Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Gene inversion increases evolvability in bacteria

View ORCID ProfileChristopher Merrikh, Houra Merrikh
doi: https://doi.org/10.1101/293571
Christopher Merrikh
aDepartment of Microbiology, University of Washington, Seattle, WA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christopher Merrikh
Houra Merrikh
aDepartment of Microbiology, University of Washington, Seattle, WA, USA
bDepartment of Genome Sciences, University of Washington, Seattle, WA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: merrikh@uw.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

In bacteria, most genes are encoded on the leading strand, co-orienting the movement of the replication machinery with RNA polymerases. This co-orientation bias reduces the frequency of highly detrimental head-on collisions between the two machineries. This and other work set up the expectation that over evolutionary time, head-on alleles are selected against, maximizing genome co-orientation. Our findings challenge this model. Using the well-established GC skew method, we reveal the evolutionary inversion record of all chromosomally encoded genes in multiple divergent bacterial pathogens. We find that a surprisingly large number of co-oriented genes have inverted to, and are retained in the head-on orientation. Furthermore, we find that these head-on genes, (including key antibiotic resistance and virulence genes) have higher rates of nonsynonymous mutations and are more frequently under positive selection (dN/dS>1). Based on these results, we propose that bacteria increase their evolvability through gene inversion and promotion of head-on replication-transcription collisions.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted April 03, 2018.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Gene inversion increases evolvability in bacteria
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Gene inversion increases evolvability in bacteria
Christopher Merrikh, Houra Merrikh
bioRxiv 293571; doi: https://doi.org/10.1101/293571
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Gene inversion increases evolvability in bacteria
Christopher Merrikh, Houra Merrikh
bioRxiv 293571; doi: https://doi.org/10.1101/293571

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3516)
  • Biochemistry (7373)
  • Bioengineering (5353)
  • Bioinformatics (20341)
  • Biophysics (10054)
  • Cancer Biology (7787)
  • Cell Biology (11357)
  • Clinical Trials (138)
  • Developmental Biology (6456)
  • Ecology (9993)
  • Epidemiology (2065)
  • Evolutionary Biology (13368)
  • Genetics (9378)
  • Genomics (12623)
  • Immunology (7732)
  • Microbiology (19122)
  • Molecular Biology (7482)
  • Neuroscience (41182)
  • Paleontology (301)
  • Pathology (1236)
  • Pharmacology and Toxicology (2145)
  • Physiology (3186)
  • Plant Biology (6885)
  • Scientific Communication and Education (1277)
  • Synthetic Biology (1901)
  • Systems Biology (5331)
  • Zoology (1091)