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Abstract. The growing number of RNA-mediated regulation mecha-
nisms identified in the last decades suggests a widespread impact of
RNA-RNA interactions. The efficiency of the regulation relies on highly
specific and coordinated interactions, while simultaneously repressing the
formation of opportunistic complexes. However, the analysis of RNA in-
teractomes is highly challenging due to the large number of potential
partners, discrepancy of the size of RNA families, and the inherent noise
in interaction predictions.

We designed a recursive 2-step cross-validation pipeline to capture the
specificity of ncRNA-mRNA interactomes. Our method has been de-
signed to detect significant loss or gain of specificity between ncRNA-
mRNA interaction profiles. Applied to snoRNA-mRNA in Saccharomyces
Cerevisae, our results suggest the existence of a repression of ncRNA
affinities with mRNAs, and thus the existence of an evolutionary pres-
sure inhibiting such interactions.
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2 Antoine Soulé et al.

1 Introduction

Evidence of the breadth of the role of ribonucleic acids in gene regulation are
now multiplying. For instance, in eukaryotes microRNAs bind mRNAs to control
gene expression [1], and in prokaryotes the OxyS RNA interacts with the fhlA
mRNA to prevent ribosome binding and thus inhibit translation [2].

Among all non-coding RNAs (ncRNAs) already identified, the category of
small nucleolar RNAs (snoRNAs) is of particular interest. snoRNAs form a large
class of well-conserved small ncRNAs that are primarily associated with chemi-
cal modifications in ribosomal RNAs (rRNAs) [3]. Recent studies revealed that
orphan snoRNAs can also target messenger RNAs (mRNAs) in humans [4] and
mice [5], and probably contribute to regulate expression levels. However, despite
recent investigations there are to date no evidence that similar snoRNA-mRNA
interactions occur in simpler unicellular microorganisms [6, 7].

Interestingly, it turns out that RNA-based gene regulation mechanisms have
been primarily linked to higher eukaryotes [8], although it is still not clear if
this observation results from an incomplete view of RNA functional landscape
or the existence of a negative pressure preventing RNA to interfere with other
transcripts.

Our understanding of RNA-mediated regulation mechanisms significantly im-
proved in recent years. In addition to well-documented molecular pathways (e.g.
[2]), regulation can also occur at a higher level through global affinities between
ncRNAs and mRNAs populations [9]. Furthermore, Umu et al. [10] showed an-
other intriguing, yet complementary, level of control of gene expression that
could explain discrepancies previously observed between expressions of mRNAs
and the corresponding protein expressions in bacteria [11, 12]. In their study, the
researchers extracted a signal suggesting a negative evolutionary pressure against
random interactions between ncRNAs and mRNAs that could reduce transla-
tion efficiency. However, these results cannot be trivially extended to eukaryotes
where the role of the nucleus has to be considered.

In this study, we investigate this phenomenon of avoidance of random inter-
actions between ncRNA and mRNA in Saccharomyces Cerevisae. In particular,
we focus our analysis on the bipartite interactome between snoRNAs and mR-
NAs. Indeed, the snoRNA family is an ancient and large class of ncRNAs for
which the mechanism of mRNA avoidance could explain the absence of known
interactions between snoRNAs and mRNAs in unicellular eukaryotes.

A major challenge of this analysis stems from severely unbalanced datasets.
While we retrieve more than 6000 annotated mRNAs, we could only recover
less than one hundred snoRNAs [13]. Such disparity is a serious source of bias
that should be carefully addressed. Therefore, we developed a customized ensem-
ble learning pipeline to quantify the specificity of RNA binding profile between
unbalanced RNA families.

First, we use state-of-the-art prediction tools to compute the snoRNA-mRNA
interactome as the set of all interactions between snoRNAs and mRNAs. Then,
we design an ensemble learning pipeline to identify statistically significant biases
in the distribution of binding affinities between classes of RNAs. Importantly, in
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Negative pressure against snoRNA-mRNA interactions 3

order to remove any possible source of bias during the parametrization of classi-
fiers, we introduce a second level of Leave-One-Out Cross-Validation (LOOCV)
to avoid overfitting. Our results reveal that although classes of snoRNAs ex-
hibit preferential interaction patterns with mRNAs, this selective pressure is
not as strong as initially anticipated. It corroborates previous hypothesis on
prokaryotes, and suggests the presence of a phenomenon of avoidance of random
interactions between ncRNAs and mRNAs in single-celled eukaryotes.

2 Approach

We aim to characterize the strength and specificity of random ncRNA-mRNA
interactions in Saccharomyces Cerevisae, although our work primarily focuses on
snoRNA-mRNA interactions. Our data set includes smaller categories of ncR-
NAs (e.g. spliceosomal RNAs) used for an additional control of our results.
We computed ncRNA-mRNA interactomes from ncRNAs and mRNAs sequences
using two different state-of-the-art computational prediction tools (RNAup [14]
and intaRNA [15]). Those predictions are to serve as an approximation for the
propensity of those ncRNAs to form crosstalk interactions with mRNAs. By
using an ensemble learning pipeline, we approximated the specificities of in-
teraction profiles in those interactomes. We also approximated the specificities
of ncRNAs sequences with machine learning upon the Kmer compositions of
the said sequences. The comparison of the approximated specificities highlights
a global pressure inhibiting the affinity ncRNA-mRNA interactions in Saccha-
romyces Cerevisae.
We finally completed this work by a collection of complementary control tests
providing a better understanding of the limitations of this work. Data, code, raw
results and supplementary displays are available at http://jwgitlab.cs.mcgill.ca/
Antoine/nested loocv pipeline/tree/master.

3 Methods

3.1 Dataset

Saccharomyces Cerevisae We focus our study on a single organism: Saccha-
romyces Cerevisae. Working on a single organism ensures that all the molecules
co-evolved and that their interactions were under the same evolutionary pressure.
We also focus our study on a eukaryote to investigate the influence of the nucleus.
Indeed, the nuclear membrane creates a confined environment that segregates
molecules. Moreover, eukaryotes usually display more complex mechanisms and
have more coding sequences than prokaryotes and archaea. Extending the study
to a family instead or even further, like Umu et al. [10] did for instance, has
been considered. However, less data are available for other related yeasts and
including more species increases the number of parameters to consider. We came
to the conclusion that a multi-species study, while being interesting, was unre-
alistic yet. Finally, we excluded multicellular organisms to avoid problematic
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phenomenons like specialized tissues.
For all those reasons, this study required a unicellular eukaryote offering a sat-
isfying number of identified RNA sequences and Saccharomyces Cerevisae ap-
peared to be the most suited model by being a model eukaryote organism with
the greatest number of annotated sequences amongst unicellular eukaryotes.
All sequences have been obtained from the manualy curated Genolevure [13]
database.

ncRNA-mRNA Interactome Our main source of features is the ncRNA-
mRNA interactome i.e. all the ncRNA-mRNA interactions. Noticeably, we are
referring to ncRNA-mRNA interactions as computational predictions instead
of experimentally observed interactions. The probability of such event is con-
ventionally approximated by the energy barrier and difference of entropy (∆g)
between the structures of the two molecules and the structure of a potential
complex [14]. We work under the usual and reasonable assumption that, for two
complexes i and j, if ∆gi < ∆gj then the complex i is more stable than the com-
plex j and thus is more likely to form and be observed. In order to study the set
of all potential ncRNA-mRNA complexes, we computed for all {ncRNA,mRNA}
pairs the corresponding ∆g using prediction tools (cf. section 3.2), thus resulting
in two predicted ncRNA-mRNA interactomes: one for each prediction tool we
used (See Section 3.2 ).

We focused our study on ncRNA-mRNA interactome for two reasons. First,
the role of mRNA as temporary medium of genetic material makes it a central el-
ement in most cellular pathways. mRNAs are centrepieces of several mechanisms
such as regulation [10–12] and splicing that might be impacted by crosstalk inter-
actions. Second, ncRNAs (i.e. non-coding RNA, which refers here to RNA which
are neither messenger, transfer or ribosomal RNA and also excludes miRNA and
siRNA cf. section 3.1) offer properties of interest for this study.

Indeed, the selected ncRNAs can be clustered into categories sharing simi-
lar properties, such as structure and length, which makes any comparison more
meaningful. Those ncRNAs are also free from cellular mechanisms such as matu-
ration or directed export that might generate noise. Finally, there is no observed
interaction between those ncRNAs and mRNAs. As a consequence we can as-
sume than the interaction we predict are opportunistic and not part of a defined
biological pathway. A detailed description of ncRNAs labels is provided in sec-
tion 3.1 and in the supplementary material.

We also considered two other practical aspects in this decision : maximizing
the number of available annotated sequences and maximizing the number of
crosstalk interactions (i.e. minimizing the number of known interactions). The
first aspect directly impacts the statistical validity of any potential results and
the second is justified by the goal of this study. The ncRNA-mRNA interactome
also satisfies those two aspects.
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Negative pressure against snoRNA-mRNA interactions 5

ncRNA Labels In order to conduct this study, we had to choose which of
the mRNAs or ncRNA to label. The absence of structural properties in mRNA
naturally inclined us to label ncRNA instead. We produced a 5-label classification
(cf. Table 1) according to the gene ontologies based on both functional and
structural properties. Out of those five labels, two labels happen to be much
more similar in terms of lengths and numbers. As a consequence, we performed
all our tests with both the five labels dataset and a dataset limited to those two
similar labels and are providing displays for both.

Table 1. Numbers for both 5-label and 2-label datasets, means and standard deviations
of distributions of sequence lengths and the colours associated in our displays for each
ncRNA label

ncRNA Dataset Length colour
Label 5 labels 2 labels µ σ

miscellaneous 11 0 900.27 828.04 black

C/D box 45 45 106.87 34.41 red

H/ACA box 29 29 270.83 176.75 blue

spliceosomal 5 0 245.60 183.40 yellow

unknown 7 0 500.14 225.31 green

total 97 74 281.39 383.93

A complete description of all those ncRNA is available in the supplementary
material. For the sake of clarity, we will only provide a shorter description of
each label in this paper.

C/D box and H/ACA box ncRNAs are snoRNAs (small nucleolar RNA) in-
volved in pre-rRNA maturation by performing two different modifications of spe-
cific bases. C/D box snRNAs are performing pseudouridylation, an isomerization
of uridines into pseudouridines. Pseudouridines have an extra NH group able to
form supplementary hydrogen bonds. Those bonds stabilize rRNA structure [16,
p.200]. H/ACA box snRNAs are performing 2-O methylation, a methylation of
the ribose. RNA has a short lifespan compared to DNA. By methylating the
ribose, the rRNA is less vulnerable to degradation by bases or RNAses. In addi-
tion to this increased lifespan, this modification also impacts the rRNA structure
by changing spatial constraints and decreasing the number of hydrogen bonds
the modified base can form [16, p.200].

Those two labels are the most consistent, both in numbers and internal sim-
ilarities with both sequential constraints (boxes) and similar structures common
to all the ncRNAs of a given label. Moreover, the lengths of ncRNAs are consis-
tent inside each label and shorter than the ncRNA average (cf. Fig 4).

Importantly, we will use these two groups (i.e.. C/D box and H/ACA box
ncRNAs) to study the existence of an evolutionary pressure on snoRNAs. The
other groups described below will be used as control and/or to suggest the gen-
eralization of the pressure to other classes of ncRNAs.
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Spliceosomal ncRNAs share the common trait of being involved in the splicing
process. However all other properties vary.

Miscellaneous ncRNAs have been identified and their functions are known.
However those functions are too specific and diverse to be gathered in any label
but Miscellaneous. Moreover all other properties vary.

Unknown ncRNAs have been identified but, unlike miscellaneous ncRNAs,
their functions remain unknown. Moreover all other properties vary in an even
wider range than the two previous labels.

3.2 Features Description

This section describes the three metrics used in this study to produce the main
sets of features : RNAup, IntaRNA and Kmer composition similarity. Other
basic features used as control, such as sequence length, are not described as they
are straightforward.

RNA-RNA Interactions Prediction Tools In order to produce a satisfy-
ing interactome we use two different RNA-RNA interaction prediction tools :
RNAup[14] and IntaRNA[15, 17]. We selected nonspecialized prediction tools
over specialized ones such as RNAsnoop [18] as we are interested in non-specific
interaction.

Both RNAup and IntaRNA implement the same core strategy. They compute
the hybridization energies between the two RNAs as well as the accessibility
(i.e. probability of being unpaired) for each interaction site. Those values are
then combined to score potential interaction sites. The highest scoring sites
are returned together with the free energy of binding. We can then retrieve the
secondary structures of each individual RNA using constraint folding algorithms.

RNAup strictly implements this strategy thus predicting the optimal mini-
mum free energy (MFE) compatible with the axioms. IntaRNA differs by two
aspects. The first one is that the version of IntaRNA used in this work uses
a slightly less recent version of Turner energies model. However the differences
between those versions are minor and are very unlikely to produce the observed
dissimilarities. The second one is that IntaRNA adds a seeding step to reject
interaction sites deemed unlikely. This extra step reduces the search space by
focusing on the most promising ones and significantly reduces the runtimes com-
pared to RNAup. An extensive description of the seeding procedure is presented
by Bush et al. [17]. Comparative benchmarks place IntaRNA in the top of pre-
diction tools with better scores than RNAup [19, 20]. Indeed, IntaRNA appears
to predict interactions closer to the observed ones compared to predictions from
others prediction tools, including RNAup. As a consequence this heuristic seems
well founded and efficient.

In this study we used this difference between RNAup and IntaRNA to pre-
dict two slightly different interactions modes. For each {ncRNA,mRNA} pair,
we are assuming that RNAup outputs the optimal MFE regardless of its likeli-
hood while IntaRNA outputs a probably weaker but more realistic interaction.
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Negative pressure against snoRNA-mRNA interactions 7

Since realistic interactions are more likely to be observed in the cell than the
theoretical optimums, any pressure should impact the first before the second.
As a consequence, we aimed at highlighting such pressure by studying those two
sets of interactions in parallel.

Kmer Composition Similarity In addition to the two prediction tools men-
tioned in the previous subsection, we use a third metric: the similarity of the
Kmer composition of ncRNA sequences. The term Kmer refers here to every pos-
sible sequence of nucleobasis of length K. This metric associates to each ncRNA
the distribution of each Kmer in its sequence, including repetitions. The set of
all those distributions is gathered as a vector space suitable for machine learning
(cf. 3.3). We produced this third set of features in order to assess the specificity
of the sequence and to provide a reference point to the two other sets of features.

All experiments involving Kmers have been made with K = 5 for two reasons.
The first one is that five is the length of the average interacting zone in RNA-
RNA interactions and so is a suitable length to capture any key subsequences
impacting those interactions. The second one is that the number of Kmers to
consider grows with the value of K. K = 5 offers the advantage of being both
manageable in term of cost and also results in a number of dimensions com-
parable to the two other methods (i.e. RNAup and IntaRNA). We performed
preliminary tests with others values, especially K = 6. Those tests showed little
to no differences.

3.3 Ensemble Learning Pipeline

Features   

Raw data

     Vector spaces

Scores
Scores

ncRNAs

mRNAs

Kmer

RNAup

IntaRNA

Sequences

LabelsOntology

Scores

Machine

Learning

ID

ncRNA
Labels

RF

PCA

LOOCV

Fig. 1. Illustration of our ensemble learning pipeline. The process starts from RNAs
data in orange. Each ncRNA will be associated to a vector in the vector spaces and
will be attributed a label according to its ontology. From either ncRNAs sequences
(Kmer) or both ncRNA and mRNAs sequences (IntaRNA, RNAup), a set of scores
will be computed and used as features. Machine learning is finally used to produce the
results we are presenting from those vector spaces.
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The overall goal of our machine learning approach is to investigate a possible
bias affecting ncRNA-mRNA crosstalk interactions. In order to do so, we com-
pare the specificity of ncRNA sequences with the specificity of ncRNA-mRNA
interaction profiles. The specificity of ncRNA sequences is approximated by the
ability of classifiers to predict the labels of ncRNAs from their Kmer composi-
tion. ncRNA-mRNA interaction profiles are predicted using prediction tools and
their specificity is approximated by the ability of classifiers to predict the labels
of ncRNAs from those profiles.

Our utilization of machine learning in this project is challenging for two
different reasons that justify all the following methodology choices :
1. The ratios |vectors|/|features| of our datasets are problematic: 97 vectors
for 6663 dimensions for the vector spaces built from the interactomes. Those
ratios are due to both cellular biology, since the number of mRNAs in a genome
is always greater by several folds to the number of ncRNAs, and the limited
availability of annotated ncRNAs sequences thus limiting as well the number of
vectors. Those two issues are beyond our control and, to our knowledge, there is
no way for us to significantly improve those ratios for Saccharomyces Cerevisae
without considerable drawbacks. Moreover Saccharomyces Cerevisae already has
the greater number of annotated ncRNAs amongst similar organisms.
2. Our goal is neither to train a good classifier nor to classify unlabelled RNAs
but to estimate how well the labels can be predicted from the different features.
We are working under the reasonable assumption that a loss in performance
between two sets of features implies that the lesser performing set is less specific.
If the two sets of features are related, like ours are, it would imply a levelling
mechanism.

Leave-one-out Cross-validation (LOOCV) Cross-validation refers in ma-
chine learning to partitioning the data set into different sets to separate the
data used to train the classifier and the ones used to test it. The goal of cross-
validation is to ensure the credibility of the results produced.

We use a leave-one-out cross-validation technique (LOOCV) for validation.
For every vector vi in our set V of vectors we train a classifier on the set (V −vi)
and test the resulting classifier on the vector vi. The final accuracy is computed
as the average of the accuracies for all vectors. This technique fits our data
set and its limited number of vectors. A more classical approach such as train-
validation-test would have required us to use very small sets.

Importantly, we are also performing a second nested level of LOOCV to
avoid any bias during the parametrization of the classifiers. This second level is
described in section 3.3 and illustrated in algorithm 1.

Principal Component Analysis (PCA) Since the ratio |vectors|/|features|
is poor in the dataset, it may hinder the accuracy of the classifiers. Principal
component analysis (PCA) is a standard method to improve this ratio by reduc-
ing the number of dimensions. The PCA uses an orthogonal transformation to
build a set of uncorrelated features (components) from the initial features with
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Algorithm 1: 2-level procedure(Df, l nc)

Data: Given dataframe D (i.e.. the vector space) and l nc, the list of numbers
of components to consider for the PCA

Result: Returns d accuracy, dictionary of (vector, accuracy)
dict d accuracy = ∅;
for vector vi ∈ D do

test set = {vi}
train set = D − {vi}
best nc = −1
accuracy best nc = −1
for nc ∈ l nc do

D′ = D − {vi}
D′ = PCA(D′, nc)
for vector vj ∈ D′ do

sub test set = {vj}
sub train set = D′ − {vj}
classifier = new RFT classifier()
classifier.train(sub train set)
tmp accuracy = classifier.test(sub test set)
if tmp accuracy > accuracy best nc then

best nc = nc
accuracy best nc = tmp accuracy

D = PCA(D, best nc)
classifier = new RFT classifier()
classifier.train(train set)
d accuracy[vi] = classifier.test(test set)

return d accuracy;

the objective of maximizing variance (i.e.. minimizing the information lost by
transforming).

The number of components to transform to is an important parameter that
may influence the classifier accuracy. Performing preliminary tests to determine
the best number would lead to a serious risk of overfitting. As a consequence we
dynamically determined this number for each vector. The procedure is described
in algorithm 1. From the first LOOCV, the set of vectors V has been split into a
set of pairs of a training set V ′ = (V −{vi}) and a test set {vi}. For each pair, a
second LOOCV is performed on V ′ leading to another set of pairs of a training
set V ′′ = (V ′ − {vj}) = (V − {vi, vj}) and a test set {vj}. Potential values for
the number of components are tested and the one producing the best accuracy
over V ′ is selected and used on V to predict the label of vi. As a consequence,
the number of components to transform to is always selected independently from
the test set.

Ideally, the set of potential values for the number of components would be
1, 2, ..., |V |. However the computation time grows linearly with the number of
values tested. As a consequence we decided to use a subset of 1, 2, ..., |V | instead.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/293555doi: bioRxiv preprint 

https://doi.org/10.1101/293555
http://creativecommons.org/licenses/by-nc/4.0/


10 Antoine Soulé et al.

Preliminary tests shows a light peak of performances at 8− 10 components with
a slight decrease before and after. As a consequence we tried all values from
1, 2, ..., 20. We also added 0 (i.e. not performing a PCA).

Random Forest (RF) Classifier We chose to use ensemble learning and more
specifically Random Forest (RF) classifiers over other methods and classifiers
because of some anticipated properties of the datasets. Indeed, the limitations
of prediction tools are likely to generate noise which RF are relatively resilient
to [21, p.596]. Moreover, the interactions we aimed at capturing were likely
to be complex and the size of the training set to be limited. Since RF can
capture complex interactions and are simple to train [21, p.587] compared to
other classifiers [21, p.587] they appeared to be a fitting candidate.

Our implementation uses the python package Scikit-learn [22].

As the name suggests, Random Forest classifiers involve randomness. As a
consequence we repeated the procedure and display distributions in order to
counterbalance the variation of the predictions. Preliminary results show that
the average accuracies of those distributions converge (10−4) within the first 500
runs. However we decided to double this value to add a comfortable security
margin.

Dummy Classifier A second classifier is trained in parallel to serve as a control.
As the name “dummy” suggests, it is not an actual classifier but an heuristic
randomly generating labels for the test set according to the probabilities dis-
tribution it extracted from the training set. As the dummy classifier is always
trained and tested on the same sets as its RFT counterparts, it appears to be
a suitable solution to produce a sound control while using LOOCV and using
unbalanced labels. However, as all dummy classifiers produced extremely close
performances, we decided to display only one of the dummy classifiers in each
display instead of one per other classifier for the sake of clarity. Please note that
the dummy classifier is unaffected by PCA as it does not consider the features.

Performance Metric for a Multi-label Dataset The number of labels in
our data sets prevents straightforward use of some classical displays such as ROC
curves. A single prediction can indeed be, for instance and at the same time, both
a false positive for a given label and a true negative for another. As a consequence
we have TPR + FPR + TNR + FNR ≥ 1 ([True,False] [Positive,Negative]
Rate) and plotting one ROC curve for each label offers little readability. As a
consequence we instead chose to use displays based on accuracy (Accuracy =
Precision = |True Predictions|/|Predictions|).
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3.4 Main Experiments

As described in section 3.2 and section 3.1, our work associates each ncRNA
with three vectors of features ({Kmer,intaRNA,RNAup}) and a label. By doing
so we produced three vector spaces which are suitable for machine learning. We
consider that the ability of the classifiers to predict those labels reflects the said
specificity. Therefore, the goal of the machine learning procedure described in
section 3.3 is to assess the specificity of the sets of features regarding the labels.

Control 2

Kmer 2

RNAup 2

intaRNA 2

Control 5

Kmer 5

RNAup 5

0.0 0.2 0.4 0.6 0.8 1.0

Accuracy

intaRNA 5

Fig. 2. Distribution of accuracies of 1000 classifiers following specifications of sec-
tion 3.3. Each row corresponds to either a set of features ({Kmer,RNAup,intaRNA},
cf. section 3.2) or the control (cf. section 3.3) associated with a number of labels ({2,5},
cf. section 3.1). Means and standard deviations for all distributions are displayed in
Table 2.

Table 2. Means (µ) and standard deviations (σ) for all distributions displayed in
Figure 2

2 labels 5 labels
µ σ µ σ

Control 0.517 0.057 0.316 0.044

Kmer 0.863 0.031 0.724 0.03

RNAup 0.794 0.032 0.699 0.03

intaRNA 0.675 0.04 0.555 0.037

Figure 2 displays the distribution of the accuracies of the classifiers for all
three kinds of features with two or five labels. The combination of LOOCV
(cf. 3.3) and the inherent randomness of RF classifiers (cf. 3.3) lead us to produce
and display distributions of accuracies instead of a single value. Exact means (µ)
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and standard deviations (σ) values for all those distributions are displayed aside
in Table 2. The best accuracies are obtained from the Kmer similarity scores
with 86.3% of correct prediction with two labels and a standard variation of
only 0.31%. Results obtained from scores predicted by RNAup are less accurate
but are still very distinct from the control with no overlapping. However, results
obtained from scores predicted by IntaRNA are significantly less accurate to the
point that the distribution overlaps with the control. Results obtained with five
labels display a similar hierarchy between Kmer, RNAup and IntaRNA with the
addition of an expected global loss of accuracy. Indeed, the increased number
of labels to predict makes the problem harder as shows the important drop of
accuracy of the control. However, Kmer, RNAup and IntaRNA appear to all be
more resilient than the control to this change.

This first display suggests that the interaction profiles predicted by IntaRNA
are significantly less specific than the ones predicted by RNAup. The interaction
profiles predicted by RNAup also appear to be the closest to the ones produced
from Kmer similarity scores and thus seem to give the most accurate account of
the specificities of the sequences. This observation together with the difference
between the two prediction tools described in section 3.2 suggest that probable
interactions (i.e. the ones predicted by IntaRNA) are more inhibited than the po-
tential optimal ones (i.e. the ones predicted by RNAup). This first observation is
coherent with the influence of an evolutionary pressure as the inhibition of prob-
able interactions would have a greater impact than the inhibition of potential
optimal ones which are less likely to form.

Figure 3 is a different presentation of the results displayed in Figure 2. Raw
results from the classifiers are unitary predictions (i.e.. predictions of the la-
bel of one vector). We gathered those unitary predictions for each vector, thus
producing an averaged accuracy for each of them. Figure 3 aims at highlithing
variations inside the distribution displayed in Figure 2. Please note that each
column corresponds now to a different set of features while the upper row dis-
plays the results with two labels and the lower row displays the results with five
labels. Each line corresponds to a ncRNA, the length reflecting the accuracy of
predictions made for this ncRNA label while the colour corresponds to its label.
Please also note that lines are sorted by accuracies. As a consequence, the order
varies in all of those six subgraphs.

The drop of accuracy observed in Figure 2 between Kmer similarity scores,
RNAup predicted scores and IntaRNA scores is also visible in Figure 3 as a
more concave slope for better performing sets of features. However Figure 3 also
displays variations of accuracies from one label to the other. C/D box RNAs
(red) are the most noticeable group as those RNAs are, on average, extremely
well-predicted with all features and either two and five labels. H/ACA box RNAs
(blue), on the other hand, seem to be harder to predict from Kmer similarity
scores or RNAup predicted scores than C/D box RNAs but show a dramatic
drop of accuracy in predictions made from IntaRNA predicted scores. Predictions
accuracies of the three remaining labels vary from a set of features to the other
and even inside a label for a given set of features. We have been unable so far
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Fig. 3. Average accuracies of classifiers for each vector (i.e.. ncRNA) over 1000 tests.
Each column corresponds to a set of features ({Kmer,RNAup,intaRNA}, cf. sec-
tion 3.2). The first row displays the results with five labels and the second with two
labels (cf. section 3.1). Each colored line in those 6 displays corresponds to a [vec-
tor/ncRNA]. The length of the line represents the averaged accuracy of the 1000 clas-
sifiers for the corresponding [vector/ncRNA]. The colour of the line corresponds to the
label of the associated [vector/ncRNA]. Please note that [vectors/ncRNAs] are sorted
according to the accuracy associated to them. As a consequence the order is different
in all six graphs.

to determine if this was only due to a lesser number of vectors for those labels
or to other parameters.

Results displayed in Figure 3 complement our previous observations as the
{Kmer,RNAup,IntaRNA} hierarchy is still clearly observable. However, Figure 3
displays a phenomenon invisible in Figure 2 : the variance in predictions accu-
racy between the label, especially regarding C/D box RNAs and H/ACA box
RNAs. Indeed, predictions for C/D box RNAs (red) are always the most ac-
curate while predictions for H/ACA box RNAs (blue) clearly fall behind. This
variance goes from a limited difference (most predictions for H/ACA box RNAs
are still above 80% accuracy in predictions from Kmer similarity scores with
two labels, cf. top left graph) to a dramatic drop (predictions from IntaRNA
predicted scores with two labels, cf. top right graph). Predictions accuracies of
the three remaining labels vary from a set of features to the other and even in-
side a label for a given set of features. We have been unable so far to determine
if this was only due to a lesser number of vectors for those labels or to other
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parameters. However, the predictions of the three remaining labels display accu-
racies similar to the ones of predictions for H/ACA box RNAs. Since the dataset
contains more H/ACA box RNAs than the three other labels put together, this
similarity stresses that H/ACA box RNAs are way harder to predict than C/D
box RNAs. Further discussions of this difference of performances between labels
require to first introduce Figure 4.
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Fig. 4. Normalized distributions of scores predicted by IntaRNA (left), scores predicted
by RNAup (middle) and lengths of sequences (right) for each ncRNA label. Scores are
in kcal/mol. Please note that scores from both IntaRNA and RNAup approximate a
difference of entropy (∆g) and are therefore negative. A lower score thus suggests that
the interaction is stronger.

In order to investigate the drop in accuracy between predictions made from
scores predicted by RNAup and IntaRNA we plotted distributions of scores as
box plots for each tool (left and middle) and for each ncRNA labels (colours). We
also plotted the distributions of the lengths of ncRNAs sequences (right, please
note that the influence of length results is discussed in section 3.5). The results
are displayed in Figure 4. The colour code is the same as in Figure 2 and Figure 3.
Figure 4 shows that RNAup is not only outputting stronger scores (entropy
scores are negative cf. 3.1) but also preserves distinctions between the labels,
especially between C/D box RNAs and H/ACA RNAs scores. This observation is
coherent with the better performances of classifiers learning from the interactome
predicted with RNAup. However the important drop in accuracies displayed
in Figure 3 on scores predicted with IntaRNA with two labels shows that RF
classifiers are able to capture variations (cf. Figure 2 and Figure 3) that the
extremely similar distributions of those two labels in Figure 4 fail to display.
This observation suggests that the global inhibition that is shown by the drop in
the averages of both RNAup and IntaRNA scores is also a levelling phenomenon
rather than a “linear” inhibition.
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3.5 Additional Experiments

Impact of Boxes on Predictions Among the five labels we are consider-
ing, two correspond to ncRNA classes defined by the presence of “boxes” in
the sequence: C/D box snoRNAs and H/ACA box snoRNA. Those boxes are
small and their consensus sequences are flexible (C: RUGAUGA, D: CUGA,
H: ANANNA, ACA: ACA). Yet they might bias our results, especially those
obtained from Kmer composition. To investigate this matter, we performed a
brute force feature selection algorithm specific to random forest classifiers: the
Boruta algorithm. This algorithm tests each feature, estimates its contribution
to the classification and produces the list of features considered to be crucial
for a given threshold of confidence (i.e. p-value, default = 0.05). Results show
that only 50% or less of the critical features are compatible with a consensus
sequence, even in the 2-label dataset (restrained to C/D box and H/ACA boxes
snoRNAs only). This result is an upper bound since boxes are located while
Kmer distributions ignore positions. As a consequence, the results displayed in
Figure 2 and 3 cannot be produced only from Kmers capturing boxes.

Impact of Sequence Lengths on RNA-RNA Interaction Predictions
The third panel of Figure 4 displays the distributions of lengths of ncRNAs for
all labels, each label being represented by a boxplot in its usual colour. Length
distributions vary from a label to another with two visible groups of labels: C/D
box, H/ACA box and spliceosomal labels (resp. red, blue and yellow) distribu-
tions are tightened around a relatively short length while miscellaneous and
unknown labels (resp. black and green) present a wider distribution with overall
longer sequences. The problem planted by lengths of mRNAs targets has been
explored by Umu et al. [19, 20]. Their results show that the accuracy of prediction
tools typically drops as the length of the target increases above 300nb. However,
amongst the prediction tools tested, IntaRNA displays very little to no loss as
the length of the target increases. On the contrary RNAup performances are sig-
nificantly reduced. Cutting down the targets into subsequences of manageable
length is not suited for this study as we need one score per {ncRNA,mRNA}
pair. Moreover, we would like to propose to interpret this drop not only as a flaw
of RNAup but as an illustration of the difference we described in 3.2. Yet the
predictions scores for miscellaneous and unknown labels (resp. black and green)
are to be treated with caution.
A second problem to consider is that the features we used are not indepen-
dent of sequence lengths. Indeed, a longer sequence will contain more Kmers
and Figure 4 suggests a partial correlation between scores and length. In order
to investigate this issue we repeated the ensemble learning procedure with the
length as the only feature. Results show that predictions using length are accu-
rate (µ=0.856 and σ=0.012 with the 2-label dataset,µ=0.651 and σ=0.013 with
the 5-label dataset) but are slightly outperformed by the ones trained on RNAup
scores over the 5-label dataset and over both datasets by the ones trained on
Kmer composition. Those results suggest that sequence lengths are specific to
each labels but are not the only variation captured by the classifiers.
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Overlapping of Predicted Interaction Zones with Observed Interaction
Zones We scanned the sequences of C/D box snoRNAs in the dataset looking
for the consensus sequences. We excluded C/D box snoRNAs with ambiguous
sites (i.e. more than one match with the consensus sequences of either box in
the corresponding potential areas). We then looked for any intersection between
the area interacting with rRNAs in observations (i.e. 3-rd to 11-th nucleotides
upstream from D box) and the interaction zones predicted by RNAup. Amongst
the interaction zones involving the 35 selected C/D box snoRNAs candidates,
none overlapped with the observed interaction zones.

4 Conclusion

Our results enabled us to identify the signature of an evolutionary pressure
against random interactions between ncRNAs and mRNAs in Saccharomyces
Cerevisae. Presumably, as previously observed in prokaryotes and archaea, this
phenomenon aims to increase the translation efficiency [10].

Although our data set includes various types of ncRNAs, the vast major-
ity of them are snoRNAs. Our conclusions are therefore primarily applicable to
snoRNAs, even if our data do not exclude that it could be generalized to other
ncRNAs. Interestingly, the (old) age of the snoRNA family suggests that it coud
be the trace of a fundamental biological process used by primitive microorgan-
isms. The absence (to our knowledge) of experimental evidences of snoRNA-
mRNA interactions in unicellular eukaryotes tends to support our conclusions.
By contrast, the existence of known interactions between orphan snoRNAs and
mRNAs in human or mice [4, 5] opens a legitimate debate about the necessity
and specificity of such mechanisms in animals.
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