister 334	
group relationships among duplicated GDF genes in tetrapods. A) According 335	
to the one-duplication model the predicted phylogeny recovers a monophyletic 336	
group containing GDF1 sequences from mammals, sauropsids and 337	
amphibians sister to a clade containing GDF3 sequences from the same 338	
groups. B) The phylogenetic prediction from the two-duplication model 339	
retrieves a clade containing GDF1 and GDF3 sequences from mammals 340	
sister to a clade containing GDF1/3 sequences from sauropsids; additionally a 341	
clade containing GDF1 and GDF3 sequences from amphibians is recovered 342	
sister to the mammalian/sauropsid clade. 343	
 344	
Figure 4. Structure of the chromosomal region containing the GDF1 and 345	
GDF3 genes of vertebrates. Asterisks denote that the orientation of the 346	
genomic piece is from 3’ to 5’, gray lines represent intervening genes that do 347	
not contribute to conserved synteny. 348	
 349	
Figure 5. An evolutionary hypothesis of the evolution of the GDF1 and GDF3 350	
genes in vertebrates. According to this model the last common ancestor of 351	
vertebrates had a repertoire of one gene (GDF1/3), a condition that has been 352	
maintained in actual species of cylostomes, chondrichthyes, bony fish, 353	
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coelacanths and sauropsids. In the ancestor of tetrapods, the single gene 354	
copy was translocated to a different chromosomal location. After that, in the 355	
amphibian ancestor, the single gene copy underwent a duplication event 356	
giving rise to the amphibian GDF1 (Vg1) and GDF3 (derrière) genes. In the 357	
ancestor of mammals, the single gene copy also underwent a duplication 358	
event, giving rise to the mammalian GDF1 and GDF3 genes. After the 359	
duplication, but before the radiation of the group, a second translocation event 360	
occurred in the ancestor of the group. Thus, all mammals inherited a 361	
repertoire of two genes (GDF1 and GDF3) that were located on two 362	
chromosomes. 363	
  364	
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