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ABSTRACT 29 

 30 

Our previous study found more than 500 transcripts significantly increased in 31 

abundance in the zebrafish and mouse several hours to days postmortem relative to 32 

live controls.  The current literature suggests that most mRNAs are post-33 

transcriptionally regulated in stressful conditions, we rationalized that the 34 

postmortem transcripts must contain sequence features (3 to 9 mers) that are 35 

unique from those in the rest of the transcriptome – specifically, binding sites for 36 

proteins and/or non-coding RNAs involved in regulation.  Our new study identified 37 

5117 and 2245 over-represented sequence features in the mouse and zebrafish, 38 

respectively.  Some of these features were disproportionately distributed along the 39 

transcripts with high densities in the 3-UTR region of the zebrafish (0.3 mers/nt) 40 

and the ORFs of the mouse (0.6 mers/nt).  Yet, the highest density (2.3 mers/nt) 41 

occurred in the ORFs of 11 mouse transcripts that lacked UTRs.  Our results suggest 42 

that these transcripts might serve as ‘molecular sponges’ that sequester RNA 43 

binding proteins and/or microRNAs, increasing the stability and gene expression of 44 

other transcripts.  In addition, some features were identified as binding sites for 45 

Rbfox and Hud proteins that are also involved in increasing transcript stability and 46 

gene expression.  Hence, our results are consistent with the hypothesis that 47 

transcripts involved in responding to extreme stress have sequence features that 48 

make them different from the rest of the transcriptome, which presumably has 49 

implications for post-transcriptional regulation in disease, starvation, and cancer. 50 

 51 

 52 

KEY WORDS: motifs, post-transcriptional regulation, stress response, 53 

postmortem gene expression, chaos game representation, zebrafish, mouse, 5’UTR, 54 

3’UTR, ORFs, molecular sponge. 55 
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INTRODUCTION 63 

Understanding regulatory circuits and how they influence transcriptional dynamics are 64 
important for comprehending the response of biological systems to stress such as 65 
starvation, disease, cancer and even death.  Under stressful conditions, most (90%) 66 
mRNAs are regulated post-transcriptionally [1] -- presumably because it is more 67 
energetically favorable than regulation at the transcriptional level [2]. 68 

Two studies have recently shown that hundreds of transcripts increase in abundance in 69 
vertebrate organs/tissues in response to organismal death [3, 4].  These increases could be 70 
due to active transcription and/or post-transcriptional regulation of the nascent 71 
transcripts.  Post-transcriptional regulation involves RNA binding proteins (RBPs) and 72 
non-coding RNAs (ncRNAs) [5, 6] that form complexes with RNA motifs and regions of 73 
secondary structure within the RNAs [7].  While the binding of RBPs to specific motifs 74 
in a transcript is well documented [8, 9, 10], the binding of ncRNA, in the form of 75 
microRNA [miRNA), circular RNA, or long ncRNA [lncRNA) to specific motifs within 76 
transcripts is less understood.  Apparently, some mRNAs and ncRNAs act as “molecular 77 
sponges” that bind miRNAs preventing them from performing their functions.  For 78 
example, miRNA-16 is sequestered by mRNAs encoded by the Tyrosinase-related 79 
Protein 1 (Tyrp1) gene [11].  As a consequence, miRNA-16 tumour-suppressor functions 80 
are lost and cell proliferation occurs [12]. Another “sponge” example is lncRNA encoded 81 
by the Meg3 gene that binds miRNA-664 counteracting its inhibitory effect on production 82 
of alcohol dehydrogenase [6].  These are examples of two RNAs acting as molecular 83 
sponges, -- yet, not all of the functions of ncRNAs are known at this time [13] -- other 84 
roles have been suggested [14, 15, 16].   85 

Our previous study revealed that some transcripts increase in abundance with postmortem 86 
time [4].  As a step forward towards better understanding of possible mechanisms 87 
responsible for these increases, our present study examined sequence features [i.e., short 88 
mers) that are over- or under- represented within these transcripts.  We recognize that 89 
short mers are not the only sequence features responsible for these increases – we begin 90 
with short mers because they are easily identified.  That said other more complex features 91 
are probably yet to be discovered. 92 

We rationalized that some mers are over- or under- represented in these transcripts 93 
because they serve as binding sites for RBPs or ncRNAs involved in post-transcriptional 94 
regulation.  To investigate this phenomenon, we examined the presence/absence/ 95 
frequencies of mers up to 9 nt in length and compared them to controls, which consisted 96 
of random draws of transcripts from the rest of the transcriptome (i.e., those not 97 
increasing in abundance in response to stress).  The results show that several thousand 98 
mers are over-represented in the postmortem transcripts of the zebrafish and mouse.  99 
Further examination of the frequencies of the mers show that some transcripts have more 100 
unique mers than others, and that the density of the unique mers varies by transcript and 101 
region (i.e., 5’UTR, ORF, 3’UTR).   102 
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METHODS AND MATERIALS 104 

A schematic overview of the experimental design for the study is provided in Fig 1. 105 

 106 

 107 

 108 
Fig 1.  Schematic representation of the study experimental design. 109 

 110 

Dataset assembly 111 

Messenger RNA transcripts of Danio rerio (GRC210.89) and Mus musculus 112 
(GRCm38.p5) with annotations were downloaded from NCBI.  Transcript sequences 113 
containing ambiguous nucleotides (i.e., ‘N’s) and those less than 100 nt in length were 114 
removed.  The final “clean” data sets were used for bioinformatic analyses. 115 

Extracting 2- to 9-mers from transcript sequences   116 

An alignment-free sequence comparison method called ‘Chaos Genome Representation’ 117 
(CGR) [17, 18, 19] was used to extract mers from the transcript sequences because it was 118 
more practical (computationally efficient) than string-based search algorithms (see Proof 119 
in Online Resource 1).  CGR is an iterative mapping technique that processes nucleotides 120 
in a sequence to find the x-, y- coordinates for their position in a continuous space.  The 121 
x- and y- coordinates can then be used to recover sequence, which in this study were 122 
oligomers.  Once the coordinates of a sequence are known, the presence/absence/ 123 
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frequency of a mer of any size in a transcript sequence can easily be determined, as 124 
demonstrated below. 125 

Reading a sequence into CGR space.   126 

The processing of a transcript sequence involves converting each nucleotide into x- and 127 
y- coordinates and assembling the coordinates into a CGR database.  For example, the 128 
sequence ‘AAACC’ is represented by the x- and y- coordinates of +0.53125 and -129 
0.53125, respectively.  The coordinates are determined by reading the sequence into CGR 130 
space.  The space is confined by the four possible nucleotides as vertices of a binary 131 
square with x, y position (-1, +1) being the vertex A, (+1, +1) being the vertex T, (-1, +1) 132 
being the vertex G and (-1, -1) being the vertex C.  The position of a nucleotide in the 133 
fragment is calculated by moving a pointer to half the distance between the previous 134 
position and the current binary representation.   135 

An example.  Starting at point x, y (0, 0), the first nucleotide ‘A’ is plotted at half way to 136 
the vertex of A (-1, +1), which is coordinate (-0.5, +0.5).  The next nucleotide is also ‘A’, 137 
therefore half way from the coordinate (-0.5, +0.5) to vertex of A (-1, +1) is (-0.75, 138 
+0.75).  The next nucleotide is also ‘A’ so half way from the coordinate (-0.75, +0.75) to 139 
the vertex of A (-1, +1) is the coordinate (-0.875, +0.875).  The next nucleotide ‘C’, so 140 
half-way from the coordinate (-0.875, +0.875) to the vertex of C (-1, -1) is the coordinate 141 
(+0.0625, -0.0625) and so on up to the last nucleotide of the sequence with the last 142 
coordinates of x=+0.53125 and y=-0.53125.  A depiction of reading a sequence into CGR 143 
space is shown in Figure 1a of the Almeida et al. [19] study.   144 

Once all the sequences have been read into CGR space and their coordinates stored in a 145 
database, it is possible to determine the presence/absence/frequency of mers by their 146 
coordinates and mer length (i.e., 1/resolution), which is outlined in the Mer analysis 147 
section below.    148 

The software for the processing of nucleotide sequences into coordinates and recovering 149 
the sequences from the coordinates is available: http://peteranoble.com/software.html.  150 
Details on the mathematics of iterative mapping of nucleotide sequences have been 151 
previously published [19]. 152 

Mer analysis   153 

Mer analysis determines the presence/absence/frequency of a mer of length z (where z is 154 
2 to 9) in a gene transcript.  155 

Finding a specific mer in a transcript.  Let us assume that a database of the x-, y- 156 
coordinates of the target sequence has been assembled and we want to determine the 157 
presence/absence of the mer ‘AAACAA’ in a target sequence. There are three steps. 158 

First, we process the mer AAACAA into CGR space to find it x-, y- coordinates, which 159 
are -0.734375 and 0.734375, respectively.   160 

Second, we determine the resolution of the search, which depends on mer length (i.e., 161 
resolution = 2(mer length)).  A 6-mer requires a resolution of 64.  The inverse of the 162 
resolution (1/resolution) is the CGR space around the coordinates that contain the specific 163 
mer.  The CGR space around the coordinates is expressed by the following equation: 164 

 165 
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 , where r is 2mer_length  166 

 167 
For the 6-mer AAACAA 168 

 169 

 170 

 171 
Third, the coordinates and CGR space of the mer is then used to search the CGR space of 172 
the target transcript sequence in the database.  Any transcript that have coordinates within 173 
the box of x’ and y’ of the mer represents the sequence ‘AAACAA’.  Furthermore, one 174 
can tally the number of hits within the box, which represents the frequency of the mer in 175 
a target sequence.  We verified the presence of the mers in the identified target sequences 176 
by textual comparisons. 177 

Statistical and bioinformatics analyses   178 

Analyses were conducted using SAS/JMP (version 7.0.2), R (version 3.4.0) and 179 
Microsoft Excel (versions 14.3.0 and 11.6).  Hierarchical two-way cluster analysis was 180 
conducted on the binary matrices using Wards linkage method in SAS/JMP with default 181 
settings for cluster assignments.  The resulting binary matrices were collapsed by their 182 
corresponding cluster assignments using a custom-designed program in C++.  The 183 
resulting files were scaled to an average of zero and standard deviation of 1 in MS Excel 184 
and transferred to R to produce the heatmaps with no scaling.  Network analysis was 185 
conducted using Gephi 0.9.2.   186 

 187 

Identification of 5’UTR, ORFs and 3’UTR and RNA motifs in transcripts 188 

RegRNA 2.0 was used to identify functional RNA motifs and sites in the gene transcripts 189 
[20].  The server identifies splicing sites, splicing regulatory motifs, polyadenylation 190 
sites, transcriptional motifs, translational motifs, UTR motifs, mRNA degradation 191 
elements, RNA editing sites, riboswitches, RNA cis-regulatory elements, RNA-RNA 192 
interaction regions, and open reading frames using a integrated software package 193 
consisting of ~20 programs. 194 

Nucleotide sequences of the transcripts were individually submitted to the server, default 195 
search parameters specified, and tab-delimited results downloaded to a computer.  The 196 
results file contained global and local functions of the motifs and sites, their location in 197 
the transcript sequence, motif length and the sequence of the motif.  Sequences of the 198 
unique mers in a transcript were matched to the sequence information of the motifs in the 199 
transcripts.  200 

 201 

RESULTS 202 

x ' = x ± 1

r
, y ' = y ± 1

r

x ' = -0.734375 ± 1

64
, y ' = 0.734375 ± 1

64

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/293589doi: bioRxiv preprint 

https://doi.org/10.1101/293589


7 

Our previous study on postmortem gene expression dynamics [4] used a 60-mer 203 
oligonucleotide microarray to measure transcript levels.  These perfectly matched probes 204 
were used in the present study to identify gene transcripts in the assembled datasets of the 205 
mouse and zebrafish (Online Resource 2).  A certain portion of the transcripts has been 206 
shown to significantly increase in abundance after organismal death relative to live 207 
controls [4].  Henceforth, these transcripts are referred to as the over-abundant pool (OP), 208 
and transcripts not in this category are referred to as transcripts of the control pool (CP).  209 
Online Resources 3 to 6 contain probes and their corresponding transcripts.  In total, the 210 
OP of the mouse and zebrafish consisted of 333 and 230 gene transcripts, respectively, 211 
and the CP consisted of 32,611 and 27,433 transcripts, respectively. 212 

To determine if transcript length was a contributing factor when comparing different 213 
transcripts in the OP to those in the CP, we randomly selected two sets of transcripts from 214 
the CP (each set consisting of 333 gene transcripts for the mouse and 230 gene transcripts 215 
for the zebrafish) and compared the lengths of each set to those from the OP.  No 216 
significant differences were found (two-tailed T-tests with unequal variance; alpha=0.05) 217 
in either the mouse or the zebrafish, which rules out transcript length as a factor affecting 218 
Mer analyses (Online Resource 7). 219 

Mer analyses   220 

The occurrences of 2- to 9-mers in gene transcripts of the OP were compared to those of 221 
the controls (i.e., CP).  In the zebrafish, the controls consisted of 2- to 9-mers found in 30 222 
sets of 230 transcripts that were randomly drawn (with replacement) from the CP of the 223 
zebrafish (Online Resource 8).  In the mouse, the controls consisted of 2- to 9-mers found 224 
in 30 sets of 333 gene transcripts that were randomly drawn (with replacement) from the 225 
CP of the mouse (Online Resource 9).  226 

To test the assumption that the 30 sets of random draws sufficiently represented the 227 
diversity of transcripts found in each organism, we classified an additional 3 sets of 333 228 
and 230 transcripts from the CPs of the mouse and zebrafish, respectively (without 229 
replacement) (Online Resources 10 and 11).  Only transcripts not previously drawn were 230 
used in this test.   231 

The average count of individual mers from the random draws of the CPs were tabulated 232 
into a spreadsheet and compared to the counts of individual mers in the OPs of each 233 
organism.  The arbitrary criterion used to identify ‘unique’ mers as either under- or over-234 
represented was: a mer in the OP having less than or greater than 5 times the standard 235 
deviation of the average abundance of a corresponding mer in the CPs. 236 

Mer counts 237 

Given that 2-mers have 16 possible nucleotide combinations (i.e., AA, AT, AC, … TT) 238 
and 3-mers have 64 combinations (i.e., AAA, AAT… TTT), all short mers (2 to 3 nt) 239 
were anticipated to be present in transcripts of the OP and CPs, and therefore, no 240 
differences between the pools should be observed.  Differences between the pools 241 
however, should change with increasing mer length presumably due to real differences or 242 
random chance (i.e., false-positives; FP). 243 

A maximum difference between the OP and CP pools was 6-mers (n=74 transcripts) for 244 
the mouse and 5-mers (n=18 transcripts) for the zebrafish (Table 1, Fig 2A).   When 245 
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normalized to the number of possible mer combinations, the maximum difference was 7-246 
mers for the mouse and 5-mers for the zebrafish (Fig 2C).  Hence, mers of 5 to 7 nt in 247 
length are optimal for distinguishing between the pools. 248 

Table 1. Average ± standard deviation of 333 gene transcripts in the mouse 249 

and 230 transcripts in the zebrafish that contained unique mers by group (OP 250 

vs. CP).  The absolute difference in unique mer counts by group and mer 251 

length is shown. 252 
Animal Mer length Num transcripts (OP) Num transcripts (CP) Absolute Difference 
Mouse 2 333 ± 0.25 333 ± 0.4 0 ± 0.1 

  3 330 ± 6.9 329 ± 7.9 2 ± 3.0 
  4 304 ± 30.3 304 ± 30.4 7 ± 7.2 
  5 227 ± 56.0 226 ± 55.9 13 ± 9.5 
  6 119 ± 52.5 117 ± 50.7 74 ± 45.2 
  7 43 ± 27.8 42 ± 25.5 6 ± 7.3 
  8 13 ± 10.8 12 ± 9.1 3 ± 4.2 
  9 3 ± 4.0 2 ± 1.9 3 ± 3.3 
          

Zebrafish 2 230 ± 0.0 230 ± 0.1 0 ± 0.0 
  3 230 ± 0.6 229 ± 1.8 1 ± 1.5 
  4 220 ± 11.8 211 ± 15.5 9 ± 6.1 
  5 166 ± 35.7 148 ± 33.5 18 ± 8.1 
  6 81 ± 34.9 70 ± 29.4 12 ± 8.9 
  7 27 ± 17.5 23 ± 14.2 5 ± 5.2 
  8 8 ± 6.6 7 ± 5.0 2 ± 2.5 
  9 2 ± 2.4 2 ± 1.5 1 ± 1.2 

 253 
With increasing mer length, the number of ‘unique’ mers (i.e., over-/under-represented 254 
mers in the OP) increased (Fig 2B).    255 

To determine the number of FPs as a function of mer length and test the integrity of the 256 
experimental design, we randomly draw three additional sets of transcripts from the CP 257 
(without replacement) and retained only transcripts not used in the previous analyses.  258 
For the mouse, each set consisted of 333 transcripts, and for the zebrafish, each set 259 
consisted of 230 transcripts.  In this experiment, ‘over-/under- represented’ mers are FPs 260 
because the transcripts originated from the control transcript pool (i.e., the CP).  To help 261 
explain the results of this experiment, let us consider the mer ATACCGG in the mouse.  262 
This mer would be considered ‘unique’ if its count were more or less than 5 times the 263 
standard deviation of the average from the CP, which is based on of 30 sets of 333 264 
transcripts (Online Resource 11).  The average and standard deviation in the CP was 8 ± 265 
3.5, meaning one would expect to find it an average of 8 times in random draws of 333 266 
mouse transcripts.  Five times the standard deviation is 17.5, therefore the range of 267 
critical values for the mer count is: -9.5 and 25.5.  In the OP, the mer occurred 31 times 268 
and is therefore considered ‘unique’ based on the stated criterion (i.e., the count is greater 269 
than 25.5). 270 

 271 
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 272 

Fig 2. Mer counts as a function of mer length.  Hatched line, mouse; solid line, 273 

zebrafish.  Panel A, Difference in average mer counts by group (OP vs. CP); Panel 274 

B, individual mer counts that were 5 time stdev of average of the CP; Panel C, is the 275 

same results as panel B except normalized to the number of possible mer 276 

combinations and shown as a percentage; Panel D, number of mer counts that were 277 

5 times stdev of the average CP due to random chance; average ± stdev of 3 random 278 

selections (without replacement). 279 

 280 

To test the experimental design and check for FPs, mers were counted in three additional 281 

random draws from the CP.  The mer ATACCGG, for example, occurred in 7 of the 333 282 

transcripts in one set, 3 of the 333 transcripts in the second set, and 10 of the 333 283 

transcripts in the third set (Online Resource 11).  Since none of these counts are outside 284 

the criterion (the average ± standard deviation for this mer was 8.1 ± 3.49), there is no 285 

FPs for this mer.  Of note, this procedure was repeated for all unique mers in the 286 

transcript pools of the mouse and zebrafish, respectively. 287 

The results show that the number of FPs in the OP was close to zero for mer lengths of up 288 

to 8 bp (compare Fig 2D to 2B).  Therefore, while there is a possibility that some mers in 289 

the OP are FPs, the number was small (e.g., 8-mers: 1.0% are FPs in the mouse and 8.9% 290 

are FPs in the zebrafish).    291 

When the length of mers was 9, however, the number of FPs significantly increased to an 292 

average (± std) abundance of 1240 ± 167.2 for the mouse (31.3% FP) and 571 ± 158.8 for 293 

the zebrafish (34.2% FP). 294 
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The results are consistent with the notion that unique mers can be identified in the OP by 295 
comparing them to random draws of mers from the CP.  However, FPs increased with 296 
mer length.  Taken together, over- and under- represented mers were identified in the OP 297 
and many are 5 to 7 nt in length. 298 

Survey of the unique mers 299 

The survey of the OP identified 5,117 unique mers in the mouse and 2,245 mers in the 300 
zebrafish (Table 2).  Normalized to the total number of combinations of 3- to 9-mers 301 
(n=349,504), this represents ~1.5% of the total mers in the mouse and ~0.6% in the 302 
zebrafish.  Of note, 47 of the unique mers were common to both organisms (Table 3).  303 

 304 
Table 2. Number of unique mers in transcripts of the OP by mer length and 305 
organism. 306 

Mer length Zebrafish Mouse 
4 1 0 
5 31 1 
6 67 62 
7 118 279 
8 356 819 
9 1672 3956 

Sum 2245 5117 
 307 
Table 3. Unique mers common to transcripts of the OP for the zebrafish and mouse. 308 

Mer length Mer 
6 AAAUAC, AACGAA, ACAUAA 
7 UGUGAAC, AUCUCCA, AAAUACA, UAGGUUA, CAUGAAA 

8 
CAGAAAGC, GUAAAGUC, GCACAAAG, ACGAAUAC, AGAAGAGU, 
CAUGUGAA, AAAUACAU, AUAGGUUA 

9 

CCAAUGUGG, CUAUGAAGG, AAGUCCCAG, CUGACAGUC, 
UUCUCUGUG, GUUUCUGUG, CUAUGUCUG, AUACAAGUG, 
GCAAGGUUC, CAUGUGAAC, UCUAUGAAG, AUAGGUUAC, 
UCUGGGGCA, CCUGCUGCU, UAUCAUCGA, AAAAGAUCA, 
AUUCAAUGU, AAGAAAUCA, ACAAAAUCA, CUUCUCCAU, 
CAGAACCAU, UUUAACCAA, CAUGCAGAA, CUGGAAGAA, 
AUACAUCAA, AAAGAUCAU, CAGUAUGAA, AGAAAUCAU, 
CCUACGAAU, GUCCUGAAA, AACAUGAAA 

 309 
In fact, some of these mers are reverse complements to one another, which is of interest 310 
because they might form secondary structures and play roles in post-transcriptional 311 
regulation (Table 4).  In the mouse, 218 of the 5,117 mers (4.3 %) reverse complemented 312 
one another.  In the zebrafish, 31 of the 2,245 mers (1.4 %) were reverse complements.   313 

  314 
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Table 4. Unique mers that were reverse complements by length and organism. 315 

Organism Mer length Mers 
Zebrafish 5 UGUAU, AUACA 

  
6 

GUAUUU, UCAAAA, UUUUGA, AAAUAC, AUUUUU, AUAUAU, 
AAAAAU 

  
7 

UGUAUUU, CGUUGUU, CAUUUUG, CAAAAUG, ACAAAAU, 
AACAACG, AUUGUAU, AUACAAU, AUUUUGU, AAAUACA 

  8 CAUUUUGA, UCAAAAUG 

  
9 

GGCGGCAAG, CCAGGCUCA, CGUCUAGGU, GCUAGGGAC, 
GUCCCUAGC, CUUGCCGCC, ACCUAGACG, UGAGCCUGG, 
AGUAGGCUA, UAGCCUACU 

      
Mouse 6 CUAUAG, AUGCAU 

  
7 

ACCUAUA, AUGACUG, CAGUCAU, GUCUCUA, UAGAGAC, 
UAUAGGU, UCUAGAA, UUCUAGA 

  

8 

CCAUGACU, GGUUACAU, CCUAUAGG, GUCUCUAC, 
GUAGAGAC, CUUCUAGA, CUAGAAGU, CUAUGACU, 
GUAUGAAU, CUAUAGGU, ACCUAUAG, UCUGCAGA, 
AGUCAUGG, AGUCAUAG, UCUAGAAG, ACUUCUAG, 
UUCUAGAA, AUGUAACC, UUUGCAAA, AAUGCAUU, 
AAAGCUUU, AUUCAUAC 

  

9 

CGGAGAGAA, GCGAAGACA, CCCUUCUUC, GCUGCUGCU, 
CCUGGAACU, CCAGUGUGA, CCUGAGUUC, CCUCUUCUG, 
GGUCUUCAA, CCUUGAACU, CCAACAUCA, GGUUUCUCU, 
GGUUACAGU, GGUUACAUU, GAGGGCAUC, GUGGCUCAC, 
CAGGGAAGA, CUGCUGCUG, CAGCAGCAG, CUCCAGCAU, 
CUGCUCUCU, CUGCAGAAG, CAGGAGAAA, CUCCUUCCU, 
CAGGAAGCA, CAGGAAGGA, GUGAGCCAC, GUCUCCUGU, 
GAGUGGUAG, GUCUCCAAA, CACAGAGAA, CUGAGUUCA, 
CAGAGAAAA, GUCUUCGCU, CAGAAGAGG, CUGAAGACA, 
GUCUUCAGA, CUGAAGAUG, CAGAAGAUG, CAGAAAGCA, 
CAGUAUGAA, GAUGCCCUC, CUUCCCAUC, GAUGGGAAG, 
CUACCACUC, CUUCCUCUU, GAACCUUUU, CUUCUGCAG, 
CUUGAGGAA, GAACUCAGG, GAACACACA, GAAGACACA, 
CUUCACUUG, CAAGUGAAG, GAAGAAGGG, CAUCUUCUG, 
CAUCUUCAG, CUUCUAGAA, GAAGAUGAU, GAAGAAGAA, 
CAAAGCCUU, CAAAGACUU, CAAACUUCU, GUUACAUUU, 
GUAAAGACU, CAAAUGUAA, CUUUUAAAA, UCCCAGCAA, 
UGGGAAGGA, AGCGAAGAC, UGCUGGGAA, AGCAGCAGC, 
UGCUGCUGU, UCCUGCAAA, UGCAGAAGA, UCCUUCCCA, 
UCCUUCCUG, UGCUUCCUG, AGGAAGGAG, UGCUUUCUG, 
ACAGCAGCA, ACAGGAGAC, ACACCAACA, AGAGAGCAG, 
UCACACUGG, UCUCUGUGU, ACACAGAGA, UGUGUCUUC, 
UGUGUGUUC, ACAGAGAAA, UGUCUUCGC, UCUGAAGAC, 
UGUCUUCAG, ACUGUAACC, AGAGAAACC, ACUGUUUCU, 
ACACAUACA, AGUCAUAGU, AGAGUUUCU, AGUCUUUAC, 
UCUUCCCUG, AGUUCCAGG, UGUUGGUGU, UCUUCUGCA, 
UGAACUCAG, UCUUCACAA, UGAUGUGUU, UGAUGUUGG, 
AGUUCAAGG, UCUAGAAGU, UCAUCUUCU, UCAUCUUCA, 
UGUUCUUCA, UGAAGUUCU, UGAAGAUGA, UGAAGAACA, 
ACUUCUAGA, AGUUGUUCU, AGAACUUCA, AGAACAACU, 
AGAAGAUGA, AGAAGUUUG, UGUAUGUGU, ACUAUGACU, 
AGAAACUCU, AGAAACAGU, AGUAUGAAU, UCAAAAACA, 
UGUUUUUGA, UGUUAUAAA, UUCCCAGCA, AAGGCUUUG, 
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UUGCUGGGA, AUGCUGGAG, UUCCUCAAG, UUGCAGAAA, 
AAGCAGUUA, UUCCUUCUU, AAGAGGAAG, UUCUCUCCG, 
UUCUCUGUG, UUGUGAAGA, AACACAUCA, AAGUCUUUG, 
AAGAAGGAA, UUGAAGACC, UUCUUCUUC, UUCUAGAAG, 
AUCAUCUUC, AUCAUGAAA, UUCAUACUG, UUGUUUUUU, 
AAGUUAUUA, AAAGCCUUU, AAAGGCUUU, UUUGCAGGA, 
UUUGGAGAC, AAAGCUUUU, UUUCUCCUG, UUUCUGCAA, 
UAACUGCUU, UUUCUCUGU, AAAGUCUUU, AAAGACUUU, 
UUUCAUGAU, AAUGUAACC, AUUCAUACU, UUACAUUUG, 
UUUCAAAAA, UAUGUAUUU, AAAAGGUUC, AAAAGCUUU, 
UUUUCUCUG, AAAUGUAAC, UUUUCAAAA, UUUUGUUUU, 
UUUUGAAAA, AAAACAAAA, UUUUUGAAA, AAAUACAUA, 
UAAUAACUU, AAAAAACAA, UUUAUAACA, UUUUAAAAG, 
UUUUUUUAA, UUAAAAAAA 

 316 

Number of unique mers per transcript 317 

The distribution of the unique mers was investigated to determine if they were found in 318 
all transcripts of the OP, or just a few.   In other words, is the distribution of unique mers 319 
uniform across all transcripts?  To address this question, we compared their distributions 320 
in both transcript pools (i.e., OP and CP).  Here we assumed that the corresponding 321 
unique mers in transcripts of the CP should approximate a skewed (Poisson) distribution 322 
because they are relatively rare occurrences.  The controls in this experiment were the 323 
three sets of random draws (with replacement) from the CP.  We also examined the 324 
multiple occurrences of unique mers in the OP since a unique mer might occur multiple 325 
times in the same transcript.   326 

In the zebrafish, the frequencies of the unique mers per transcript varied between pools 327 
(Fig 3).  These findings indicate that not all transcripts in the OP have the same number 328 
of unique mers – i.e., the number of unique mers in a transcript was not uniform.  In the 329 
OP, the maximum bin was 150 while the maximum bin in the CP was 100.  Some 330 
transcripts of the OP have more than twice the number of unique mers in the 200, 250, 331 
and 300+ bins than those of the CP.  Therefore, some zebrafish transcripts in the OP have 332 
many more unique mers than others.    333 

In terms of multiple occurrences of unique mers in the zebrafish, the distributions 334 
differed by pool also, with multiple unique mers occurring within the same transcript 335 
when compared to controls (Fig 3B).  For example, about 87 of the OP transcripts had 336 
more than 300 multiple unique mers compared to about 40 in the CP (Fig 3D).  Hence, 337 
not only are there many more unique mers in the OP but, in some cases, there are 338 
multiple occurrences of the same mer in the same transcript. 339 

In the mouse, the frequency distribution of unique mers per transcript was also different 340 
between the pools  (Fig 4A).  Specifically, there was almost double the number of unique 341 
mers in the 200 bin of the CP than the OP, about the same number of unique mers in the 342 
400 bin, and twice (or more) the number in the 600, 1000, and 1200+ bins of the OP than 343 
the CP (Fig 4C).  This finding is consistent with those of the zebrafish – i.e., there are 344 
many more unique mers in the OP than the CP.   345 

In terms of the multiple mer occurrences in the mouse, the results were different from the 346 
zebrafish; in general, there was little change between the histogram of the unique and 347 
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multiple mers (compare Fig 3A to 3b) – meaning that in contrast to the zebrafish, most of 348 

the unique mers did not occur multiple times in the same transcript sequence.  Of note, 349 

this was not true for all cases as the 1200+ bin was somewhat bigger in the Fig 4B than 350 

4A.  However, when compared to Fig 3B to 3A, there is a substantial difference between 351 

unique and multiple mers in the zebrafish.  The presumed reason for this disparity is that 352 

in the mouse, the unique mers tend to be longer in length than those in the zebrafish 353 

(Table 1, Fig 2C) and the longer the length, the less frequent its occurrence. 354 

 355 

 356 

 357 

Fig 3.  Distribution of unique mers per gene transcript in the zebrafish. A, unique 358 

mers in OP; B, multiple unique mers in OP; C, unique mers in CP (3 independent 359 

random selections; each as a different shade of grey); D, multiple unique mers in CP 360 

(3 independent random draws). 361 

 362 

 363 

Fig 4.  Distribution of unique mers per gene transcript in the mouse. A, unique mers 364 

in OP of the mouse; B, multiple unique mers in OP of the mouse; C,  unique mers in 365 

CP of mouse (3 independent random selections; each displayed as a different shade 366 
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of grey); D, multiple unique mers in CP of the mouse (3 independent random 367 
draws). 368 

Taken together, the distribution of unique mers in the OP differs from those in the CP.  369 
Furthermore, there appears to be differences in multiple unique mers of these transcripts 370 
in the zebrafish but less so in the mouse.   371 

Groups of unique mers in the OP transcripts 372 

Based on the previous analyses, we rationalized that some transcripts in the OP might 373 
share the same unique mers.  To investigate the relationships among the OP transcripts 374 
and the unique mers (in binary presence/absence format), we constructed matrices and 375 
then performed two-way hierarchical clustering.  The matrix for the zebrafish consisted 376 
of 230 rows of transcripts by 2245 columns of unique mers (Online Resource 12), and the 377 
matrix for the mouse consisted of 333 rows of transcripts by 5117 columns of unique 378 
mers (Online Resource 13).   379 

The cluster analysis of the zebrafish identified 14 groups of transcripts and 20 groups of 380 
mers with high similarities, and the analysis of the mouse yielded 16 groups of transcripts 381 
and 20 groups of mers.  The groups were collapsed by summation.  For example, group A 382 
of the transcripts in the zebrafish consisted of 36 transcripts and Set 1 of the mers 383 
consisted of 25 unique mers.  In total, 25 x 36 = 900 combinations, out of which 119 384 
were actual occurrences of mers in the said transcripts (Online Resource 14), meaning 385 
there were 119 occurrences in the collapsed group.  We summed groups A to N and mer 386 
sets 1 to 20 to form a collapsed matrix of 14 columns of transcript groups by 20 rows of 387 
mer sets.  The same procedure was repeated for the mouse.  The collapsed groups were 388 
normalized by row (see Materials and Methods section) to produce the data for the heat 389 
maps.  Note, the heat maps were turned 90 degrees to show transcripts as columns and 390 
mer sets as rows.   391 

The number of transcripts in a group and the number of mers in a set varied substantially 392 
for both organisms.  Specifically, in the zebrafish, the number of transcripts in a group 393 
ranged from 1 to 59 (of the 230) (Fig 5), and in the mouse, the number of transcripts by 394 
group ranged from 1 to 124 (of the total of 333) (Fig 6).  Hence, some transcripts are very 395 
similar to one another in terms of unique mers, while others are distinctly different – 396 
there was no uniformity (i.e., equal number of mers distributed to equal number of 397 
transcripts). 398 

The number of unique mers in a set ranged from 2 to 876 (of a total of 2245) in the 399 
zebrafish (Fig 5) and from 40 to 1407 (of a total of 5117) in the mouse (Fig 6).  Hence, 400 
some groups of mers are found in the same transcripts while others are found in different 401 
ones.  Similar to the situation with the transcripts, the relationship among the mers was 402 
not straightforward– there appears to be a pattern. 403 

There are unifying features visible in the heatmaps.  For example, all transcript groups in 404 
the zebrafish contained relatively similar counts of mers within the mer sets 5 as well as 405 
19 (Fig 5).  Similarly, in the mouse, all transcript groups had similar counts of mers 406 
within the mer set 2 (Fig 6).  Hence, despite similarities and differences of the collapsed 407 
data, there are common sets of mers found within all transcripts.  408 
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Zebrafish heatmap: In terms of differences, groups J and N are dissimilar from the other 409 
transcript groups (Fig 5) and each group consists of a single transcript.  Group J 410 
represents the transcript si_ch211-69b7.6, whose function is currently not known, and  411 

 412 
Fig 5. Heatmap of transcript groups and mer sets for the zebrafish. M, count of 413 
mers in group; N, count of transcripts in group.  White, high count; yellow-orange, 414 
median count; red, low count. 415 

 416 
Fig 6.  Heatmap of Transcript groups and mer sets for the mouse.  M, count of mers 417 
in group; N, count of transcripts in group. White, high count; yellow-orange, 418 
median count; red, low count. 419 
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 420 

 421 
Group N represents the transcript Psd2 (Pleckstrin and Sec7 domain containing 2), which 422 
is involved in regulating vesicle biogenesis in intracellular trafficking.  The groups 423 
differed from the other groups in terms of the counts of mer sets 2, 3 and 8, which contain 424 
876, 111, and 111 mers, respectively.   425 

There appears to be significant differences between transcript group D, G, C, L, K and M, 426 
which consist of 122 transcripts (of the 230 possible) and group A, B, H, I, E and F, 427 
which consist of 106 transcripts (Fig 5).  These groups are distinct due to subtle 428 
differences in mer set 10, which consists of 9 mers and mer set 6, which consists of 60 429 
mers.   430 

Mouse heatmap: The heatmap of the mouse shows similar variation in the number of 431 
transcripts by group and mer set (Fig 6).  Transcript group K, B, E, M, H, F, C and L, 432 
which represent 40 transcripts (of a possible 333) is different from group O, N, J, A, G, P, 433 
D, and I (293 of possible 333 transcripts).  The mer set responsible for this difference is 434 
mer set 17, which contains 1407 mers.  Group O, N, J, A, G, P, D, and I have a higher 435 
relative counts than group K, B, E, M, H, F, C and L.  Interestingly, the 40 transcripts in 436 
group K, B, E, M, H, F, C and L are annotated as either zinc finger proteins or predicted 437 
coding genes – and not one of the transcripts encode a protein with known function.  438 

Taken together, there appears to be underlying patterns in the occurrence of unique mers 439 
in transcripts of the OP and these patterns are specific to certain groups of transcripts.  440 

In the zebrafish, most (192) of the known functional gene transcripts are dispersed into 441 
many groups N, C, L, K, M, A, B, H, I and F, which represent 83% of the OP (Fig 5).  In 442 
the mouse, most (245) of the known functional gene transcripts are found in groups A 443 
and G, which represent 74% of the OP (Fig 6).  444 

Density of multiple mers by transcript and organism 445 

We examined the number of ‘unique’ mers by transcript length since longer transcripts 446 
might have more mers (Online Resource 15).  Indeed, this was found true for the 447 
zebrafish -- there were more ‘unique’ mers with increasing transcript length (Pearson 448 
correlation coefficient, r=0.55, P<0.001). However, this relationship did not hold for the 449 
mouse (and we will show why below).  450 

The averaged (± stdev) density of multiple mers for the zebrafish was 0.14  ± 0.18 451 
mers/nt (n=230) and for the mouse was 0.40 ± 0.67 mers/nt (n=333).  That is, there are 14 452 
unique mers for every 100 nucleotides in the transcripts of the zebrafish and 40 mers for 453 
every 100 nucleotides in the transcripts of the mouse.  Note the high standard deviations 454 
indicating a wide variation in values.   455 

The highest and lowest densities of unique mers also differed between organisms.  In the 456 
zebrafish, the highest density was ~1.0 mers/nt for Pimr gene transcripts, which 457 
corresponds to clusters B and H (Fig 5), and the lowest density was ~0.04 mers/nt for 458 
transcripts found in cluster A.  We plotted the relationship between multiple mers and 459 
transcript length to find that the Pimr gene transcripts are distinctly different (red dots) 460 
from those in the rest of the transcripts in the OP (black dots) (Fig 7A).   The Pimr genes 461 
encode proto-oncogene serine/threonine-protein kinases involved in regulating the cell 462 
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cycle.  The remaining transcripts have a linear relationship between multiple mers and 463 
transcript length (y=0.1x; R2=0.91; with x is transcript length and y is multiple mers). 464 

 465 
Fig 7.  Number of multiple unique mers in transcripts versus transcript length. A, 466 
zebrafish; B, mouse; Red, deviant transcripts.  Red dots in the zebrafish correspond 467 
to Pimr transcripts; Red dots in the mouse represent 47 transcripts (see text). 468 

 469 

In the mouse, the highest density was ~2.6 mers/nt for annotated transcripts that do not 470 
have a canonical name (e.g., Gm14410, Gm14305. Gm14434, Gm2026, Gm11007, 471 
Gm2007, Gm4631) and were associated with Cluster B (Fig 6) and the lowest density 472 
was ~0.04 mers/nt in transcripts associated with cluster A.  A plot of the multiple mers by 473 
transcript length for the mouse revealed significant differences for a subset of the 474 
transcripts (red dots) when compared to the rest (black dots) (Fig 7B).  The red dots 475 
represent 47 annotated gene transcripts, many that do not have a canonical name and 476 
includes those with the highest mer densities per transcript (mentioned above).  The red 477 
dots also include 25 transcripts annotated as zinc finger proteins, 3 Rik transcripts, 1 478 
unprocessed pseudogene, 1 Fam containing transcript, and 10 functional gene transcripts.  479 
The remaining transcripts have a linear relationship between multiple mers and transcript 480 
length (y=0.1x; R2=0.95; with x is transcript length and y is multiple mers).  Hence the 481 
reason for the poor correlation between multiple mers and transcript length in the mouse 482 
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data (noted above) was due to 47 transcripts that deviated from the other 286 transcripts 483 
in terms of their mer density.  484 

We used RNAReg2 to determine if there are any unique molecular features in the 10 485 
functional gene transcripts: Bpifc, Ifitm7, Ms4a4c, Platr25, Rex2, Spag7, Styk1, Sva, 486 
Tmem239, Tnfrsf9.  We specifically looked at the relationship between the unique mers in 487 
the transcripts and the tab-delimited output files from RegRNA2 (Online Resource 15).   488 

While all of the transcripts have ‘ncRNA hybridization regions’ that matched the unique 489 
mers, no patterns could be found in the AU-rich elements, K-boxes, UNR boxes, 490 
untranslated region motifs, long stem loop structures or transcriptional regulatory motifs 491 
among the 10 functional genes.  Therefore, we concluded that the gene transcripts contain 492 
putative ncRNA hybridization regions – but we have no supporting evidence that these 493 
regions are actually used by the transcriptional regulation. 494 

We rationalized that the transcripts with high mer densities might act as molecular 495 
sponges to RBPs and ncRNAs and thus alter their availability in the intracellular pools.  496 
If so, one would expect the profiles (i.e., transcript abundance by postmortem time) of 497 
transcripts with high densities and those transcripts affected by them to be highly 498 
correlated.  Moreover, they should share similar unique mers that serve as putative 499 
binding sites.  Principal component analysis was used to find patterns among transcripts 500 
with high mer densities using the correlations of their transcript abundance profiles to the 501 
rest of the profiles in the OP of the mouse brain.  Network analysis was used to find 502 
shared mer binding sites.  503 

The two axes of the ordination plot accounted for 96% of the variability (Fig 8A).  There 504 
appears to be three distinct areas in the ordination plot.  One location is occupied by 505 
Gm14399, the other location is populated by a group of 8 gene transcript and the third 506 
location is occupied by Gm14409.  The correlations among the transcript profiles differed 507 
by high density transcripts suggesting that certain groups might regulate different sets of 508 
transcripts.   509 

 510 
Fig 8. Ordination plot of transcripts with high mer densities (left) and network of 511 
transcripts with shared mers (right).  The ordination was based on the correlations 512 
among mouse brain transcript profiles.  The network was based on the number of 513 
shared mers in subset of the transcript profiles with high R2 (>0.95) to the 514 
transcripts with high mer densities.  The network shows that the transcripts with 515 
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high mer densities (i.e., molecular sponges) shared mers with many other 516 
transcripts.    517 

To investigate the connections within the networks, we took a subset of the transcripts 518 
with high R2s (>0.95), and counted the number of shared mers.   A network plot revealed 519 
that transcripts with high mer densities are connected to many different transcripts and 520 
that some shared similar mers.  For example, Gm14305 shared mers with Gm11007, 521 
Gm2007, Gm14308 and Hhmt1 as wells as many other transcripts  (Fig 8B). This finding 522 
suggests that the number of possible transcripts (and pathways) that are affected by 523 
molecular sponges appears to be quite vast. 524 

Taken together, the results suggest that mer density is not the same in all OP transcripts 525 
and differs by organism and that transcripts with high density of mers have similar 526 
transcript profiles to the transcripts with lower density of mers some of which they share.  527 
The implications of this finding is that transcripts with high mer densities have the 528 
potential to act as molecular sponges to other transcripts and thus regulate them post-529 
transcriptionally. 530 

Multiple mer density by region (5’UTR, ORFs, 3’UTR) 531 

To investigate the density of unique mers by region, up to ten transcripts from each 532 
cluster (Fig 5 and Fig 6) were compared to determine if there are significant differences 533 
in mer density by region (Online Resource 16).   Note that not all transcripts had 5’UTR 534 
and/or 3’UTR regions and some lacked ORFs (e.g., ncRNA). 535 

In the zebrafish, for the transcripts having all three regions, the 3’UTR region had 536 
significantly more mers/nt than the other two regions (Table 5, Paired two-tailed T-tests, 537 
P<0.0001).  Transcripts lacking 5’UTR, 3’UTR, or ORFs have low densities (i.e., ~0.1 538 
mers/nt), indicating regional effects. 539 

Table 5. Number of unique mers by nucleotide (transcript length), region and 540 
organism. Two-way paired t-test across rows: a,b, P<0.0001; c,d P<0.01. 541 

Organism Regions Number of transcripts 5’UTR ORF 3’UTR Non-coding 

 Zebrafish 5’UTR, ORF, 3’UTR 70 0.2 ± 0.26a
 0.2 ± 0.28a

 0.3 ± 0.35b
 - 

  ORF, 3’UTR 4 - 0.1 ± 0.01 0.1 ± 0.03 - 

  5’UTR, ORF 1 0.1 0.1   - 

  ORF 3 - 0.1 ± 0.03 - - 

  Non-coding 1 - - - 0.1 

              

 Mouse 5’UTR, ORF, 3’UTR 65 0.4 ± 0.60a
 0.6 ± 0.70b

 0.5 ± 0.80 - 

  ORF, 3’UTR 2 - 0.1 ± 0.00 0.1 ± 0.00 - 

  5’UTR, ORF 16 1.4 ± 0.80c
 2.0 ± 0.70d

 - - 

  ORF 11 - 2.3 ± 0.50 - - 

  Non-coding 10 - - - 0.4 ± 0.50 

 542 

 543 
 544 
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In contrast, the highest unique mer densities in the mouse were found in the ORFs of 545 
transcripts – not the 3’UTR region as in the zebrafish (Table 5).  In transcripts having all 546 
three regions, the ORFs had significantly higher densities than the 5’UTR (Paired two-547 
tailed T-test, P<0.0001).   In gene transcripts that have both 5’UTR and ORFs (no 548 
3’UTR), or those having neither 5’UTR nor 3’UTR regions (i.e., ORF only) had twice the 549 
mer densities than transcripts having all three regions.  Moreover, higher mer densities 550 
were found in the ORFs than the 5’UTR  (Table 5, Paired two-tailed T-tests, P<0.01).  551 
One possible reason for these differences is that the 16 samples having no 3’UTR and the 552 
11 samples lacking untranslated regions (i.e., they were all ORFs) consist of genes 553 
annotated as ‘predicted coding gene’ or ‘zinc finger protein gene’.  Hence, gene function 554 
might play a role in these differences.   555 

In summary, the results show distinct differences in mer densities by organism and 556 
region.  In the zebrafish, the highest mer densities were found in the 3’UTR while the 557 
highest densities in the mouse were found in the ORFs.      558 

Known motifs 559 

The following motifs are associated with increased mRNA stability or gene expression: 560 
the Hud binding site, YUNNYUY [21]; the Rbfox binding site, UGCAUG [10]; and 561 
UAUUUAU, GAGAAAA, AGAGAAA, UUUGCAC, AUGUGAA, UUGCACA, 562 
GGGAAGA [22]. We screened these motifs against the unique mers to identify 563 
transcripts in the OP that might have increased stability or gene expression due to these 564 
motifs.  565 

Three hundred and fourteen of the 333 OP transcripts (94%) in the mouse and 189 of the 566 
230 transcripts (82%) in the zebrafish contained one or more of the known binding motifs 567 
associated with increased mRNA stability or gene expression (Table 6).  Most of the 568 
transcripts in the OP of the mouse and zebrafish had at least two different motifs (Fig 9).  569 
The number of previously reported motifs represents a small fraction of the total number 570 
of unique mers found in our study (180 of the 5117 unique mouse mers (3.5%) and 54 of 571 
the 2245 zebrafish mers (2.4%)).  Hence, our study identified 4937 and 2191 putatively 572 
new motifs in transcripts of the OP of the mouse and zebrafish, respectively. It remains to 573 
be determined if these new motifs are functional or not. 574 

Table 6. Number of transcripts by known protein binding site and organism. Hud 575 
binding site, YUNNYUY [21]; Rbfox binding site, UGCAUG [10]; and UAUUUAU, 576 
GAGAAAA, AGAGAAA, UUUGCAC, AUGUGAA, UUGCACA, GGGAAGA [22].    577 

    Protein binding sites 

Organism n transcripts Hud Rbfox 
Jacobsen 

et al.  All three 
            

Mouse 333 287 126 258 314 
           

Zebrafish 230 185 0 106 189 
 578 
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 579 

Fig 9. Number of known binding sites per transcripts for the mouse (A) and 580 

zebrafish (B).  Total number of transcripts for the mouse, n=333 and for the 581 

zebrafish, n=230. The following binding sites were examined: Hud binding site, 582 

YUNNYUY [21]; Rbfox binding site, UGCAUG [10]; and UAUUUAU, GAGAAAA, 583 

AGAGAAA, UUUGCAC, AUGUGAA, UUGCACA, GGGAAGA [22].   Note: the 584 

zebrafish did not have Rbfox binding sites. 585 

 586 

DISCUSSION 587 

The motivation for our study was driven by curiosity into possible mechanisms 588 

responsible for the increase in transcript abundances with postmortem time, which have 589 

now been reported to occur in the zebrafish, mouse, and humans [3, 4].  There is a need 590 

to understand regulatory features and how they influence transcriptional dynamics in 591 

order to comprehend the response of biological systems to stress.  Yet, to our knowledge, 592 

no study has investigated possible reasons for increases in transcript abundance after 593 

organismal death.  Such information is needed to provide baseline data for gene 594 

expression studies involving stressful conditions such as disease, starvation, and cancer.  595 

Unique mers identified in the OP 596 

Our initial hypothesis was that among multiple reasons, there must be a signal, i.e., a 597 

nucleotide sequence that is responsible for postmortem activation of certain transcripts. 598 

Instead, we find sets of ‘unique’ mers in different groups of transcripts, with most sets 599 

consisting of ten to hundreds of different mers -- not just one or two.   600 

The total number of unique mers in the OP was relatively small compared to all possible 601 

mers, ~1.5% of the total combinations of 3- to 9- mers in the mouse and ~0.6% in the 602 

zebrafish.  These small percentages are presumably due to the arbitrary criterion used to 603 

identify unique mers.  The reason the criterion was set to 5 times the standard deviation 604 

of the average count of the mer in the CP was to ensure that the identified mers were not 605 

due to random chance (i.e., false positives, FPs).  Our results indicate that chance of a 606 

random mer having a count exceeding the criterion was relatively rare -- but FPs did 607 

occur and their occurrence increased with mer length (Fig 2D).   608 
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The fact that several mers identified in our study have been previously reported to be 609 
involved with increased gene expression and/or mRNA stability (e.g., Hud, Rbfox, ARE 610 
binding sites; [10,21,23]) is consistent with the idea that our experimental design was 611 
effective at identifying ‘unique’ mers in the postmortem transcriptome of two different 612 
organisms. 613 

Unique mers by transcript, region, and organism  614 

The number of unique mers in each transcript of the OP varied considerably.  Some 615 
transcripts have a disproportionately high number of mers, while others have much lower 616 
numbers.  Interestingly, in the mouse, several of the transcripts with high multiple mer 617 
densities have an ORF with no known function.  Other transcripts have known functions, 618 
including: Bpifc, which is involved in innate immune response; Fam160b2, which is 619 
involved in phosphorylation of Hsp70 [24]; Ifitm7, which is involved in regulation of cell 620 
proliferation and immune response [25]; Ms4a4c, which regulates receptor signaling and 621 
recycling [26]; Spag7, which is involved in antiviral and inflammatory response [27, 28, 622 
29]; Styk1, which is associated with cancer progression and promotes the Warburg effect 623 
through signaling of the PI3K/AKT pathway [30, 31, 32]; and Tnfrsf9, which is involved 624 
in positive regulation of immune system functions and leukocyte activation [33].  In the 625 
zebrafish, a disproportionately high number of mers occurred in the Pimr gene 626 
transcripts, which are involved in cell cycling.  These gene transcripts have common 627 
functions: cell survival, proliferation, cycling, stress compensation, and/or defense.  It is 628 
enticing to speculate that the other transcripts (i.e., those with no known functions but 629 
with high mer densities) might also be involved in these functions. 630 

The density of multiple unique mers was higher in the ORFs than the 3’UTR in the 631 
mouse -- but quite the opposite was true in the zebrafish (Table 5).  That is, the zebrafish 632 
had a higher mer density in the 3’UTR than the other regions.  In general, the 3′ UTR is 633 
involved in subcellular localization and mRNA stability, while the 5′ UTR play roles in 634 
translational control [34].  Motifs within the UTR regions are thought to control functions 635 
by interacting with RBPs [34].  Yet, the highest density of mers (2.3 ± 0.50 mers/nt) was 636 
in 11 transcripts that lacked UTRs (i.e., they were all ORFs).  These findings are aligned 637 
with the notion that binding sites can exist all along the transcripts and not necessarily 638 
restricted to the UTRs [35].  It is possible that these 11 transcripts act as large “molecular 639 
sponges” in stressful conditions, providing an additional layer of complexity to post-640 
transcriptional regulation (which we discuss below). 641 

While the two organisms share 47 unique mers, there were significant differences in 642 
terms of their mer counts, the multiple mer densities by region, and the number of mers 643 
per transcript by organism. This finding suggests that post-transcriptional regulation 644 
varies significantly by organism – but this is not surprising since our original study [4] 645 
sampled mRNAs in whole organisms in the case of the zebrafish and the organ/tissues of 646 
the brains and livers in the case of the mouse.  The samples are not comparable and we 647 
would not expect post-transcriptional regulation to be the same in different organisms or 648 
organ/tissues. 649 

Unique Mers and known binding sites 650 

One set of unique mers with the sequence YUNNYUY apparently binds Hud proteins 651 
(Table 6).  Hud proteins stabilize mRNA by binding to AU-rich instability elements 652 
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(AREs) in the 3’UTR and they target transcripts involved in neuronal differentiation, 653 

protein phosphatase regulation, ubiquitin ligation, and the transport, processing and 654 

translation of mRNAs [21].  Interestingly, Hud proteins not only target their own mRNA 655 

but those of other RBPs, which suggests that it forms a network of post-transcriptional 656 

regulators [21]. In the mouse, data from our previous study [4] showed that Hud 657 

transcript abundance increased upon organismal death to reach maxima at 12 to 48 h 658 

postmortem (Fig 10A).  In the zebrafish, the Hud transcript abundance was about the 659 

same as the live controls for up to 4 h postmortem and then it declined and abruptly 660 

increased after 48 h (Fig 10B).  These findings are aligned with the notion that Hud genes 661 

are involved in stabilizing some of the mRNAs in our previous study. 662 

 663 

Fig 10.  Gene transcript abundances measured by a calibrated microarray [41,42] 664 

(log transformed) by postmortem time.  Abundances were normalized to flash 665 

frozen live controls (L). Black line, average. (A) Hud transcript in mouse; black 666 

dots, averaged abundance measured by probe A_55_P1990309 (n=3 replicates for 667 

each dot except 48 h where n=2 replicates); white dots, average abundance 668 

measured by probe A_55_P1990314; (B) Rbfox transcript in mouse; black dots, 669 

average abundance measured by probe A_55_P195339` (n=3 replicates for each dot 670 

except last where n=2 replicates); white dots, average abundance of probe 671 
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A_55_P1953400;  (C) Hud transcript in zebrafish; black dots, average abundance of 672 
probe A_15_P119510 (n=2 replicates for each dot); white dots, average abundance 673 
of probe A_15_P120793. Data are from ref. [4]. 674 

Another unique mer with the sequence UGCAUG has previously been reported to serve 675 
as the binding site for Rbfox proteins that regulate splicing networks, mRNA stability and 676 
miRNA biogenesis [10].  Apparently, the binding to transcripts inhibits processing of the 677 
pri-microRNAs to pre-microRNAs, reduces expression of the mature miRNAs, and 678 
increases expression of targets normally downregulated by miRNAs [10].  A previous 679 
study has shown that the abundance of transcripts with UGCAUG motifs in the 3’UTR 680 
positively correlates with Rbfox expression, and that knockdown of Rbfox decreases 681 
transcript abundances [36].  These findings support the hypothesis that Rbfox enhances 682 
mRNA stability as well as gene expression.  In our study, a little more than a third of the 683 
transcripts in the OP of the mouse have this binding site, but none were found in the OP 684 
of the zebrafish (Table 6).  In the mouse, data from our previous study [4] showed that 685 
Rbfox transcript abundance increased after 30 min postmortem to reach a maximum at 48 686 
h (Fig 10C).  These findings suggest that Rbfox proteins were interacting with some of 687 
the mouse mRNAs in our previous study. 688 

The following 7 unique mers found in the OP have recently been reported as putative 689 
binding sites: UAUUUAU, GAGAAAA, AGAGAAA, UUUGCAC, AUGUGAA, 690 
UUGCACA, GGGAAGA [34].  These sites have been correlated with increased gene 691 
expression in HeLa cells transfected with miRNAs.  The UAUUUAU binding site is 692 
reported to be an ARE that signals rapid degradation or increased stability of mRNAs in 693 
response to stress [36].  The Jacobsen et al. [34] study showed that ARE binding sites and 694 
miRNA mediated regulation are interlinked, which is aligned with a similar study in 695 
Drosophila cells [37].  While the significance and mechanistic insights of the 6 other 696 
putative binding sites were not discussed in the Jacobsen et al. study [34], at least one of 697 
the seven binding sites was found in 258 of the 333 transcripts of the mouse and 106 of 698 
the 230 of the zebrafish, indicating that miRNAs might be involved in “regulating” the 699 
postmortem transcriptome (Table 6). 700 

Post-transcriptional regulation of the postmortem transcriptome 701 

Several possible scenarios could be working in spatially and temporally combination to 702 
increase transcript stability and/or increase transcript abundance in the postmortem 703 
transcriptome.  These scenarios are based, in part, on the “Competing endogenous RNA 704 
hypothesis”, which is provided at the end of the Discussion.  However, without 705 
experimental evidence, we caution that these scenarios are speculative at best.   706 

One scenario is transcript stability is increased in the OP because they have more unique 707 
mers than the CP and RBPs bind to regulatory sites of transcripts of the OP blocking the 708 
binding of miRNAs, which are linked to degradation pathways.  As a consequence, 709 
transcript stability is increased because the transcripts accumulate in the cells over time.   710 

A second scenario is postmortem genes are upregulated due to miRNA inhibition.  Take, 711 
for example, transcripts regulated by p53 tumor suppressor that increase in abundance in 712 
response to miR-21 inhibition [38].   713 
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A third scenario is that some of the transcripts containing high multiple densities of mers 714 

act as molecular sponges that bind miRNAs and/or RBPs and therefore affect post-715 

transcriptional regulation in trans.  An example of this in our study was the 11 gene 716 

transcripts in the mouse with unknown functions and the Pimr transcripts in the zebrafish 717 

that had high densities in terms of mers per nucleotide (~2.4 mer/nt and ~1.0 mer/nt, 718 

respectively).  Such high densities indicate that they contained many unique binding sites 719 

to sponge RBPs and/or ncRNAs.  According to the data from our previous paper [4], all 720 

the transcripts with high mer densities in the mouse increase in abundance right after 721 

death (0.5 h) and continued to increase, reaching a maximum abundance at 12 h, and then 722 

slowly decline (Fig 11A).  In the zebrafish, the Pimr gene transcripts increased slightly 723 

after death (relative to live controls) and abruptly increased after 12 h to maximize at 24 h 724 

(Fig 11B).  One-way to interpret these phenomena are that the transcripts are depleting 725 

the miRNA and/or RBP pools.  In response to the decrease, a select group of genes 726 

involved in survival and stress compensation were passively transcribed, which accounts 727 

for the increases in transcript abundances in our original study.   728 

 729 

Fig 11. Gene transcript abundances measured by a calibrated microarray [41,42] 730 

(log transformed) by postmortem time. Abundances were normalized to flash frozen 731 

live controls (L).  Black line, average.  (A) Mouse: Open circle, represents Gm11007, 732 

Gm2007, Gm4631, Gm14434, Gm2026, Gm14305, Gm14399, Gm14325, Zfp969, 733 
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Gm4724, Gm14326 transcripts; closed circle, Zfp967, Zfp969, Zfp968; open square, 734 
Gm14410; closed square, Gm14305; open triangle, Gm14322; closed triangle, 735 
Gm14308; closed diamond, Gm14412.  All points are the average of 3 replicates per 736 
sample time except the 48 h, which is the average of 2 replicates.  (B) Zebrafish: 737 
Pimr transcript. Each point in the zebrafish represents the average of two 738 
individuals per sample time.  Data are from ref. [4]. 739 

Further support for this scenario comes from the fact that most of the functional genes 740 
involved in survival and stress compensation were found in two clusters in the mouse: 741 
Groups A and G (59% of the OP) with low mer densities of 0.11 ± 0.12 mers/nt and 0.11 742 
± 0.05 mers/nt, respectively (Fig 6).  In the zebrafish, most of the known functional gene 743 
transcripts are dispersed into groups A, C, F, K L, M, and N (93% of the OP) (Fig 5), 744 
which have low mer densities (e.g., 0.10 ± 0.02  mers/nt).  It is these genes that might 745 
have been passively upregulated due to lack of miRNA and RBPs to prevent them.  This 746 
scenario makes sense for an evolutionary perspective because post-transcriptional 747 
regulation facilitates fast changes in response to stress so that cells can adapt to 748 
environmental change. 749 

Alternative splicing sites might differ under stress 750 

We assumed that the mRNA transcripts downloaded from NCBI represent dominant 751 
isoforms one would expect to find in nature.  However, a recent study [3] suggests that 752 
stress increases the production of different isoforms through alternative splicing.  In other 753 
words, the composition of the transcripts might change in stressful conditions (i.e., 754 
different isoforms are produced).  Our analysis did not account for this, however 755 
repeating our experiment using next-generation-sequencing methods might indeed 756 
provide additional insight into post-transcriptional regulation in postmortem gene 757 
expression, which is the focus of our future research. 758 

Competing endogenous RNA hypothesis  759 

According to the ‘competing endogenous RNA’ hypothesis, all types of RNA transcripts 760 
communicate through regulatory-binding sites and it is these interactions that regulate 761 
gene expression [39].  The binding of miRNAs to sites represses translation and 762 
destabilizes the mRNA, thus having an overall negative regulatory role on gene 763 
expression.  However, in the case when there is a limited pool of miRNAs to bind the 764 
sites or an overabundance of binding sites in transcripts, there is competition between 765 
targets to sequester miRNA.  Thus, a surplus of binding sites dilutes the miRNA pool and 766 
gene expression resumes passively.  Pseudogenes (i.e., those resembling known genes but 767 
are nonfunctional) as well as other transcripts can dilute the miRNA pool and thereby 768 
regulate their availability, and thus have an overall positive regulatory role on gene 769 
expression.   770 

Missing from the competing endogenous RNA hypothesis is the role of RBPs to compete 771 
with miRNA for regulatory binding sites.  The presumed reason for this omission was at 772 
the time (i.e., 2011) there was a paucity of information supporting the idea that molecular 773 
sponges interact with proteins.  However, proof exists today [22].  A recent study 774 
reanalyzed high-throughput cross-linking and immunoprecipitation experiments in 775 
Human Embryonic Kidney Cells 293 to show that RBPs and miRNA often bind to the 776 
same or overlapping regulatory binding sites. The significance of this finding is twofold: 777 
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(i) it suggests competition among the regulators (RBPs, miRNA, binding sites in different 778 
targets) and (ii) it suggests the relative concentrations of the RBPs and miRNAs to the 779 
regulatory binding sites might determine a transcript’s fate [40].   780 

A third significant finding from the same study was the introduction of ‘hotspot’ binding 781 
sites that have high sequence conservation, accessibility, and enrichment in AU-rich 782 
elements (AREs) (i.e., devoid of guanines) and function by favoring competition among 783 
regulators [40].  Apparently, target sites outside of hotspots have increased expression 784 
levels compared to targets sites within hotspots.  Hence ‘hotspots’ are considered 785 
functional regulatory elements that provide an extra layer of regulation of post-786 
transcriptional regulatory networks. 787 

 788 

SUMMARY 789 

This is the first study to investigate over-abundant mers in transcriptomic profiles after 790 
organismal death and raises interesting questions relative to post-transcriptional 791 
regulation and molecular biology. 792 
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SUPPLEMENTARY INFORMATION 955 
 956 
1. Online Resource_1. Title: Online Resource_1.docx. Description:  Proof that using 957 

the ‘Chaos Genome Representation’ method to extract mers from the transcript 958 

sequences is more practical (computational efficient) than string-based search 959 

algorithms. 960 
 961 
2. Online Resource_2. Title: Online Resource_2.xlsx. Description:  Two sheets in MS 962 

Excel file: (i) zebrafish_probes_PM, and (ii) mouse_probes_PM.  PM, perfect 963 

match probes. Each sheet has two columns: first column is Agilent Probe ID and 964 

second column is DNA sequence. 965 

 966 

3. Online Resource_3. Title: Online Resource_3.fna. Description: Two columns in 967 

text file of the over-abundant pool (OP) for the mouse. One column is Agilent 968 

Probe ID linked to Annotated Gene Name and second column is cDNA sequence. 969 

Total of 330 rows. 970 

 971 

4. Online Resource_4. Title: Online Resource_4.fna. Description: Two columns in 972 

text file of the over-abundant pool (OP) for the zebrafish. One column is Agilent 973 

Probe ID linked to Annotated Gene Name and second column is cDNA sequence. 974 

Total of 230 rows. 975 

 976 

5. Online Resource_5. Title: Online Resource_5.fna.  Description: Two columns in 977 

text file of the control pool (CP) for the mouse. One column is Agilent Probe ID 978 

linked to Annotated Gene Name and second column is cDNA sequence. Total of 979 

32611 rows. 980 

 981 

6. Online Resource_6. Title: Online Resource_6.fna. Description: Two columns in 982 

text file of the control pool (CP) for the zebrafish. One column is Agilent Probe ID 983 

linked to Annotated Gene Name and second column is cDNA sequence. Total of 984 

27433 rows. 985 

 986 

7. Online Resource_7. Title: Online Resource_7.xls. Description: Two sheets in MS 987 

Excel file: (i) zebrafish, and (ii) mouse.  Each sheet has 4 columns: first column is 988 

string length (strlen) of OP transcript; second column is blank; third column is 989 

string length of the corresponding CP transcript; fourth column is string length 990 

of corresponding CP2 transcript.  Rows 1 to 231 in the zebrafish sheet contain 991 

the strlen of 230 transcripts in both OP and CP1 and CP2; rows 233 and 234 992 

contains average and standard deviations of the columns; row 236 contains the 993 

two-tailed t-test results for OP vs CP1 and OP vs CP2. Rows 1 to 334 in the 994 

mouse sheet contain the strlen of 333 transcripts in both OP and CP1 and CP2; 995 

rows 336 and 337 contains average and standard deviations of the columns; row 996 

339 contains the two-tailed t-test results for OP vs CP1 and OP vs CP2. 997 

 998 

8. Online Resource_8. Title: Online Resource_8.xlsx. Description: Nine sheets in MS 999 

Excel file.  The first sheet provides a detailed Readme that describes the sheets.  1000 
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Basically, first column is abundance of mer in OP, second column is average 1001 

abundance in CP, third column is standard deviation in CP, and remaining 30 1002 

columns are abundances of 30 random draws from CP.  Rows differ by mer 1003 

length. 1004 
 1005 
9. Online Resource_9. Title: Online Resource_9.xlsx. Description: Nine sheets in MS 1006 

Excel file.  The first sheet provides a detailed Readme that describes the sheets.  1007 

Basically, first column is abundance of mer in OP, second column is average 1008 

abundance in CP, third column is standard deviation in CP, and remaining 30 1009 

columns are abundances of 30 random draws from CP.  Rows differ by mer 1010 

length. 1011 
 1012 
10. Online Resource_10. Title: Online Resource_10.xlsx.  Description: 11 sheets in MS 1013 

Excel file.  It is similar to the Online Resource_8 file except the raw data is 1014 

missing to reduce matrix size.  The purpose of the sheets is to calculate over- and 1015 

under-abundant mers that are 5 X the standard deviation of the CP for each mer. 1016 

The first sheet provides a detailed Readme that describes the sheets. Rows differ 1017 

by mer length. 1018 

 1019 

11. Online Resource_11. Title: Online Resource_11.xlsx. Description:  11 sheets in MS 1020 

Excel file.  It is similar to the Online Resource_9 file except the raw data is 1021 

missing to reduce matrix size.  The purpose of the sheets is to calculate over- and 1022 

under-abundant mers that are 5 X the standard deviation of the CP for each mer. 1023 

The first sheet provides a detailed Readme that describes the sheets. Rows differ 1024 

by mer length. 1025 

 1026 

12. Online Resource_12. Title: Online Resource_12.xlsx. Description:  Multiple sheets 1027 

in MS Excel file. The first sheet provides a detailed Readme that describes the 1028 

sheets. Rows differ by mer length.  The matrix file consists of 2245 columns and 1029 

230 rows. 1030 

 1031 

13. Online Resource_13. Title: Online Resource_13.xlsx. Description:  Multiple sheets 1032 

in MS Excel file. The first sheet provides a detailed Readme that describes the 1033 

sheets. Rows differ by mer length.  The matrix file consists of 5117 columns and 1034 

333 rows. 1035 

 1036 

14. Online Resource_14. Title: Online Resource_14.xls. Description:  Two sheets in 1037 

MS Excel file. The first sheet is the collapsed data of the Zebrafish and the second 1038 

sheet is the collapsed data of the Mouse.  Each sheet shows how the data was log 1039 

normalized for making the heatmaps.  The collapsed data was based on two way 1040 

cluster groups using Wards linkage methods. 1041 

 1042 

15. Online Resource_15. Title: Online Resource_15.xls. Description: Four sheets in 1043 

MS Excel file.  The first sheet provides a detailed Readme that describes the 1044 

sheets. The second and third sheets have the number of mer hits by transcript 1045 
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sequence length for the zebrafish and mouse. The fourth sheet has the 1046 

summarize RegRNA2 output for 10 samples.  1047 

 1048 

16. Online Resource_16. Title: Online Resource_16.xls. Description:  Two sheets in 1049 

MS Excel file. The first sheet is the number of mers by region for the zebrafish 1050 

and the second sheet is the same for the mouse.  1051 
 1052 
 1053 
 1054 
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