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ABSTRACT14

Glioblastoma is a deadly brain tumor characterized in part by the histological finding of pseudopallisading necro-
sis. The cause of this necrosis can be multifactorial, but the consequences are regions of necrosis and hypoxia
interspersed throughout the tumors. This heterogeneity in oxygen availability has significant influence on not only
cellular population dynamics but also on treatment response. Further, hypoxia has been strongly correlated with
the emergence of metastatic and treatment resistant phenotypes. As well as microenvironmental heterogeneity,
glioblastoma is one of a number of cancers which have been shown to be composed of a proliferative cellular hier-
archy which includes cells with varying abilities to recapitulate the tumor phenotype – the most extreme of which
have been recently labeled cancer stem cells, or tumor initiating cells. The interplay between microenvironmental
and tumor heterogeneity can explain glioblastoma’s somatic evolution but neither clinical data nor biological models
can recapitulate this clinical reality alone. Here we present a computational agent-based model of a tumor growing
under the proliferative hierarchy in a heterogeneous domain. Our results show that the tempo of tumor stem cell
evolution varies widely within the tumor, and is particularly increased at the peri-anoxic edge. We subsequently
challenge this provocative in silico finding through analysis of primary histologic samples taken from patients with
glioblastoma stained to elucidate areas of hypoxia and necrosis, and to identify heterogeneity in p53. Our results
support the hypothesis that the peri-anoxic ridge increases the stem cell turnover, and that this leads to an increase
in the mutational load compared to cells in well oxygenated environments. We develop maps of evolutionary tempo
from the histology and find that hypoxia effectively ’warps’ evolutionary velocity. Implications of this for both tumor
evolution and control in glioblastoma are discussed. We develop maps of evolutionary tempo from the histology and
find that hypoxia effectively ’warps’ evolutionary velocity. Implications of this for both tumor evolution and control
in glioblastoma are discussed.

15

Introduction16

While genetic aberrations are the engine of cancer’s somatic evolution, the tumor micro-environment is the key contributor17

to the selection process that drives it. The micro-environment of a tumor is made of myriad elements that impact the fitness18

of the tumor cells, thus selecting for the key cancer phenotypes1–3 that characterize tumor progression and determine the19

patient’s prognosis. A key element of this micro-environment is oxygen and, as early as the 1950s, investigations by Gray and20

colleagues4 showed its pivotal role in patient prognosis. Since these initial investigations, ample further evidence has emerged21

confirming the observation that the oxygenation of a tumor has important implications for patient outcome and treatment22

response5, 6. There are two major reasons for this – the first is that poorly oxygenated tumors respond significantly worse to23

treatment than well-oxygenated tumor regions; and second is that oxygen is a known selection pressure which favors specific24

aggressive cancer cell phenotypes typified by certain known traits. Most prominent of these traits is the capacity to endure25

harsh environments, and the ability to migrate beyond the tissue from whence they arose7.26

Such clones gain the ability to proliferate and survive in hypoxic environments8. These factors might suggest that hypoxia27

can initiate metastasis, though the exact mechanism remains unclear. As metastatic cancer is a leading cause of mortality in the28
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western world, it is imperative processes such as these, which may contribute to disease evolution, are properly understood. To29

date, the interplay of these clones with the micro-environment remains poorly understood.30

For these reasons, the oxygen micro-environment is of particular interest, and has been studied extensively in physiology31

and pathophysiology. In healthy tissue, it is relatively stable and well-supplied. However, tumors tend to have highly32

heterogeneous microscopic oxygen supply9–12, a direct consequence of the chaotic and erratic vasculature encouraged by tumor33

angiogenesis13–15. Improving our understanding of the interplay between the oxygen micro-environment and cancer evolution34

is of paramount importance to advancing therapy16–19, yet it is notoriously difficult to probe this question experimentally.35

Mathematical models allow us to explore the consequences of various assumptions, even when empirical observations are36

difficult to obtain. Where data are available, mathematical models can help inform our understanding of what is observed20, 21,37

and further, to understand the spatio-temporal dynamics to which the study of fixed tissue or molecular biology is typically38

blind. It has become increasingly recognised that a synergistic integration of mathematics and clinical as well as experimental39

data in oncology yields substantial dividends20.40

In this work, we integrate clinical observations of spatial and temporal heterogeneity in tumor oxygenation with proliferative41

cellular heterogeneities assuming a tumor made of cells with different degrees of differentiation. Specifically, we developed an42

agent-based model, using a hybrid discrete-continuous cellular automata (HCA) approach22, of neutral tumor evolution in a43

proliferative hierarchy. Using this model, we studied the evolutionary dynamics of the cancer stem cells across the heterogeneous44

tumor and find altered evolutionary tempo correlated with areas of extreme hypoxia. Given the strong observations of these45

intratumoral and microenvironmental heterogeneities in glioblastoma, we test our model derived hypotheses against histology46

from patients with this disease.47

Materials and Methods48

Model outline49

To explore stem cell dynamics, we used an agent-based HCA model built upon the framework we developed previously23
50

with modification. The general schematic for the this is shown in Figure 1. Under this model, stem cells can symmetrically51

divide (with probability α), or asymmetrically into a stem daughter and a daughter transient amplifying cell (TACs) with52

probability 1−α , provided there is free space for the cells to occupy. While stem cells are effectively immortal unless killed by53

anoxia, TACs divide to other TACs only, and these cells can only undergo β divisions before under-going apoptosis. TAC cell54

daughters inherit the divisional age of their parent TAC. This framework as described assumes the cancer stem cell hypothesis,55

essentially the presumption that carcinogenic cells with properties analogous to normal stem cells exist, and can either produce56

other stem cells or differentiate to other cell types. Typically these CSCs are considered immortal, and the only cells able57

to give rise to new tumors. The generality and exact properties of cancer stem cells is heavily debated, but has been clearly58

demonstrated in some cancers such as acute myeloid leukemia (AML)24 as well many solid tumor types, including colon25,59

brain26, 27, breast28 and melanoma29. In practice, these cells have been hard to find in other tumor types, perhaps due to their60

relatively low abundance - for AML, cancer stem cell frequency is about 1 in 10,000. An alternative explanation is that any61

cancer cell can give rise to another cancer cell. Mathematical modelling suggests that the assumptions made will have serious62

implications for tumor growth30, and it is worthwhile to consider both options. To implement the assumption that all cells63

would proliferate, the simulation was also run with α = 1 so no TAC cells would emerge. To factor in the influence of the64

oxygen micro-environment, these simulations were run with heterogeneous oxygen maps, with the addition of conditions for65

hypoxia mediated death. For cells below a critical oxygen threshold pC, cells have a probability λ of death per time-step.66

The probability of reproduction for a cell, PR, is related to available oxygen. As literature suggests, cells are still capable67

of mitosis down to very low levels of oxygen (≤ 0.5mmHg31, 32. The most simple model to capture this reality is a function68

analogous to a Heaviside step function, where PR stepped to zero below the threshold value. A alternative and perhaps more69

biologically realistic option was to introduce a function where PR falls with oxygen pressure - a suitable rapidly decaying70

function which yields PR = 0.5 at oxygen threshold is given by71

PR = 1− exp(−2log(2)p) = 1− e−kp. (1)

where p is oxygen partial pressure and k = 1.368mmHg−1, with the constant chosen such that PR(0.5) = 0.5. Both possibilities72

were simulated in this work. Realistic heterogeneous oxygen maps were taken from literature13, 15 as illustrated in Figure 2 and73

discussed in the next section. The CA model was run on these oxygen maps, which were presumed to be constant, and we74

followed the evolution of cancer cells in the micro-environment, recording not only cell position but the divisional age of cells75

(i.e. the number of total divisions in their life history). This divisional age is taken as a proxy for mutational risk, as cells which76

undergo more divisions have increased chance of producing an offspring with a clinically relevant mutation, perhaps conferring77

increased therapeutic resistance or metastatic potential. Each grid position was assumed to be the width of one-cell, and for78

simplicity no cellular compression was assumed. Parameter values are shown in Table 1.79
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Figure 1. Schematic representation of cellular automata model

Model implementation and Oxygen maps80

The chief goal of this paper is to investigate the role of oxygen in driving somatic evolution in glioblastoma. Accordingly,81

for simulation, appropriate oxygen maps are required. In tumors, blood vessels provide oxygen to the respiring mass. It has82

previously been shown that oxygen diffusion distance (rn) from a vessel or source is limited by the oxygen consumption83

rate a in both spherical34, 35 and cylindrical geometries36, 37. If the underlying vessel geometry is known, it is possible to use84

previously established methods15 to generate estimated oxygen maps in 3D. Due to the complexities of establishing vessel maps85

by confocal microscopy or others, the sections for which we have complete vessel maps tend to be relatively small (typically86

< 1mm2). To simulate the heterogeneous nature of tissue oxygen for this work, previously measured and simulated oxygen87

micro-environments were scaled up to provide different oxygen grids. As the model is employed in two dimensions in this88

work, 2D slices derived from 3D oxygen maps were used in simulation. The simplest of these corresponded to the oxygen field89

surrounding a single long vessel, over an area of 1 × 1 mm2. The second map was chosen to depict an extremely hypoxic90

micro-environment, derived from a 15 vessel network by13, with an area of 5×5 mm2. Finally, a cross-section of a previously91

described 357 vessel MC-38 mouse tumor15 was scaled up and interpolated to correspond to a highly heterogeneous large92

region of 10 × 10 mm2. These are depicted in Figure 2. It is important to note that these oxygen maps were assumed to be93

constant in time, whereas oxygenation is dynamic in real tumors5. The separation of time scales between oxygen diffusion and94

cell division allow making the assumption that the oxygen tension is at a quasi-steady state reasonable37. Our model in place,95

we next sought to quantify whether stem cell division was more prevalent under hypoxic conditions, and test the hypothesis96

that areas of hypoxia influenced the rate of evolution by changing the rate of stem cell mutation over time. or similar? To97

investigate this, a single stem cell was seeded in the most oxygen rich environment of each oxygen map at time 0, and then98

evolved according to the rules outlined previously. For the single vessel oxygen map, the simulation was run for 2,000 time99
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Table 1. Parameter values used in simulation

Parameter Value Source

Critical oxygen threshold pC 0.5 mmHg 31

Symmetric stem division probability α 0.25 Model parameter
TAC division limit β 6 33

Hypoxia death probability λ 0.50 Model parameter
Cell diameter 12.5 µm 32, 34

steps to allow cells to grow along the available area. For the 15 vessel oxygen map, simulations were run for 5,000 time steps100

and finally for the 357 vessel section the simulation was run for 20,000 time steps due to its much greater size. After the101

simulations were complete, stem cells were stratified by lifetime, relative to the TAC lifetime β . These were sorted into either102

high divisions (Number of divisions > β ) or low divisions (Number of divisions ≤ β ). The oxygen levels underlying these103

stratifications were then compared to determine whether oxygen status significantly skewed distribution.104

Experimental data and image analysis105

Human glioblastoma sections were obtained from patient biopsy samples.106

For each tumor, three adjacent sections were prepared as follows: 1) hematoxylin and eosin; 2) immunohistochemistry107

(IHC) for the proliferation marker Ki-67; and 3) IHC for p53 protein, over expression of which is commonly used as a surrogate108

for TP53 gene mutation. The latter is commonly used as a proxy for mutation, strongly correlated with gene dysregulation in a109

number of cancers38–42. It is important to note that IHC staining alone may not detect all known alterations in the p53 gene in110

human malignancies43, but should suffice to indicate increased mutations where staining is positive. This study was approved111

by the Moffitt Cancer Center IRB. Microscopy was performed at high resolution using the Digital Pathology Leica Biosystems112

Aperio system. Images were taken at 20X magnification, yielding digital images of the sections with 1 pixel corresponding to113

0.504µm. Regions of necrosis were identified by histological examination on the H&E slide, and marked by a specialized114

neuro-pathologist (RM) using the Aperio Imagescope software. These annotations could then be extracted as XML files with115

the coordinates of necrotic boundaries.116

As scanned slides were not always properly aligned, a co-registration algorithm for the images was performed. Once images117

were co-registered, cells both positive and negative for Ki-67 were identified automatically on the Ki-67 slide, as well as P53118

positive cells. Finally, the distance from the coordinates of each cell center to each point of the identified necrosis is found, and119

the minimum distance for each cell stored. Examples of the co-registration and cell identification technique are shown in figure120

3. While explicit oxygen concentration cannot be determined from this experimental data, necrosis in glioblastoma is strongly121

associated with hypoxia, and thus distance from the boundary was treated as a proxy for hypoxia. This assumption is justified122

in more detail in the discussion section. A full description of the image registration algorithm, image analysis protocol and123

sample code is included in the supplementary materials.124
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Figure 2. Simulated oxygen maps for this work (a) Oxygen profile from a single vessel (area 1 mm2) (b) Oxygen map from a
network of 15 vessels (area 25 mm2, adapted from13 (c) Oxygen map from a 357 vessel network (area 100 mm2, adapted
from15.

125

Results126

Simulation results - Divisional rates with oxygen127

The model was run 1,000 times over the oxygen maps outlined and output analysed. Figure 4 depicts the stratification of128

stem cells in the simulation into two populations (divisions ≤ β and divisions > β ). What is immediately apparent is that129

high division of stem cells was directly associated with low oxygen conditions. This trend was seen for every map, regardless130

of the underlying heterogeneity. For all configurations, stem cells on the anoxic border underwent far more divisions than131

well-oxygenated cells, as illustrated in Figure 5. Qualitative observation of the CA reveal that this increase in divisional age is132

secondary to cyclic instances of birth and death as cells place daughters into areas of extreme (lethal) hypoxia. So while the133

daughters are dying, the stem cells continue to divide as they sense free space. With α = 1 (assuming all cells clonogenic)134

the same trend was observed, with cells on the anoxic boundary undergoing far more divisions than those in well-oxygenated135

regions. It should be noted that simulation results were largely insensitive to whether proliferation probability obeyed a simple136

step-relationship or the decay form shown in equation 1, with negligible difference between both simulation settings.137

Analysis of patient data138

From the initial bank of all patient samples, clear borders of necrosis could be ascertained in 23 sections from 9 patients,139

outlined in Table 2. Sections for analysis ranged from 0.72mm2 to 108.14mm2. For each section, image analysis was performed140

to determine cells that were both positive and negative for Ki-67, and for cells positive for P53 mutations. With these cells and141

their positions determined, the minimum distance from the cell to the pathologist-specified necrotic boundary was calculated.142

The probability density for this data is shown in Figure 6, in bins corresponding to the width of two cells (25 µm). There143

was no statistical difference in the distribution of cells both positive and negative for Ki-67 relative to necrosis (two-sample144
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Figure 3. Co-registration and cell detection analysis. A necrotic boundary is marked on the the H&E slide by the
pathologist (marked here by the green line). On the Ki-67 stain, cells which meet the threshold for Ki-67 positive are marked
by red dots, and those below threshold by blue dots. Finally, P53 positive cells are marked by red (+) symbols on the final stain.
The region shown above encompasses an area of 87.52 mm2 (15.67 mm × 5.58mm. )

Kolmogorov-Smirnov test p = 0.5668, KS test statistic 0.0802), and accordingly these are grouped together. By contrast, P53145

mutation-positive cells are far more likely to be found near regions of necrosis, and have a markedly different distribution146

than the grouped Ki-67 cells (two-sample Kolmogorov-Smirnov test p = 1.21×10−7, KS test statistic 0.2941). This suggests147

an increase in mutational rate associated with hypoxia. This is illustrated clearly in figure 7, which depicts a histological148

section stained with H&E. Upon this section, cells straining strongly positive for p53 mutation as detected by the image149

analysis in the p53 section are superimposed at their corresponding position, marked by blue dots. Regions of clear necrosis as150

demarcated by the neuropathologist (RM) are outlined in green on this image. From the spatial map of p53 mutant cells, a151

probability distribution function for these points in space was ascertained by employing a Sheather-Jones data smoothing kernel152

in Mathematica, which yields the non-parametric probability density function of a random variable44. From this, the contour153

lines of p53 mutation density have been superimposed over the image, with greater line density denoting increased abundance154

of p53 mutants. For ease of viewing, a red opacity effect has also been superimposed over the image to show the highest155

density of p53 cells. In this image, the high density of p53 mutant cells tend to lie on or close to the green line of representing156

the necrotic anoxic boundary, clearly illustrating the increased density of p53 mutants near necrotic boundaries. Under the157

assumption these necrotic regions are hypoxic, this echoes the phenomena predicted in simulation, yielding a topography of158

evolutionary velocity.159
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Figure 4. Probability of stem cell division with varying oxygen concentrations. Histograms of stem cell populations in
different oxygen environments (only data up to 10 mmHg shown) for (a) single vessel map (b) 15 vessel map and (c) 357 vessel
map. Regardless of heterogeneity between maps, the same pattern of higher rates of mitosis in hypoxic conditions was
observed.

Figure 5. Number of stem cell divisions is correlated chiefly with low oxygen tension rather than stem cell age. (a)
Relative ages of stem cells. (b) Number of stem divisions for the same cells. At the anoxic border, mitosis is markedly
up-regulated. For this simulation, a vessel-like oxygen map was used with β = 4 and t = 1200.
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Table 2. Analysis of experimental Glioblastoma sections

Patient sample Sub-section Area Ki-67 + Ki-67 - P53 +

1 i 108.14 mm2 57,498 208,789 4217
ii 87.42 mm2 53,435 132,068 3991

2 i 27.21 mm2 13,709 63,052 3072
ii 21.10 mm2 5814 57,689 1516

3 i 25.82 mm2 10,419 55,213 2722
ii 10.08 mm2 4794 20,108 1983
iii 18.62 mm2 13,580 33,186 4547
iv 15.83 mm2 5090 53,798 275
v 4.93 mm2 2249 14,333 120

4 i 4.09 mm2 2028 9569 360
5 i 2.17 mm2 1956 4349 1676
6 i 2.61 mm2 1085 6125 37

ii 1.27 mm2 500 3039 33
iii 5.18 mm2 2736 12,905 179
iv 0.72 mm2 385 1935 7
v 2.89 mm2 943 5985 252

7 i 16.10 mm2 14,072 39,848 4373
8 i 10.88 mm2 4275 10,845 1659

ii 26.77 mm2 14,406 17,757 4600
iii 4.47 mm2 2565 11,025 164

9 i 3.98 mm2 1719 8090 92
ii 3.79 mm2 1810 7930 149
iii 4.52 mm2 1566 14,490 46
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Figure 6. P53 mutations more probable close to known regions of necrosis. Pooled data from 23 regions of 9 patient
glioblastoma samples after image analysis. (a) Distribution of P53 stained cells versus Ki-67 stained cells relative to known
necrotic borders (b) Probability distributions for stained cells close to necrosis (c) Likelihood Ratio for previous panel. This
data suggests that P53-mutations are much more likely to be found close to regions of necrosis and hypoxia, in agreement with
model predictions.

9/14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 3, 2018. ; https://doi.org/10.1101/293712doi: bioRxiv preprint 

https://doi.org/10.1101/293712
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7. The topography of evolutionary velocity. An example from a patient glioblastoma histologic section. P53
mutations detected by image analysis are illustrated by blue dots overlaid on the histology section. Green lines depict
pathologist marked necrosis, and contour lines with red opacity show the probability density of detecting P53 mutations
(calculated from a Sheather-Jones smooth kernel distribution function). Near necrotic regions, the probability of finding P53
mutations increases relative to non-necrotic zones.
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Discussion160

Hypoxia and necrosis are known hallmarks of glioblastoma, and literature to date indicates that hypoxia is a selection pressure161

for aggressive and metastatic phenotypes. Here we have considered the hypothesis that hypoxia can influence the speed and162

evolutionary potential of glioblastomas, acting as a potential strong selection pressure for subclonal evolution as defined in recent163

works by fellow researchers45. In this work we present evidence that this impact goes beyond selecting for certain phenotypes164

more adaptable to low oxygen levels, but that hypoxia directly modulates the speed of somatic evolution. Specifically, we show165

that field representing the speed of somatic evolution is warped near the anoxic edges surrounding areas of necrosis. Mapping166

the topography of the tumor region reveals marked increase in density of mutant cells in hypoxic domains. To draw an analogy167

from physics, the presence of hypoxia appears to warp evolutionary velocity in its sphere of influence.168

The evidence for this hypothesis was arrived at through two complementary approaches. The first of which was to develop169

and explore a computational model which focused on how cells in the micro-environment might react to hypoxia. In the170

computational study we found that stem cell division is substantially more pronounced in regions of hypoxia relative to more171

well oxygenated regions, as illustrated in figures 4 and 5. It is worth noting too that the findings of this work are in fact largely172

independent of whether the stem-cell hypothesis is considered or not (data not shown). If we infer that increased stem cell173

division in the hypoxic niche elevates the probability of a cell acquiring a mutation (and ultimately metastatic potential) then this174

might in part explain why hypoxia is so strongly correlated with the emergence of metastatic phenotypes and poor prognosis7.175

The second part of our investigation focused on whether such in silico behaviour might been seen with real tumor sections176

in situ. To this end, we performed image-analysis on sectioned regions from glioblastoma patients, with co-stained sections. A177

number of caveats have to be kept in mind when interpreting such data. The most critical of which is that 2D histology is at178

best an approximation of complex 3D behaviour, and can in some instances be misleading15. Another confounding factor was179

the hardship of defining necrosis robustly - While we had the benefit of a trained neuro-pathologist to demarcate clear regions180

of necrosis, there were sections which were ambiguous and were left out of the analysis for that reason. This means that the181

extent of necrosis may in some instances be an underestimate. Even so, a number of suitable sections with clear necrosis were182

identified in the patient data, with over a million individual cells identified. With such a volume of data, we expect general183

patterns to become apparent even with the confounding influence of 2D data. P53 mutations were used as a proxy marker for184

increased mutations, and these were disproportionately seen in regions close to necrosis where oxygen levels are typically185

extremely low. That mutations were more common in these regions was qualitatively consistent with the hypothesis under186

investigation, as shown in figure 6. Figure 7 illustrates this in context, showing the density of p53 mutants is much higher closer187

to hypoxic zones, depicting the clear ’warping‘ of evolutionary velocity (defined by number of p53 mutants) in the immediate188

vicinity of anoxia. It should also be noted that the glioblastoma sections employed in this work had no direct marker of hypoxia.189

Instead, this work pivots on the implicit assumption that regions of necrosis marked by the clinician were hypoxic. If this190

assumption is shown to be incorrect, then the experimental correlation between regions of hypoxia and P53 mutation could be191

called into question. However, even in the absence of a direct metric for hypoxia in these sections there are a number of reasons192

to suspect necrosis and hypoxia are correlated in glioblastoma. Oxygen-diffusion limited hypoxia giving rise to hypoxia has193

long been observed in human tissue46 and experimental models47. There is also a known reciprocal relationship between p53194

and hypoxic path48. In glioblastoma research specifically there is ample evidence that regions of necrosis are hypoxic49–54.195

Pseudopalisading necrotic cells in particular are known to be hypoxic, displaying dramatic up-regulation of hypoxia inducible196

factor-154. CA-IX immunostaining was also performed on some of the cases in this work, which confirmed the perinectroic197

regions were indeed hypoxic. While the necrotic borders in this work are almost certainly hypoxic, direct measurement of the198

oxygen gradient in the non-anoxic regions was beyond the scope of this work. For future investigations, the ability to quantify199

the oxygen gradient may yield further insight into the implications for evolution.200

In the model presented, cells can either be killed off in the hypoxic zones or in the case of TACS, apoptose after β divisions.201

This prompts the question of whether small amounts of random death might chance the trends observed. To test this, the202

simulations were also run with random death. For biologically reasonable estimates of this, results were similar with that203

presented here, as illustrated in supplementary material S1. It’s important to note that feature detection in image analysis204

isn’t a simple binary process. Cells over-expressing p53 may do so to different degrees. While strongly positive p53 cells205

implied mutation, there is a potential that cells staining weakly positive may be due to physiological up-regulation. In this206

case, for results to be robust it is important to check the same trend is observed when the threshold is modified. As depicted207

in supplementary S1, even with modified thresholds p53 straining was more common in perinectrotic regions, increasing208

confidence that observed effect in this work was not a mere artifact. Image analysis code is included in supplementary S2.209

This work presents combined modelling and experimental evidence that the oxygen micro-environment plays a fundamental210

role in ’warping’ the evolutionary velocity of cells under its influence. In a recent work, Sottoriva and co-authors55 borrowed211

the physics analogy of the big bang to illustrate cancer growth as resulting from a single expansion of intermixed clones. The212

implication of this is that the early origins of the malignancy can be inferred from the current tumor make-up, analogous to213

determining the origins of the universe from cosmic background radiation. To borrow another rough analogy from cosmology,214
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this work presents initial evidence that tumor hypoxia functions like a black hole, bending evolutionary time around the event215

horizon of an anoxic edge. While this hypothesis requires dedicated experimental investigation, the work outlined here strongly216

suggests that hypoxia moderates the tempo of evolution in a spatially heterogeneous manner, and is a of critical importance in217

understanding tumor evolution.218

Acknowledgments219

DRG and FJC would like to thank Queen’s University Belfast for funding the work of CAIRR. The authors would also like to220

thank the Integrated Mathematical Oncology department at the H. Lee Moffitt Cancer Center and Research Institute. DRG221

acknowledges the contributions of NVIDIA research for their generous hardware donations whilst DB acknowledges the222

National Institute of Cancer (NCI) for grant U01CA202958-01. JGS is grateful to the NIH Loan Repayment program.223

Author contributions statement224

DRG, JGS and DB conceived the hypothesis and performed initial tests. DRG and JGS coded the models. RJM performed the225

histological analysis, and informed the biological discussions. FJC provided institutional support and advice. DRG undertook226

image analysis. DRG, JGS and DB wrote the manuscript. All authors reviewed the manuscript.227

Additional information228

The authors declare no competing interests or conflicts of interest. Code for this manuscript is available in supplementary229

material.230

References231

1. Basanta, D. & Anderson, A. R. Exploiting ecological principles to better understand cancer progression and treatment.232

Interface focus 3, 20130020 (2013).233

2. Scott, J. & Marusyk, A. Somatic clonal evolution: A selection-centric perspective. Biochimica et Biophys. Acta (BBA)-234

Reviews on Cancer 1867, 139–150 (2017).235

3. Prabhu, A., Kesarwani, P., Kant, S., Graham, S. F. & Chinnaiyan, P. Histologically defined intratumoral sequencing236

uncovers evolutionary cues into conserved molecular events driving gliomagenesis and intratumoral heterogeneity in gbm.237

Neuro-Oncology (2017).238

4. Gray, L. H., Conger, A., Ebert, M., Hornsey, S. & Scott, O. The concentration of oxygen dissolved in tissues at the time of239

irradiation as a factor in radiotherapy. The Br. journal radiology 26, 638–648 (1953).240

5. Grimes, D. R., Warren, D. & Warren, S. Hypoxia imaging and radiotherapy: bridging the resolution gap. The Br. J.241

Radiogr. 90, 20160939 (2017).242

6. Barker, H. E., Paget, J. T., Khan, A. A. & Harrington, K. J. The tumour microenvironment after radiotherapy: mechanisms243

of resistance and recurrence. Nat. Rev. Cancer 15, 409 (2015).244

7. Sullivan, R. & Graham, C. H. Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev. 26, 319–331245

(2007). DOI 10.1007/s10555-007-9062-2.246

8. Rankin, E. B., Nam, J.-M. & Giaccia, A. J. Hypoxia: Signaling the metastatic cascade. Trends Cancer (2016).247

9. Shibuya, K. et al. High magnification bronchovideoscopy combined with narrow band imaging could detect capillary loops248

of angiogenic squamous dysplasia in heavy smokers at high risk for lung cancer. Thorax 58, 989–995 (2003).249

10. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. nature 407, 249–257 (2000).250

11. Alarcón, T., Byrne, H. & Maini, P. A cellular automaton model for tumour growth in inhomogeneous environment. J251

Theor Biol 225, 257–274 (2003).252

12. Baluk, P., Hashizume, H. & McDonald, D. M. Cellular abnormalities of blood vessels as targets in cancer. Curr. opinion253

genetics & development 15, 102–111 (2005).254

13. Secomb, T. W., Hsu, R., Dewhirst, M., Klitzman, B. & Gross, J. Analysis of oxygen transport to tumor tissue by255

microvascular networks. Int. J. Radiat. Oncol. Biol. Phys. 25, 481–489 (1993).256

14. Alarcón, T., Byrne, H. & Maini, P. A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer257

cells. J Theor Biol 229, 395–411 (2004).258

12/14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 3, 2018. ; https://doi.org/10.1101/293712doi: bioRxiv preprint 

https://doi.org/10.1101/293712
http://creativecommons.org/licenses/by-nc-nd/4.0/


15. Grimes, D. R. et al. Estimating oxygen distribution from vasculature in three-dimensional tumour tissue. J. The Royal Soc.259

Interface 13, 20160070 (2016). DOI 10.1098/rsif.2016.0070.260

16. Scott, J., Fletcher, A., Anderson, A. & Maini, P. Spatial metrics of tumour vascular organisation predict radiation efficacy261

in a computational model. PLoS Comput. Biol 12, e1004712 (2016).262

17. Grogan, J. et al. Predicting the influence of microvascular structure on tumour response to radiotherapy. IEEE Trans263

Biomed Eng 9 (2016).264

18. Gomes, A. et al. Oxygen partial pressure is a rate-limiting parameter for cell proliferation in 3d spheroids grown in265

physioxic culture condition. PloS one 11, e0161239 (2016).266

19. Leek, R., Grimes, D. R., Harris, A. L. & McIntyre, A. Methods: using three-dimensional culture (spheroids) as an in vitro267

model of tumour hypoxia. In Tumor Microenvironment, 167–196 (Springer, 2016).268

20. Anderson, A. R. & Quaranta, V. Integrative mathematical oncology. Nat. reviews. Cancer 8, 227 (2008).269

21. Altrock, P. M., Liu, L. L. & Michor, F. The mathematics of cancer: integrating quantitative models. Nat. reviews. Cancer270

15, 730 (2015).271

22. Anderson, A. R. & Chaplain, M. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull.272

mathematical biology 60, 857–899 (1998).273

23. Scott, J. G., Hjelmeland, A. B., Chinnaiyan, P., Anderson, A. R. & Basanta, D. Microenvironmental variables must274

influence intrinsic phenotypic parameters of cancer stem cells to affect tumourigenicity. PLoS computational biology 10,275

e1003433 (2014).276

24. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive277

hematopoietic cell. Nat. medicine 3, 730–737 (1997).278

25. Schepers, A. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Sci. 337, 730–5 (2012).279

DOI 10.1126/science.1224676.280

26. Singh, S., Hawkins, C., Clarke, I. & Squire, J. Identification of human brain tumour initiating cells. Nat. 432, 396–401281

(2004).282

27. Lan, X. et al. Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. Nat. (2017).283

28. Al-Hajj, M., Wicha, M., Benito-Hernandez, A., Morrison, S. & Clarke, M. Prospective identification of tumorigenic breast284

cancer cells. Proc Natl Acad Sci USA 100, 3983–8 (2003). DOI 10.1073/pnas.0530291100.285

29. Luo, Y. et al. Aldh1a isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells 30,286

2100–13 (2012). DOI 10.1002/stem.1193.287

30. Werner, B. et al. The cancer stem cell fraction in hierarchically organized tumors can be estimated using mathematical288

modeling and patient-specific treatment trajectories. Cancer research 76, 1705–1713 (2016).289

31. Hockel, M. & Vaupel, P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer290

Inst. 93, 266–276 (2001).291

32. Grimes, D. R. et al. The role of oxygen in avascular tumor growth. PLoS ONE 11, 1–19 (2016). DOI 10.1371/jour-292

nal.pone.0153692.293

33. Enderling, H. et al. Paradoxical dependencies of tumor dormancy and progression on basic cell kinetics. Cancer research294

69, 8814–8821 (2009).295

34. Grimes, D. R., Kelly, C., Bloch, K. & Partridge, M. A method for estimating the oxygen consumption rate in multicellular296

tumour spheroids. J. Royal Soc. Interface / Royal Soc. 11, 20131124 (2014). DOI 10.1098/rsif.2013.1124.297

35. Mueller-Klieser, W. Method for the determination of oxygen consumption rates and diffusion coefficients in multicellular298

spheroids. Biophys. journal 46, 343–348 (1984).299

36. Tannock, I. F. Oxygen diffusion and the distribution of cellular radiosensitivity in tumours. The Br. journal radiology 45,300

515–524 (1972).301

37. Grimes, D. R., Fletcher, A. G. & Partridge, M. Oxygen consumption dynamics in steady-state tumour models. Royal Soc.302

open science 1, 140080 (2014).303

38. Boyle, J. O. et al. The incidence of p53 mutations increases with progression of head and neck cancer. Cancer research 53,304

4477–4480 (1993).305

13/14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 3, 2018. ; https://doi.org/10.1101/293712doi: bioRxiv preprint 

https://doi.org/10.1101/293712
http://creativecommons.org/licenses/by-nc-nd/4.0/


39. Lehman, T. A. et al. p53 mutations, ras mutations, and p53-heat shock 70 protein complexes in human lung carcinoma cell306

lines. Cancer research 51, 4090–4096 (1991).307

40. Rodrigues, N. R. et al. p53 mutations in colorectal cancer. Proc. Natl. Acad. Sci. 87, 7555–7559 (1990).308

41. Thorlacius, S. et al. Tp53 mutations and abnormal p53 protein staining in breast carcinomas related to prognosis. Eur. J.309

Cancer 31, 1856–1861 (1995).310

42. Yemelyanova, A. et al. Immunohistochemical staining patterns of p53 can serve as a surrogate marker for tp53 mutations311

in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis. Mod. pathology 24, 1248 (2011).312

43. Casey, G. et al. Dna sequence analysis of exons 2 through 11 and immunohistochemical staining are required to detect all313

known p53 alterations in human malignancies. Oncogene 13, 1971–1981 (1996).314

44. Sheather, S. J. & Jones, M. C. A reliable data-based bandwidth selection method for kernel density estimation. J. Royal315

Stat. Soc. Ser. B (Methodological) 683–690 (1991).316

45. Sun, R. et al. Between-region genetic divergence reflects the mode and tempo of tumor evolution. Nat. genetics 49, 1015317

(2017).318

46. Thomlinson, R. & Gray, L. The histological structure of some human lung cancers and the possible implications for319

radiotherapy. Br. journal cancer 9, 539 (1955).320

47. Hirschhaeuser, F. et al. Multicellular tumor spheroids: an underestimated tool is catching up again. J. biotechnology 148,321

3–15 (2010).322

48. Sermeus, A. & Michiels, C. Reciprocal influence of the p53 and the hypoxic pathways. Cell death & disease 2, e164323

(2011).324

49. Brat, D. J. et al. Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an325

actively migrating cell population. Cancer research 64, 920–927 (2004).326

50. Brat, D. J. & Mapstone, T. B. Malignant glioma physiology: cellular response to hypoxia and its role in tumor progression.327

Annals internal medicine 138, 659–668 (2003).328

51. Semenza, G. L. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends molecular medicine329

7, 345–350 (2001).330

52. Zagzag, D. et al. Expression of hypoxia-inducible factor 1α in brain tumors. Cancer 88, 2606–2618 (2000).331

53. Monteiro, A. R., Hill, R., Pilkington, G. J. & Madureira, P. A. The role of hypoxia in glioblastoma invasion. Cells 6, 45332

(2017).333

54. Rong, Y., Durden, D. L., Van Meir, E. G. & Brat, D. J. ‘pseudopalisading’necrosis in glioblastoma: a familiar morphologic334

feature that links vascular pathology, hypoxia, and angiogenesis. J. Neuropathol. & Exp. Neurol. 65, 529–539 (2006).335

55. Sottoriva, A. et al. A big bang model of human colorectal tumor growth. Nat. genetics 47, 209–216 (2015).336

14/14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 3, 2018. ; https://doi.org/10.1101/293712doi: bioRxiv preprint 

https://doi.org/10.1101/293712
http://creativecommons.org/licenses/by-nc-nd/4.0/

	References

