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Motivation: Current genotyping approaches for single nu-
cleotide variations (SNVs) rely on short, relatively accurate
reads from second generation sequencing devices. Presently,
third generation sequencing platforms able to generate much
longer reads are becoming more widespread. These platforms
come with the significant drawback of higher sequencing error
rates, which makes them ill-suited to current genotyping algo-
rithms. However, the longer reads make more of the genome
unambiguously mappable and typically provide linkage infor-
mation between neighboring variants.

Results: In this paper we introduce a novel approach for
haplotype-aware genotyping from noisy long reads. We do this
by considering bipartitions of the sequencing reads, correspond-
ing to the two haplotypes. We formalize the computational
problem in terms of a Hidden Markov Model and compute pos-
terior genotype probabilities using the forward-backward algo-
rithm. Genotype predictions can then be made by picking the
most likely genotype at each site. Our experiments indicate that
longer reads allow significantly more of the genome to poten-
tially be accurately genotyped. Further, we are able to use both
Oxford Nanopore and Pacific Biosciences sequencing data to in-
dependently validate millions of variants previously identified
by short-read technologies in the reference NA12878 sample, in-
cluding hundreds of thousands of variants that were not previ-
ously included in the high-confidence reference set.

Correspondence: t.marschall@mpi-inf.mpg.de, bpaten@ucsc.edu

1 Introduction

Reference-based genetic variant identification comprises two
related processes: genotyping and phasing. Genotyping is the
process of determining which genetic variants are present in
an individual’s genome. A genotype at a given site describes
whether both chromosomal copies carry a variant allele, only
one of them carries it, or whether the variant allele is not
present at all. Phasing refers to determining an individual’s
haplotypes, which consist of variants that lie near each other
on the same chromosome and are inherited together. To com-
pletely describe all of the genetic variation in an organism,
both genotyping and phasing are needed. Together, the two
processes are called diplotyping.

Many existing variant analysis pipelines are designed for
short DNA sequencing reads (1, 2). Though short reads are
very accurate at a per-base level, they can suffer from being
difficult to unambiguously align to the genome, especially in
repetitive or duplicated regions (3). The result is that mil-
lions of bases of the reference human genome are not cur-

SNP1 SNP2 SNP3

(A) (D ©)
© (M ©

C T C
C G C

Fig. 1. Motivation. Gray sequences illustrate the haplotypes; the reads are shown in
red and blue. The red reads originate from the upper haplotype, the blue ones from the
lower. Genotyping each SNV individually would lead to the conclusion that all of them
are heterozygous. Using the haplotype context reveals uncertainty about the genotype
of the second SNV.

rently reliably genotyped by short reads, primarily in multi-
megabase gaps near the centromeres and short arms of chro-
mosomes (4). While short reads are unable to uniquely map
to these regions, long reads can potentially span into or even
across them. This makes it so long reads are advantageous
over short reads for tasks such as haplotyping, large struc-
tural variant detection, and de novo assembly (5-8). Here,
we attempt to demonstrate the utility of long reads for more
comprehensive genotyping.

Long read DNA sequencing technologies are rapidly falling
in price and increasing in general availability. Such technolo-
gies include Single Molecule Real Time (SMRT) Sequencing
by Pacific Biosciences (PacBio) and nanopore sequencing by
Oxford Nanopore Technologies (ONT). However, due to the
historically greater relative cost and higher sequencing error
rates of these technologies, little attention has been given thus
far to the problem of genotyping single nucleotide variants
(SNVs) with long reads. Recently, (9) have taken first steps
in this direction, but their approach does not scale to process
whole human genomes in reasonable time.

For an illustration of the benefit of using long reads to diplo-
type, consider Figure 1. Shown are three SNV positions cov-
ered by long reads. The gray sequences represent the true
haplotype sequences and reads are colored in blue and red.
The colors correspond to the haplotype which the respective
read stems from: the red ones from the upper sequence, and
the blue ones from the lower one. Since sequencing errors
can occur, the alleles supported by the reads are not always
equal to the true ones in the haplotypes shown in gray. Con-
sidering the SNVs individually, we would probably genotype
the first one as A/C, the second one as T/G and the third
one as G/C, since the number of reads supporting each al-
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lele are the same. This leads to a wrong genotype prediction
for the second SNV. However, if we knew which haplotype
each read stems from, that is, if we knew their colors, then
we would be unsure about the genotype of the second SNV.
It could also be G/G or T/T, since the reads stemming from
the same haplotypes must support the same alleles. There-
fore, using haplotype information during genotyping makes
it possible to compute more reliable genotype predictions and
to detect uncertainties.

Contributions. In this paper, we show that for contempo-
rary long read technologies, read-based phase inference can
be simultaneously combined with the genotyping process for
SNVs to produce accurate diplotypes and to detect variants
in regions not mappable by short reads. We show that key
to this inference is the detection of linkage relationships be-
tween heterozygous sites within the reads. To do this, we
describe a novel algorithm to accurately predict diplotypes
from noisy long reads that scales to deeply sequenced human
genomes. We achieve this by considering bipartitions of all
given sequencing reads, corresponding to the two haplotypes
of an individual. The problem is formalized using a Hidden
Markov Model (HMM) from which we compute genotype
likelihoods using the forward-backward algorithm and make
genotype predictions by determining the likeliest genotype at
each position.

We then apply this algorithm to diplotype one individual from
the 1000 Genomes Project, NA12878, using long reads from
both PacBio and ONT. NA12878 has been extensively se-
quenced and studied, and the Genome in a Bottle consortium
has published sets of highly confident variant calls (10). We
demonstrate that our method is accurate, that it can be used to
confirm variants in regions of uncertainty, and that it allows
for the discovery of variants in regions which are unmappable
using short DNA read sequencing technologies.

2 Methods

We describe a probabilistic model for diplotype and genotype
inference, and in this paper use it to find maximum posterior
probability genotypes. The approach builds upon the What-
sHap approach (11), but incorporates a full probabilistic al-
lele inference model into the problem. It has similarities to
that proposed by Kuleshov et al. (12), but we here frame the
problem using Hidden Markov Models (HMMs).

2.1 Alignment Matrix

Let M be an alignment matrix whose rows represent sequenc-
ing reads and whose columns represent genetic sifes. Let
m be the number of rows, let n be the number of columns,
and let M; ; be the jth element in the ith row. In each col-
umn let 3; C X represent the set of possible alleles such that
M; ; € ¥; U{—}, the “—” gap symbol representing a site at
which the read provides no information. We assume no row
or column is composed only of gap symbols, an uninteresting
edge case. An example alignment matrix is shown in Figure
2. Throughout the following we will be informal and refer to

arow ¢ or column j, being clear from the context whether we
are referring to the row or column itself or the coordinate.

12345
1AGT - -
2AGT - -
3-C-6G -
4 -CTG -
5--TCT
6 --TCT

Fig. 2. Alignment Matrix. Here, the alphabet of possible alleles is the set of DNA
nucleotides, i.e. ¥ = {A,C,G, T}

2.2 Genotype Inference Problem Overview

A diplotype H = (H*', H?) is a pair of haplotype (segments);
a haplotype (segment) H* = H{“,Hé, . ,Hﬁ is a sequence
of length n whose elements represents alleles such that H Jk €
Y;. Let B = (B!, B?) be a bipartition of the rows of M
into two parts (sets): B, the first part, and B2, the second
part. We use bipartitions to represent which haplotypes the
reads came from, of the two in a genome. By convention we
assume that the first part of B are the reads arising from H'
and the second part of B are the reads arising from H?2.

The problem we analyze is based upon a probabilistic model
that essentially represents the (Weighted) Minimum Error
Correction (MEC) problem (13, 14), while modeling the evo-
lutionary relationship between the two haplotypes and so im-
posing a cost on bipartitions that create differences between
the inferred haplotypes.

For a bipartition B, and making an i.i.d. assumption between
sites in the reads:

P(H|B,M) = ﬁz (H}|B',Z;)P(HZ|B?, Z;)P(Z;)
j=1Z;ex

Here P(Z;) is the prior probability of the ancestral allele Z;
of the two haplotypes at column j, by default we can use a
simple flat distribution over ancestral alleles (but see below).
The posterior probability P(H|B*, Z;) =

k k
P(HF|Zj) 1 icpram; 2y P (Mi 5 HJ)
ZYjezj P(lezj)H{ieBk:MM;ﬁ—} P(Mz’,j|Yj)
for k € {1,2}, where the probability P(H¥|Z;) is the prob-
ability of the haplotype allele H jk given the ancestral allele
Z;. For this we can use a continuous time Markov model for
allele substitutions, such as Jukes-Cantor (15), or some more
sophisticated model that factors the similarities between al-
leles (see below). Similarly, P(M; ;|H Jk) is the probability
of observing allele M; ; in a read given the haplotype allele

HE

3
The genotype inference problem we consider is finding for
each site:

argmaxP(Hjl,H2|M) = argmaxZP H;,H?\B,M)
(Hj,H?) (Hj,H?) B
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i.e. finding the genotype (H }, H ]2) with maximum posterior
probability for a generative model of the reads embedded in
M.

2.3 A Graphical Representation Of Read Par-
titions
For a column 5 in M, a row ¢ is active if the first non-gap
symbol in row ¢ occurs at or before column j and the last
non-gap symbol in row ¢ occurs at or after column j. Let A;
be the set of active rows of column j. For a column j a row
1 is terminal if its last non-gap symbol occurs at column j
or j =n. Let A;» be the set of active, non-terminal rows of
column j.
Let B; = (B},BJQ-) be a bipartition of A; into a first part
BJ1~ and a second part B]z. Let Bj be the set of all possi-
ble such bipartitions of the active rows of j. Similarly, let
Cj = (C},C3) be a bipartition of A, and C; be the set of all
possible such bipartitions of the active, non-terminal rows of
g.
For two bipartitions B = (B!, B?) and C = (C1,C?), B is
compatible with C' if the subset of B! in C'UC? is a sub-
set of C1, and, similarly, the subset of B2inCluC?isa
subset of C2. Note this definition is symmetric and reflexive,
although not transitive.
Let G = (Vg, E¢) be a directed graph. The vertices Vi are
the set of bipartitions of both the active rows and the active,
non-terminal rows for all columns of M and a special start
and end vertex, i.e. Vg = {start,end} U (J,;B; UGC;) . The
edges E are a subset of compatibility relationships, such
that (1) for all j there is an edge (B; € Bj,C; € C;) if B,
is compatible with C}, (2) for all 0 < j < n there is an edge
(Cj € Cj,Bj41 € Bjyq) if C; is compatible with Bj 1, (3)
there is an edge from the start vertex to each member of By,
and (4) there is an edge from each member of B, to the end
vertex (Note that C,, is empty and so contributes no vertices
to 7). Figure 3 shows an example graph.

start B1 C1 82 02 B3 end

[ B Y
>N

A wWN
S W

Fig. 3. Example Graph. Left: An alignment matrix. Right: The corresponding directed
graph representing the bipartitions of active rows and active non-terminal rows, where
the labels of the nodes indicate the partitions, e.g. ‘1,2 /. is shorthand for A =

{121 {3

The graph G has a large degree of symmetry and the follow-
ing properties are easily verified:

* For all j and all B; € Bj, the indegree and outdegree
of Bjis 1.

* For all j the indegree of all members of Cj is equal.

* Similarly, for all j the outdegree of all members of C;
is equal.
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Let the maximum coverage, denoted maxCov, be the max-
imum cardinality of a set A; over all j. By definition,
mazxCov < m. Using the above properties it is easily ver-
ified that: (1) the cardinality of G (number of vertices) is
bounded by this maximum coverage, being less than or equal
to 2+ (2n — 1)2m2=C°v_and (2) the size of G' (number of
edges) is at most 2n2ma*Cov,

Let a directed path from the start vertex to the end vertex be
called a diploid path, D = (Dy = start,Da,...,Daopt1 =
end). The graph is naturally organized by the columns of M,
so that D2j = (B;,BJZ) € Bj and D2j+1 = (C;+1,OJ2+1) €
C;j for all 0 < j < n. Let Bp = (B}, B%) denote a pair of
sets, where B}) is the union of the first parts of the vertices
of Da,..., Dy, 41 and, similarly, B% is the union of second
parts of the vertices of Da, ..., Daypy1.

B}D and sz:) are disjoint because otherwise there must exist
a pair of vertices within D that are incompatible, which is
easily verified to be impossible. Further, because D visits
a vertex for every column of M, it follows that the sum of
the cardinalities of these two sets is m. Bp is therefore a
bipartition of the rows of M which we call a diploid path
bipartition.

Lemma 1: The set of diploid path bipartitions is the set of
bipartitions of the rows of M and each diploid path defines a
unique diploid path bipartition.

Proof: We first prove that each diploid path defines a
unique bipartition of the rows of M. For each column j of M,
each vertex B; € Bj is a different bipartition of the same set
of active rows. Bj is by definition compatible with a diploid
path bipartition of a diploid path that contains it, and incom-
patible with every other member of Bj. It follows that for
each column j two diploid paths with the same diploid path
bipartition must visit the same node in B ;. and, by identical
logic, the same node in Cj, but then two such diploid paths
are therefore equal.

There are 2™ partitions of the rows of M. It remains to
prove that there are 2™ diploid paths. By the structure of the
graph, the set of diploid paths can be enumerated backwards
by traversing right-to-left from the end vertex by depth-first
search and exploring each incoming edge for all encountered
nodes. As stated previously, the only vertices with indegree
greater than one are for all j the members of Cj, and each
member of C; has the same indegree. For all j the indegree
of Cj is clearly 21G51=15;51: two to the power of the number of
number of active, terminal rows at column j. The number of
possible paths must therefore be H?:l 21C51=1B;jl - As each
row is active and terminal in exactly one column, we obtain
m=3_;|C;| —|B;| and therefore:

n
om _ H 2lCjl—1B;1
7j=1
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24 A Hidden Markov Model For Genotype
and Diplotype Inference
In order to infer diplotypes, we define a Hidden Markov
Model which is based on G, but additionally represents all
possible genotypes at each genomic site (i.e. in each B col-
umn). To this end, we define the set of states Bj x ¥; x X,
which contains a state for each bipartition of the active rows
at position j and all possible assignments of alleles in X to
the two partitions. Additionally, the HMM contains a hid-
den state for each bipartition in C;, exactly as defined for G
above. Transitions between states are defined by the compat-
ibility relationships of the corresponding bipartitions as be-
fore. This HMM construction is illustrated in Figure 4.
For all j and all C; € C; each outgoing edge has transition
probability P(ar.az) = 3., P(a1]Z;)P(az] Z;)P(Z;).
where (Bj,a1,a2) € By x ¥; x X, is the state being
transitioned to. Similarly, each outgoing edge of the start
node has transition probability P(a1,a2). The outdegree
of all remaining nodes is 1, so these edges have transition
probability 1.
The start node, the end node, and members of Cj for all j are
silent states, and hence do not emit symbols. For all j, mem-
bers of Bj x 3; x 35 output the entries in the j-th column of
M that are different from “—". We assume every matrix entry
to be associated with an error probability, which we can com-
pute from P(M,;;|H Jk) defined previously. Based on this, the
probability of observing a specific output column of M can
be easily calculated.

By {T.G}x{T.G} €; Byx{AC}*X{AC} C

B3x{GA}x{GA}

Fig. 4. Genotyping HMM. Colored states correspond to bipartitions of reads and
allele assignments at that position. States in Cy1 and Cz correspond to bipartitions
of reads covering positions 1 and 2 or 2 and 3, respectively. In order to compute
genotype likelihoods after running the forward-backward algorithm, states of the same
color have to be summed up in each column.

2.4.1 Computing Genotype Likelihoods

The goal is to compute genotype likelihoods for the possible
genotypes for each variant position using the HMM defined
above. Performing the forward-backward algorithm returns
forward and backward probabilities of all hidden states. Us-
ing those, the posterior distribution of a state (B,a1,az2) €
B; x X; x ¥, corresponding to bipartition B and assigned
alleles a1 and as, can be computed as

a;(B,ay,a2) - B;(B,a1,a2)

B %:(A) ZE oj(B',ay,a3) - B(B',ay,a3)
'€B(A;j) ay,ay€%;
@®

P((B7a17a2)|M) =

where «;(B,a1,a2) and 5;(B,a1,a2) denote forward and
backward probabilities of the state (B, a1,a2) and B(A;), the
set of all bipartitions of A;. The above term represents the
probability for a bipartition B = (B', B?) of the reads in A,
and alleles a; and a9 assigned to these partitions. In order to
finally compute the likelihood for a certain genotype, one can
marginalize over all bipartitions of a column, and all allele
assignments corresponding to that genotype.

Example 2.1: In order to compute genotype likelihoods for
each column of the alignment matrix, posterior state proba-
bilities corresponding to states of the same color in Figure 4
need to be summed up. For the first column, adding up the
red probabilities gives the genotype likelihood of genotype
T/T, blue of genotype G/T and yellow of G/G.

2.5 Implementations

We created two independent software implementations of this
model, one based upon WhatsHap and one from scratch,
which we call MarginPhase. Each uses different optimiza-
tions and heuristics that we briefly describe.

2.5.1 WhatsHap Implementation

We extended the implementation of WhatsHap (11,
bitbucket.org/whatshap/whatshap) to enable
haplotype aware genotyping of bi-allelic variants based
on the above model. WhatsHap focuses on re-genotyping
variants, i.e. it assumes SNV positions to be given. In
order to detect variants, a simple SNV calling pipeline was
developed. It is based on samtools mpileup (16) which
provides information about the bases supported by each
read covering a genomic position. A set of SNV candidates
is generated by selecting genomic positions at which the
frequency of a non-reference allele is above a fixed threshold
(0.25 for PacBio data, 0.4 for Nanopore data) and the
absolute number of reads supporting the non-reference allele
is at least 3.

Allele Detection. In order to construct the alignment ma-
trix, a crucial step is to determine whether each read sup-
ports the reference or the alternative allele at each of n given
genomic positions. In WhatsHap, this is done based on re-
aligning sections of the reads (17). Given an existing read
alignment from the provided BAM file, its sequence in a win-
dow around the variant is extracted. It is aligned to the corre-
sponding region of the reference sequence and additionally,
to the alternative sequence, which is artificially produced by
inserting the alternative allele into the reference. The align-
ment cost is computed by using affine gap costs. Phred scores
representing the probabilities for opening and extending a
gap and for a mismatch in the alignment can be estimated
from the given BAM file. The allele leading to a lower align-
ment cost is assumed to be supported by the read and is re-
ported in the alignment matrix. If both alleles lead to the
same cost, the corresponding matrix entry is “~”. The ab-
solute difference of both alignment scores is assigned as a
weight to the corresponding entry in the alignment matrix.
It can be interpreted as a phred scaled probability for the al-
lele being wrong and is utilized for the computation of output
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probabilities.

Read Selection.  Our algorithm enumerates all bipartitions
of reads covering a variant position and thus has a runtime
exponential in the maximum coverage of the data. To ensure
that this quantity is bounded, the same read selection step
implemented previously in the WhatsHap software is run be-
fore constructing the HMM and computing genotype likeli-
hoods. Briefly, a heuristic approach described in (18) is ap-
plied, which selects phase informative reads iteratively taking
into account the number of heterozygous variants covered by
the read and its quality.

Transitions. Defining separate states for each allele as-
signment in Bj enables easy incorporation of prior genotype
likelihoods by weighting transitions between states in Cj_4
and Bj x X; x ;. Since there are two states correspond-
ing to a heterozygous genotype in the bi-allelic case (0|1 and
1]0), the prior probability for the heterozygous genotype is
equally spread between these states.

In order to compute such genotype priors, the same likeli-
hood function underlying the approaches described in (19)
and (20) was utilized. For each SNV position, the model
computes a likelihood for each SNV to be absent, heterozy-
gous, or homozygous based on all reads that cover a par-
ticular site. Each read contributes a probability term to the
likelihood function, which is computed based on whether it
supports the reference or the alternative allele (19). Further-
more, the approach accounts for statistical uncertainties aris-
ing from read mapping and has a runtime linear in the number
of variants to be genotyped (20). Prior genotype likelihoods
are computed before read selection. In this way, information
of all input reads covering a position can be incorporated.

2.5.2 MarginPhase Implementation

MarginPhase (github.com/benedictpaten/
marginPhase) is an experimental, open source im-
plementation of the described HMM written in C. It differs
from the WhatsHap implementation in the method it uses
to explore bipartitions and the method to generate allele
support probabilities from the reads.

Read Bipartitions. The described HMM scales exponen-
tially in terms of increasing read coverage. For typical 20-60x
sequencing coverage (i.e. average number of active rows per
column) it is impractical to store all possible bipartitions of
the rows of the matrix. MarginPhase implements a simple,
greedy pruning and merging heuristic outlined in recursive
pseudocode in Algorithm 1.

The procedure computePrunedHMM takes an alignment ma-
trix and returns a connected subgraph of the HMM for M
that can be used for inference, choosing to divide the input
alignment matrix into two if the number of rows exceeds a
threshold ¢, recursively.

The sub-procedure mergeHMMs takes two pruned HMMs
for two disjoint alignment matrices with the same number
of columns and joins them together in the natural way such
that if at each site i there are |B} | states in HMM; and |BZ|
in HMM; then the resulting HMM will have |B}| x |BZ|

Ebler, Haukness, Pesout, Marschall, Paten

Algorithm 1

procedure COMPUTEPRUNEDHMM (M)
if maxCov > ¢ then
Divide M in half to create two matrices, My and
Mz, such that M is the first 5 rows of M

and M is the remaining rows of M.
HMM; <— computePrunedHMM(M )

HMM; < computePrunedHMM (M)
HMM < mergeHMMs(HMM; , HMM3)
else
Let HMM be the read partitioning HMM for M.

return subgraph of HMM including visited states
and transitions each with posterior probability of
being visited > v, and which are on a path from
the start to end nodes.

start By Cq By Cy Bg end

-
>N

NP N

Fig. 5. The merger of two read partitioning HMMs with the same number of columns.
Top and middle: Two HMMs to be merged; bottom: the merged HMM. Transition and
emission probabilities not shown.

states. This is illustrated in Figure 5. In the experiments used
here £ =8 and v = 0.01.

Allele Supports. In MarginPhase, the alignment matrix
has a site for each base in the reference genome. To generate
the allele support from the reads, for each read we calculate
the posterior probability of each allele using the implementa-
tion of the banded forward-backward pairwise alignment de-
scribed in (21). The result is that for each reference base, for
each read that overlaps (according to an initial guide align-
ment extracted from the SAM/BAM file) the reference base
we calculate the probability of each possible nucleotide (i.e. {
‘A, ‘C’, ‘G, ‘T’ }). Gaps are ignored and treated as missing
data. This approach allows summation over all alignments
within the band.

3 Results

3.1 Data Preparation and Evaluation

To test our methods, we used sequencing data for NA12878
from two different long read sequencing technologies.
NA12878 is a participant from the 1000 Genomes Project (2)
who has been extensively sequenced and analyzed. We used
Oxford Nanopore reads from (7) and PacBio reads from (26).
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Whole Genome

Genome 1.000
Long Read Mappable 0.940
Short Read Mappable 0.935
PacBio Mappable 0.934
Nanopore Mappable 0.933
Long Read Callable 0.908
GATK Callable 0.908
GIAB High Confidence 0.805
0.0 0.2 0.4 0.6 0.8 1.0
Gencode v27 Gencode v27 (Exome)

Gencode v27 1.000 (0.489)| Gencode v27 (Exome) 1.000 (0.041)
Long Read Mappable 0.998 (0.489)|  Long Read Mappable 0.997 (0.041)
PacBio Mappable 0.997 (0.488) PacBio Mappable 0.993 (0.041)
Short Read Mappable 0.994 (0.486)|  short Read Mappable 0.987 (0.041)
Nanopore Mappable 0.991 (0.485) Nanopore Mappable 0.983 (0.040)
Long Read Callable 0.975 (0.477) GATK Callable 0.962 (0.040)
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Fig. 6. Reach of short read and long read technologies. The callable and mappable regions for NAI12878 spanning various repetitive or duplicated sequences on GRCh38 are
shown. Feature locations are determined based on BED tracks downloaded from the UCSC Genome Browser (22). Other than the Gencode regions (23, 24), all features are subsets
of the Repeat Masker (25) track. Four coverage statistics for long reads (shades of red) and three for short reads (shades of blue) are shown. The labels ‘PacBio Mappable’ and
‘Nanopore Mappable’ describe areas where at least one primary read with GQ > 30 has mapped, and ‘Long Read Mappable’ describes where this is true for at least one of the
long read technologies. ‘Long Read Callable’ describes areas where both read technologies have coverage of at least 10 and less than twice the median coverage. ‘GIAB High
Confidence’, ‘GATK Callable’ and ‘Short Read Mappable’ are the regions associated with the evaluation callsets. For the feature-specific plots, the numbers on the right detail

coverage over the feature and coverage over the whole genome (parenthesized).

Both sets of reads were aligned to GRCh38 withminimap2,
a mapper designed to align error-prone long reads (27).

To ensure that any variants we found were not artifacts of
misalignment, we filtered out reads flagged as secondary
or supplementary, as well as reads with a mapping quality
score less than 30. Genome-wide, this left approximately 12
million Nanopore reads and 34 million PacBio reads. The
Nanopore reads had a median depth of 37x and length of
5950, including a set of ultra-long reads with lengths up to
900 kilobases. The PacBio reads had a median depth of 46x
and length of 2650.

To validate the performance of our methods, we used callsets
from Genome in a Bottle’s (GIAB) benchmark small vari-
ant calls v3.3.2 (10). First, we compared against GIAB’s set
of high confidence calls, generated by a consensus algorithm
spanning multiple sequencing technologies and variant call-
ing programs. The high confidence regions associated with
this callset exclude structural variants, centromeres, and het-
erochromatin. We used this to show our method’s accuracy
in well-understood and easy-to-map regions of the genome.

We also analyzed our results compared to two callsets
which were used in the construction of GIAB’s high con-
fidence variants, one made by GATK HaplotypeCaller v3.5
(GATK/HC, 1) and the other by Freebayes 0.9.20 (28), both
generated from a 300x PCR-free Illumina sequencing run
(10).

All of our evaluation statistics were generated with the tool
vcfeval from Real Time Genomics (29). We restrict the
analysis to SNVs due to the error distribution of both PacBio
and Nanopore long reads which leads to insertions and dele-
tions being the most common type of sequencing error by far
(30, 31).

Short read variant callers. We explored the suitability of
current state-of-the-art callers for short reads to process long
read data (using default settings), but were unsuccessful. The
absence of base qualities in the PacBio data prevented any
calling; for Nanopore data, FreeBayes was prohibitively slow
and neither Platypus nor GATK/HC produced calls.
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3.2 Long Read Coverage

We determined the regions where long and short reads can be
mapped to the human genome. In Figure 6, various coverage
metrics for short and long reads are plotted against differ-
ent genomic features, which were mostly selected for being
repetitive or duplicated.

The callsets on the Illumina data made by GATK/HC and
FreeBayes come with two BED files describing where calls
were made with some confidence. The first, described in Fig-
ure 6 as Short Read Mappable, was generated using GATK
CallableLoci v3.5 and includes regions where there is a) at
least a read depth of 20, and b) at most a depth of twice the
median depth, only including reads with mapping quality of
at least 20. This definition of callable only considers read
mappings. The second, described as GATK Callable, was
generated from the GVCF output from GATK/HC by exclud-
ing areas with genotype quality less than 60. This is a more
sophisticated definition of callable as it reflects the effects of
homopolymers and tandem repeats. We use these two BED
files in our analysis of how short and long reads map differ-
ently in various areas of the genome.

For long reads, we show four coverage statistics. The records
marked as “Mappable” describe areas where there is at least
one high quality long read mapping (PacBio, Nanopore, and
Long Read Mappable for areas where at least one of the tech-
nologies mapped). The Long Read Callable entries cover a
conservative region which has a sufficient read depth to illus-
trate the efficacy of our method; it covers regions where both
sequencing technologies had a minimum depth of ten and
maximum of 2x the median depth (similar to the Callable-
Loci metric).

Figure 6 shows that in almost all cases, long reads map to
more area than is mappable by short reads. For example,
nearly half a percent of the genome is mappable by long reads
but not short reads. Long reads also map to one percent more
of the exome, and thirteen percent more of segmental dupli-
cations. Centromeres and Tandem Repeats are outliers to this
generalization, where neither PacBio nor Nanopore cover ap-
preciably more than Illumina.

3.3 Comparison Against High Confidence
Truthset

To validate our method, we first analyzed the SNV detec-
tion and genotyping performance of our algorithm using the
GIAB high confidence callset as a benchmark. All variants
reported in these statistics fall within the GIAB high confi-
dence regions.

Figure 7 (top) shows precision and recall of our algorithms
on both the PacBio and Oxford Nanopore data sets. Margin-
Phase and WhatsHap perform similarly overall. MarginPhase
achieved higher precision and recall on Nanopore reads, with
precision of 0.7686 and recall of 0.8089, compared to What-
sHap’s precision of 0.7131 and recall of 0.7248 on the same
set of Nanopore reads. WhatsHap obtained better results on
PacBio data, with a precision of 0.9738 and recall of 0.9593,
compared to MarginPhase’s precision of 0.9497 and recall of
0.9147.
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In addition to considering the two methods individually, we
examine a combined set of variants which occur in both the
calls made by WhatsHap on the PacBio reads and Margin-
Phase on the Nanopore data and where both tools report the
same genotype. This improves the precision to 0.9969 at a re-
call of 0.7859. In further analysis, we refer to this combined
variant set as Long Read Variants. It reflects a high precision
subset of long read variants, validated independently by both
sequencing technologies.

In order to further analyze the quality of the genotype pre-
dictions of our methods, we computed the genotype concor-
dance of our callsets with respect to the GIAB ground truth
inside of the high confidence regions. This was done by con-
sidering all variant positions correctly identified by Margin-
Phase and WhatsHap, and finding what fraction of these were
also correctly genotyped (homozygous or heterozygous) with
respect to the truth set. Figure 7 (bottom) shows the results.
On the PacBio data, WhatsHap genotypes 99.78% of the vari-
ants contained in the truth set correctly, and MarginPhase
genotypes 96.59% correctly. On the Nanopore data, Margin-
Phase performs slightly better by genotyping 98.02% of the
SNVs contained in the GIAB callset correctly, while What-
sHap computed correct genotypes for 97.42% of the variants
overlapping the GIAB truth set. Considering the intersection
of the WhatsHap calls on PacBio, and MarginPhase calls on
Nanopore data (i.e. our Long Read Variants set), we obtain a
genotype concordance of 99.98%.

precnswon 0.9969
09407 recan 0.9738 9593

0.8089
0.8 0.7686 0.7859
0.71310.7248
0.6
0.4 4
0.2
0.0

MarginPhase MarginPhase WhatsHap WhatsHap Intersection
PacBio Nanopore PacBio Nanopore (wh-PB, mp-NP)

1.0+

0% 20% 40% 60% 80% 100%

Fig. 7. Precision and Recall (Top) of MarginPhase and WhatsHap on PacBio and
Nanopore data sets in GIAB high confidence regions. Genotype Concordance (Bot-
tom) (wrt. GIAB high confidence calls) of MarginPhase (mp, top) and WhatsHap (wh,
middle) callsets on PacBio (PB) and Nanopore (NP) data. Furthermore, genotype con-
cordance for the intersection of the calls made by WhatsHap on the PacBio and Margin-
Phase on the Nanopore reads is shown (bottom,).
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Fig. 8. Genotyping Errors (wrt. to GIAB calls) as a function of coverage. The full
length reads were used for genotyping (blue) and additionally, reads were cut such as
to cover at most two variants (red) and one variant (yellow). Solid lines correspond to
PacBio, dashed lines to Nanopore data.

3.4 Cutting and Downsampling Reads

Our genotyping model incorporates haplotype information
into the genotyping process by using the property that long
sequencing reads can cover multiple variant positions. There-
fore, one would expect the genotyping results to improve as
the length of the provided sequencing reads increases. Fur-
thermore, the coverage of the data would also affect the geno-
typing results.

In order to examine how the genotyping performance de-
pends on the length of the sequencing reads and the
coverage of the data, the following experiment was per-
formed using the WhatsHap implementation. Both data sets
(PacBio, Nanopore) were downsampled to average coverages
10x,20x%,25% and 30x. All SNVs inside of the high confi-
dence regions in the GIAB truth set were re-genotyped from
each of the resulting downsampled read sets, as well as from
the full coverage data sets. Two versions of the genotyp-
ing algorithm were considered. First, the full length reads
as given in the BAM files were provided to WhatsHap. Sec-
ond, in an additional step prior to genotyping, the aligned
sequencing reads were cut into shorter pieces such that each
resulting fragment covered at most two variants. Addition-
ally, we cut reads into fragments covering only one variant
position. The genotyping performances of these genotyping
procedures were finally compared by determining the amount
of incorrectly genotyped variants.

Figure 8 shows the results of this experiment. On both data
sets, the genotyping error increases as the length of reads de-
creases. Especially at lower coverages, the genotyping algo-
rithm benefits from using the full length reads, which leads to
much lower genotyping errors compared to using the shorter
reads. In general, the experiment demonstrates that incorpo-
rating haplotype information gained from long reads does in-
deed improve the genotyping performance. Computing geno-
types based on bipartitions of reads that represent possible
haplotypes of the individual helps to reduce the number of
genotyping errors, because it makes it easier to detect se-
quencing errors in the given reads.

3.5 Callset Consensus Analysis

In Figure 9, we further dissect the relation of our intersec-
tion call set (Long Read Variants, which refers to variants
called by both WhatsHap on PacBio reads and MarginPhase
on nanopore reads) to the GIAB truth set, as well as to the
callsets from GATK/HC and FreeBayes, which both con-
tributed to the GIAB truth set.

Figure 9a reveals that 399 156 variants in our Long Read Vari-
ants callset were called by both the GATK Haplotype Caller
and FreeBayes, but are not in the GIAB truth set. To gather
additional support for the quality of these calls, we consider
two established quality metrics: the transition/transversion
ratio (Ti/Tv), and the heterozygous/non-ref homozygous ra-
tio (het/hom) (32). The Ti/Tv ratio of these variants is 2.10
and the het/hom ratio is 1.29. These ratios are comparable to
those of the GIAB truth set, which are 2.10 and 1.55, respec-
tively. An examination of the Platinum Genomes benchmark
set (33), an alternative to GIAB, reveals 71371 such long-
read validated variants outside of their existing truth set.

We hypothesized that a callset based on long reads is par-
ticularly valuable in regions that were previously difficult to
characterize. To investigate this, we separately examined the
intersections of our Long Read Variants callset with the two
short-read callsets both inside the GIAB high confidence re-
gions and outside of them, see Figure 9b and Figure 9c, re-
spectively. These Venn diagrams clearly indicate that the
concordance of GATK and FreeBayes was indeed substan-
tially higher in high confidence regions than outside. An el-
evated false positive rate of the short-read callers outside the
high confidence regions is a plausible explanation for this ob-
servation. Interestingly, the fraction of calls concordant be-
tween FreeBayes and GATK for which we gather additional
support is considerably lower outside the high confidence re-
gions. This is again compatible with an increased number
of false positives in the short read callsets, but we empha-
size that these statistics should be interpreted with care in the
absence of a reliable truth set for these regions.

3.6 Candidate Novel Variants

To demonstrate that our method allows for variant calling on
more regions of the genome than short read variant calling
pipelines, we have identified 15498 variants which lie out-
side of the Short Read Mappable area, but inside the Long
Read Callable regions, i.e. regions in which there is sequenc-
ing depth of at least 10 and not more than 2x the median
depth for both sequencing technologies. We determined that
4.43 megabases of the genome (0.146%) is only mappable by
long reads in this way.

Table 1 provides the counts of all variants found in each of
the regions from Figure 6, as well as the counts for candi-
date variants, among the different types of genomic features
described in Section 3.2. Over two thirds of the candidate
variants occurred in the repetitive or duplicated regions de-
scribed in the UCSC Genome Browser’s repeatMasker track.
The transition/transversion ratio of NA12878’s 15 498 candi-
date variants is 1.64, and the heterozygous/homozygous ratio
of these variants is 0.31. Given that we observe one candi-
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Fig. 9. Confirming Short Read Variants. We examine all distinct variants found by our method, GIAB High Confidence, GATK/HC, and FreeBayes. Raw variant counts appear on
top of each section, and the percentage of total variants is shown on bottom.

date variant in every 325 haplotype bases, compared to one
variant in every 1151 haplotype bases in the GIAB truth set,
these candidate variants exhibit a 3.6 increase in the haplo-

type variation rate.

3.7 Runtimes

Whole genome variant detection using WhatsHap took 147
CPU hours on PacBio reads and 79.5 hours on Nanopore,
of which genotyping took 42.2 and 32.8 hours respectively.
The MarginPhase implementation took 583 CPU hours on
PacBio and 330 on Nanopore, with an additional 1730 and
1220 hours for realignment.

4 Discussion

We present a method that uses a Hidden Markov Model to
partition long reads into haplotypes, which we found to im-
prove the quality of variant calling. This is evidenced by our
experiment in cutting and downsampling reads, where reduc-
ing the number of variants spanned by any given read leads
to decreased performance at all levels of read coverage.

Our analysis of the method against a high confidence truth set
in high confidence regions shows false discovery rates (corre-
sponding to one minus precision) between 3 and 6 percent for
PacBio, and between 24 and 29 percent for Nanopore. How-
ever, when considering a conservative set of variants con-

Table 1. Distribution of candidate novel variants across different regions of interest.
All variants refers to the variants in the Long Read Variants set, and Novel Variant
Candidates are those described in Section 3.6.

Novel Variant

All Variants Candidates
Total 2,913,942 15,498
Gencode v27 (ALL) 1,363,064 5,594
Gencode v27 exome 86,357 538
Repeat Masker 1,583,684 10,677
LINEs 690,859 5,161
SINEs 421,340 1,432
Segmental Duplications 157,341 5,683
Tandem Repeats 96,871 5,437
Centromeres 18,644 2,031
Telomeres 295 14
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firmed by both long read technologies, the false discovery
rate drops to around 0.3%, comparable with contemporary
short read methods in these regions.

In analyzing the area of the genome with high quality long
read mappings, we found roughly a half a percent of the
genome (approximately fifteen megabases) that is mappable
by long reads but not by short reads. This includes one per-
cent of the human exome, as well as over ten percent of seg-
mental duplications. Even though some of these areas have
low read counts in our experimental data, the fact that they
have high quality mappings means that they should be ac-
cessible with sufficient sequencing. We note that this is not
the case for centromeric regions, where Illumina reads were
able to map over twice as much as we found in our PacBio
data. This may be a result of the low quality in long reads
preventing them from uniquely mapping to these areas with
an appreciable level of certainty.

Over our entire set of called variants, the Ti/Tv and het/hom
ratios were similar to those reported by the truth set. The
Ti/Tv ratio of 2.18 is slightly above the 2.10 reported in the
GIAB callset, and the Het/Hom ratio of 1.36 is lower than the
1.55 found in the GIAB variants. In the 15498 novel variant
candidates produced by our method in regions unmappable
by short reads, the Ti/Tv ratio of 1.64 is slightly lower than
that of the truth set. This is not unexpected as gene-poor
regions such as these tend to have more transversions away
from C:G pairs (34). We also observe that the Het/Hom ratio
dropped to 0.31, which could be due to systematic biases in
our callset or in the reference genome. The rate of variation in
these regions was also notably different than in the high con-
fidence regions, where we find three variants per thousand
haplotype bases (3.6 the rate in high confidence regions).
A previous study analyzing NA12878 (35) also found an el-
evated variation rate in regions where it is challenging to call
variants, such as low complexity regions and segmental du-
plications. The study furthermore found clusters of variants
in these regions, which we also observe.

The high precision of our intersected Nanopore/PacBio long
read variants set makes it useful as strong evidence for con-
firming existing variant calls. As shown in the read cover-
age analysis, in both the GIAB and Platinum Genomes ef-
forts many regions cannot be called with high confidence. In
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the excluded regions of GIAB we found just under 400 thou-
sand variants using both Nanopore and PacBio reads with our
methods, which were additionally confirmed with Illumina
reads by two other variant callers, FreeBayes and GATK/HC.
Given the extensive support of these variants from multiple
sequencing technologies and variant callers, these variants
are good candidates for addition to the GIAB truth set. Ex-
pansion of benchmark sets to harder-to-genotype regions of
the human genome is generally important for the develop-
ment of more comprehensive genotyping methods, and we
plan to work with these efforts to use our results. Further, our
method is likely to prove useful for future combined diplo-
typing algorithms when both genotype and phasing is re-
quired, for example as may be used when constructing phased
diploid de novo assemblies (36) or in future hybrid long/short
read diplotyping approaches.
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