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List of abbreviations 

DNAm DNA methylation 

BMI Body mass index 

AUC Area under the curve 

CpG Cytosine phosphate Guanine dinucleotide 

EWAS Epigenome-wide association study 

GS:SFHS Generation Scotland: The Scottish family health study 

LBC1936 Lothian birth cohort 1936 

LASSO Least absolute shrinkage and selector operator 

HR Hazard ratio 

CI Confidence interval 

STRADL Stratifying resilience and depression longitudinally 
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Abstract: 

Background: 

Genome-wide DNA methylation (DNAm) profiling has allowed for the development of 

molecular predictors for a multitude of traits and diseases. Such predictors may be more 

accurate than the self-reported phenotypes, and could have clinical applications. Here, 

penalised regression models were used to develop DNAm predictors for body mass index 

(BMI), smoking status, alcohol consumption, and educational attainment in a cohort of 5,100 

individuals. Using an independent test cohort comprising 906 individuals, the proportion of 

phenotypic variance explained in each trait was examined for DNAm-based and genetic 

predictors. Receiver operator characteristic curves were generated to investigate the 

predictive performance of DNAm-based predictors, using dichotomised phenotypes. The 

relationship between DNAm scores and all-cause mortality (n = 214 events) was assessed via 

Cox proportional-hazards models.  

 

Results:  

The DNAm-based predictors explained different proportions of the phenotypic variance for 

BMI (12%), smoking (60%), alcohol consumption (12%) and education (3%). The combined 

genetic and DNAm predictors explained 20% of the variance in BMI, 61% in smoking, 13% 

in alcohol consumption, and 6% in education. DNAm predictors for smoking, alcohol, and 

education but not BMI predicted mortality in univariate models. The predictors showed 

moderate discrimination of obesity (AUC=0.67) and alcohol consumption (AUC=0.75), and 

excellent discrimination of current smoking status (AUC=0.98). There was poorer 

discrimination of college-educated individuals (AUC=0.59).  
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Conclusions: 

DNAm predictors correlate with lifestyle factors that are associated with health and mortality. 

They may supplement DNAm-based predictors of age to identify the lifestyle profiles of 

individuals and predict disease risk.   

 

Keywords: DNA methylation, polygenic scores, prediction, ageing, mortality 
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Background: 

DNA-based predictors of health and lifestyle have potential uses in both clinical and non-

clinical contexts. For example, biological predictors of smoking status and alcohol 

consumption may provide more accurate measurements than self-report, thereby improving 

disease prediction and risk stratification [1]. Here, using whole blood-derived samples, we 

develop novel DNA methylation-based predictors of alcohol consumption, smoking status, 

body mass index (BMI), and educational attainment and relate them to both a health outcome 

(mortality) and lifestyle characteristics in an independent cohort.    

DNA methylation (DNAm) is a commonly-studied epigenetic modification characterised by 

chemical changes to DNA – typically at a Cytosine-phosphate-Guanine (CpG) nucleotide 

base pairing [2]. These modifications are dynamic, tissue- and cell-specific [3], are involved 

in gene regulation, and can be influenced by both genes and the environment [4]. 

Through large meta-analysis projects, methylation signals at individual CpG sites have been 

associated with educational attainment, smoking, alcohol consumption, and BMI [5, 6, 7, 8, 

9]. Such studies have also used methylation predictors (from a combination of CpG sites) to 

predict the phenotype of interest in independent cohorts. For example, 7% of the variance in 

BMI and 2% of the variance in educational attainment can be explained by their respective 

predictors [5, 10]. Studies have also combined genetic risk scores into their prediction 

models, showing that the DNAm predictors contribute independently to the variance 

explained in BMI and C-reactive protein levels [9, 11]. Moreover, single CpG sites and 

DNAm predictors have been linked to lung cancer/mortality [12], and cardiometabolic traits 

[7, 11].  

There are, however, several limitations to existing studies. First, the CpG weights for the 

predictors are derived separately for each CpG, which does not account for their inter-
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correlations. Second, large samples are required to generate precise weights. This has meant 

conducting meta-analyses with data from heterogeneous populations where different quality 

control metrics have been applied. Third, the CpG prediction weights are typically based on 

Z-scores rather than effect sizes, that is, the trait was modelled as the predictor with the CpG 

as the outcome in the epigenome-wide association studies (EWASs). These Z-score weights 

are equivalent to modelling by p-values, which don’t account for the magnitude of the CpG-

trait association. Fourth, arbitrary significance threshold cut-offs are used to select the 

number of CpGs used in each predictor rather than training a predictor on an optimised set of 

CpGs.   

Here, we model all CpGs simultaneously in a single large cohort of over 5,000 individuals. 

We model the traits of interest as the outcomes and the CpGs as the predictors and train 

optimised predictors using penalised regression methods. We then apply these predictors to 

an independent cohort study of over 900 individuals to determine 1: the proportion of 

variance the DNAm predictors explain in the outcomes; 2: the extent to which these 

proportions are independent from the contribution of genetics; 3: the accuracy with which the 

DNAm predictors can identify obese individuals, college-educated individuals, heavy 

drinkers, and current smokers if provided with a random DNA sample from the population; 

and 4: the extent to which they can predict health outcomes, such as mortality and if they do 

so independently from the phenotypic measure.  

 

Results 

Summary information on the four phenotypes in both the training (GS) and test (LBC1936) 

datasets is presented in Table 1. LBC1936 is an older cohort than GS (mean age 70 vs 48 

years), with a more even gender balance (51% vs 39% male). LBC1936, when compared 
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with GS participants, had around 2 fewer years of education, were of similar mean BMI (both 

cohort means were ~27kg/m2), drank slightly less alcohol (median difference of 3 units per 

week), and had a lower ratio of current to never smokers (20% vs 27%).  

The LASSO regressions returned predictors based on 1,099 (BMI), 287 (smoking), 371 

(alcohol), and 281 CpGs (educational attainment). The regression weights for the predictors 

are shown in Supplementary Tables 1-4. DNAm predictors for the four variables were 

created in LBC1936 at the baseline wave, at a mean age of approximately 70 years (n=906). 

Correlations between the phenotypic measures in GS:SHFS are presented in Supplementary 

Table 5. Correlations between the phenotypic measures and DNAm predictors in LBC1936 

are presented in Supplementary Table 6. Small correlations (r < 0.2) were seen between the 

phenotypes, and also between the DNAm predictors. An exception was the DNAm 

smoking:DNAm education correlation (r = -0.54); the phenotypic smoking:DNAm education 

association was of a similar magnitude (r = -0.44).     

DNAm predictors explain phenotypic variation  

Age and sex-adjusted linear regression models showed that the DNAm predictors, which 

were developed in GS, explained 12.2% of the variance in BMI, 12.5% in alcohol 

consumption, 60.6% in smoking, and 2.6% in education in LBC1936 (Table 2 and Figure 1). 

The corresponding polygenic scores explained 10.3% of the variance in BMI, 0.7% in alcohol 

consumption, 2.8% in smoking, and 4% in education. Models including both the DNAm 

predictor and the polygenic score explained the most variance in each trait: 19.5% in BMI, 

12.9% in alcohol consumption, 61.0% in smoking, and 5.8% in education.  

DNAm predictors classify phenotype extremes 

For the Area Under the Curve (AUC) analyses that predicted the binary classified phenotypes 

in LBC1936, there were 652 controls and 242 cases for obesity, 755 light-to-moderate 
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drinkers and 151 heavy drinkers, 423 non-smokers and 103 current smokers, and 233 and 671 

individuals with >11 and ≤11 years of full-time education, respectively. There was near-

perfect discriminatory power for the identification of current smokers (AUC=0.98), moderate 

discrimination of obesity from non-obesity (AUC=0.67) and of light-to-moderate drinkers 

from heavy drinkers (AUC=0.74), but only poor discrimination of those with more years of 

full-time education (AUC=0.59, Figure 2). Including the polygenic scores in addition to the 

DNAm predictors improved the prediction for obesity (AUC=0.71) and education 

(AUC=0.65) but not for the other traits. The smoking DNAm predictor was a significant 

addition to a logistic regression model for the binary education measure (smoking DNAm 

P=0.01, education DNAm P=0.08, and polygenic education P=2.5x10-8) but not for the 

models with obesity and moderate-to-high drinking as the outcomes (smoking DNAm P=0.31 

and P=0.5, respectively). 

DNAm predictors and mortality  

Mortality in LBC1936 was assessed in relation to the phenotype, DNAm score, and 

polygenic score using Cox proportional-hazards models, adjusting for sex (Table 3 and 

Figure 3). There were 214 deaths from 906 participants over 12 years of follow-up.  

Higher phenotypic BMI and current/former smoking status (compared to never smokers) 

were associated with higher mortality risk (BMI: HR = 1.23 per SD, 95% CI = 1.08-1.40, P = 

0.001; former smokers: HR = 1.76, 95% CI = 1.28-2.42, P = 4.5 x 10-4; current smokers: HR 

= 4.30, 95% CI = 2.97-6.21, P = 8.9 x 10-15). A mild protective effect was associated with 

higher educational attainment (HR = 0.87, 95% CI = 0.75-0.996, P = 0.043). No significant 

associations were observed in LBC1936 between risk of mortality and phenotypic alcohol 

consumption. A significant association was observed between mortality and the polygenic 

score for BMI (HR = 1.18, 95% CI = 1.03-1.35, P = 0.016) but not for the other three genetic 
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scores. Higher mortality risk was associated with higher DNAm scores for smoking (HR = 

1.57, 95% CI = 1.40-1.75, P = 1.0 x 10-15) and alcohol consumption (HR = 1.16, 95% CI = 

1.02-1.33, P = 0.02), but not for BMI (HR = 1.09, 95% CI = 0.95-1.24, P = 0.23). A higher 

DNAm score for education was associated with lower mortality risk (HR = 0.76. 95% CI = 

0.67-0.87, P = 7.8 x 10-5). The DNAm predictors of alcohol consumption and educational 

attainment were significantly associated with mortality following the addition of their 

phenotypic analogues to the respective models (DNAm HRs = 1.19 and 0.78, P = 0.02 and 

2.2 x 10-4, respectively). The phenotypic and DNAm predictors of smoking were jointly 

associated with mortality (DNAm HRs = 1.31, 95% CI = 1.08-1.60, P = 0.006; phenotypic 

HR (former smokers) = 1.44, 95% CI = 1.01-2.05, P = 0.042; phenotypic HR (current 

smokers) = 2.09, 95% CI = 1.10-3.96, P = 0.024).  

A final set of three survival models were considered. These covaried for the smoking DNAm 

predictor alongside the phenotype and DNAm predictor for (1) BMI, (2) alcohol, and (3) 

education (Table 4). Both the phenotypic BMI and smoking DNAm predictor were 

significant predictors of mortality (BMI HR = 1.28, 95% CI = 1.12-1.47, P = 3.0 x 10-4; 

DNAm smoking HR = 1.64, 95% CI = 1.46-1.84, P < 2.0 x 10-16). However, conditioning on 

the smoking DNAm predictor attenuated the association between the alcohol consumption 

and education DNAm predictors and mortality (P = 0.38 and P = 0.82, respectively). There 

were minimal differences to the effect sizes and interpretation of the findings after a further 

analysis that conditioned on white blood cell counts, with and without epigenetic scores for 

the corresponding trait and smoking DNAm score (Supplementary Table 7).   

 

Discussion 
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We have identified DNA methylation-based predictors for educational attainment, alcohol 

consumption, smoking, and BMI that: (1) explain varying degrees of proportions of their 

phenotypic variance, and do so independently from corresponding genetic predictors; (2) help 

to characterise individual differences; and (3) show clinical utility through prediction of 

mortality, and do so independently from phenotypic and genetic measures.  

The DNAm predictors explained different proportions of the variance in the modifiable 

complex traits, from <3% for education to 12% for BMI and alcohol, and up to 60% for 

smoking. By combining genetic and epigenetic predictors we were able to augment these 

predictions to nearly 20% for BMI and 6% for education, whereas the alcohol and smoking 

predictions were largely driven by the DNAm predictors. The previous best estimate for 

genetic plus epigenetic BMI prediction was ~15% [10].  

There is near-perfect discrimination between current and never smokers based on the 

smoking DNAm predictor and moderate discrimination between obese individuals and 

moderate-to-high drinkers. Differentiating those with a high level of education is more a 

function of genetics than DNAm, although the combined predictive power remains poor. 

Application of these predictors alongside existing DNAm-based age predictors [13, 14] may 

be of use in forensic investigations, given an unknown blood sample [15].  

As with the previous EWAS analysis of education [5], there is a strong overlap with a 

smoking-related methylation signals. The strength of the correlation between the education 

and smoking DNAm predictors (r=-0.54) is particularly interesting when placed in context 

with their more modest phenotypic correlation (r=-0.14). Given that DNA methylation is 

highly predictive of smoking status [9], it may be the case that, should a single smoking-

sensitive CpG feature in a DNAm predictor for another trait – here, education – then this 

drives a high correlation between the two DNAm predictors. It is of note that cg11902777, an 
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established DNAm-based biomarker of smoking from the AHRR gene, was the feature with 

the fourth-largest coefficient in the education DNAm LASSO model. A DNAm education 

predictor excluding this feature/CpG correlated 0.98 with the primary predictor. Correlations 

between different CpG features within each of DNAm predictors may be responsible for the 

association observed between predictors. 

The survival analysis in the out-of-sample prediction LBC1936 cohort yielded significant 

associations for the smoking, alcohol, and education DNAm predictors even after 

conditioning on their respective phenotypic values. When included as a covariate, the 

smoking DNAm predictor attenuated the DNAm – mortality associations for both the 

education and alcohol predictors. Consistent with our phenotype-based survival analyses, 

others have reported positive associations between mortality risk and both smoking and BMI 

[16, 17, 18] whereas higher educational attainment has been associated with a decreased 

mortality risk [19, 19]. A recent meta-analysis failed to find a significant relationship 

between alcohol consumption and all-cause mortality [21].  

There are two key strengths to this study. First, the sample size of the Generation Scotland 

cohort, which is currently the single largest epigenetic epidemiology cohort in the world, 

enabled us to improve on previous DNAm predictors by: modelling all CpG sites 

simultaneously; training the predictor using cross-validation penalised regression modelling; 

and reducing heterogeneity in both phenotypic and methylation measurement through a 

single data collection and analysis protocol. Second, we could predict not only the relevant 

phenotypes of interest but also a clinically meaningful outcome (mortality) in our large, 

genetically homogenous, out-of-sample prediction cohort, LBC1936. Other studies with 

DNA methylation data and longitudinal disease follow-up for e.g., cardiometabolic, 

cardiovascular, and cancer-related outcomes will be able to further test the predictive 

performance of our DNAm predictors. 
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The Generation Scotland cohort contained related individuals who may be more 

phenotypically similar for the four traits under investigation. Residuals from sensitivity 

analyses that adjusted the phenotypes for pedigree structure as a random effect, in addition to 

age, sex, and population stratification as fixed effects, correlated highly (minimum Pearson 

r=0.96) to those from the models without pedigree adjustment. The older age range of 

LBC1936 and longitudinal follow-up enabled us to examine the ability of DNAm-based 

predictors for educational attainment, alcohol consumption, smoking and BMI to predict 

mortality, independently of the phenotypes themselves. As mentioned previously, the test 

cohort was older, had approximately 2 fewer years of education, were lighter drinkers, and 

heavier smokers relative to the training cohort. The DNAm predictors may perform 

differently on BMI, alcohol, smoking, and education measures in cohorts that are more 

analogous in age and phenotypic distribution to the training dataset, Generation Scotland.   

 

Conclusions 

In summary, we showed that DNAm predictors are able to predict modifiable lifestyle factors 

with some success. They can also augment phenotypic prediction of mortality. Future studies 

should focus on other incident health outcomes, such as cardiometabolic disease and cancer. 

There is scope to use these DNAm predictors, in addition to DNAm-based predictors of age, 

to help identify lifestyle characteristics from DNA.  

 

Methods  

Training dataset for the DNAm predictors: Generation Scotland 
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The DNAm predictors were built on a subset of 5,100 individuals from Generation Scotland: 

the Scottish Family Health Study (GS:SFHS, hereafter abbreviated as GS), who had DNA 

methylation measured as part of a sub-study: Stratifying Resilience and Depression 

Longitudinally (STRADL). The parent cohort, GS, contains detailed cognitive, physical, 

health, and genetic data on over 22,000 individuals from across Scotland, aged between 18 

and 99 years [22, 23]. It is a family structured, population-based longitudinal cohort study. 

Stored DNA samples from bloods collected at the study baseline (2006-2011) were used for 

the DNAm analysis.  

 

Methylation preparation in Generation Scotland 

Quality control was performed on Illumina HumanMethylationEPIC BeadChip DNA 

methylation data from blood samples of 5,200 individuals from the Generation Scotland 

cohort. Briefly, visual inspection of a plot of log median intensity of methylated versus 

unmethylated signal [24] was used to identify outliers, which were excluded. Sample 

exclusions were also made where predicted sex, based on DNA methylation data, did not 

match the sex recorded in the GS database. Finally, samples were excluded if ≥1% of CpGs 

had a detection p-value in excess of 0.05. Probes were excluded if they had a beadcount 

below 3 in at least 6 samples and when ≥0.5% of samples had a detection p-value >0.05. This 

left data available for 860,926 methylation sites in 5,100 participants.    

Further filtering was performed to remove (1) any sites with missing values, (2) non-

autosomal sites, (3) non-CpG sites, and (4) CpG sites not present on the Illumina 450k array. 

Criterion (4) enables prediction into existing datasets as the majority of the CpG sites on the 

450k array are present on the EPIC array. 
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Phenotype preparation in Generation Scotland  

We considered four phenotypes from Generation Scotland for the analysis: educational 

attainment, BMI, and self-reported alcohol consumption and smoking status. Educational 

attainment was measured via an ordinal scale: 0: 0 years, 1: 1-4 years, 2: 5-9 years, 3: 10-11 

years, 4: 12-13 years, 5: 14-15 years, 6: 16-17 years, 7: 18-19 years, 8: 20-21 years, 9: 22-23 

years, 10: ≥24 years of full-time education. It was treated as a continuous variable for the 

current analyses. BMI, assessed as the ratio of weight in kilograms to height in metres 

squared (kg/m2), was trimmed for extreme values (<17 and >50 kg/m2) before being log 

transformed. Alcohol was assessed in units per week and was only considered in those who 

reported that their intake as representative of a normal week. To reduce skewness in the 

distribution of alcohol consumption, a log(units + 1) transformation was performed. The 

addition of the constant retains non-drinkers, who reported a consumption of 0 units. 

Smoking was assessed in pack years (calculated by multiplying the number of packs smoked 

per day by the number of years the participant has smoked) for current and never smokers; 

ex-smokers were excluded due to complications in adjusting for time since cessation into the 

pack years calculation. Those who reported starting at age 10 or under were treated as data 

entry or self-report errors and were excluded along with non-smokers who had a non-zero 

(impossible) entry for pack years. As with the alcohol phenotype, a log(pack years + 1) 

transformation was used to reduce skew, leaving between 2,824 and 5,048 individuals, 

depending on phenotype (Table 1).  

Each phenotype was then regressed on age, sex, and 10 genetic principal components [25] 

with the residuals being entered as the dependent variable in the LASSO models.  

 

LASSO regression in Generation Scotland 
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Penalised regression models were run using the glmnet library in R [26, 27]. 10-fold cross 

validation was applied and the mixing parameter (alpha) was set to 1 to apply a LASSO 

penalty. Coefficients for the model with the lambda value corresponding to the minimum 

mean cross-validated error were extracted and applied to the corresponding CpGs in an out of 

sample prediction cohort to create the DNAm predictors. 

 

The out-of-sample prediction cohort: Lothian Birth Cohort 1936 

The Lothian Birth Cohort 1936 (LBC1936) [28, 29] was used for external DNAm predictions. 

LBC1936 is a cohort comprising individuals born in 1936, most of whom took part in the Scottish 

Mental Survey 1947. Participants were recruited to LBC1936 when they were aged approximately 

70 years and have attended clinical examinations approximately every 3 years on up to 5 

occasions. Detailed cognitive, physical, and health data have been collected, along with extensive 

‘omics and biomarker data, including whole genome sequencing and longitudinal measures of 

DNAm, gene expression, and structural brain imaging. In the present study, DNAm was assessed 

in blood samples from wave 1 of the study between 2004 and 2007. 

Mortality data in LBC1936 were obtained through data linkage to the National Health 

Service Central Register, provided by the General Register Office for Scotland (now National 

Records of Scotland). The mortality data used in the present analysis were correct as of 

January 2018.   

 

Methylation preparation in the Lothian Birth Cohort 1936 

DNAm from whole blood was assessed in the Lothian Birth Cohort 1936 using the Illumina 

450k methylation array. Over 90% of the 450k CpG sites are present on the EPIC array. 
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Quality control details have been reported previously [30]. Briefly, after background 

correction, probes were removed if they were poorly detected (P>0.01) in >5% of samples or 

of low quality (via manual inspection). Samples were removed if they had a low call rate 

(P<0.01 for <95% of probes), a poor match between genotype and SNP control probes, or 

incorrect DNAm-predicted sex.  

 

Polygenic scoring in the Lothian Birth Cohort 1936 

Polygenic scores were created in LBC1936 using PRSice [31] with clumping parameters of 

R2>0.25 over 250kb sliding windows. Genotyped data were generated at the Wellcome Trust 

Clinical Research Facility using the Illumina 610-Quadc1 array (San Diego). The SNP 

weights for all variants (P<1) for BMI [32], smoking [33], alcohol [34], and educational 

attainment [35] were taken from large genome-wide association studies (GWAS). Where 

LBC1936 was included in the discovery GWAS (educational attainment [35]), the meta-

analysis was re-run after its exclusion.   

 

Phenotypes in the Lothian Birth Cohort 1936 

DNAm predictors for smoking, alcohol, BMI, and educational attainment were used to 

explain variance in their corresponding phenotypes in the out-of-sample cohort, LBC1936. 

Phenotype measurement details in LBC1936 are as follows: self-reported smoking status 

(current smoker, ex-smoker, never smoked), alcohol consumption in a typical week (recoded 

into units), and education (years of full-time education) were assessed along with BMI 

(defined as the ratio of weight in kilograms divided by height in metres squared). Binary 

categorisations of smoking (current versus never), BMI (>30kg/m2 versus ≤30kg/m2, defined 

as obese and non-obese, respectively), education (>11 years versus ≤11 years, which is 
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roughly equivalent to a college education level for LBC1936), and alcohol consumption were 

used as outcomes for receiver operating characteristic curve analyses. Sex-specific 

dichotomisations were applied to the alcohol consumption phenotype, as per UK health 

recommendations at the time of data collection (≤21 units per week versus >21 units per 

week for males, and ≤14 units per week versus >14 units per week for females; 

corresponding to moderate and heavy alcohol consumption in each gender, respectively. 

 

Prediction Analysis in the Lothian Birth Cohort 1936  

There were four main aims for the prediction analysis: (1) to identify the proportion of 

phenotypic variance explained by the corresponding DNAm predictor; (2) to determine if this 

was independent of the polygenic (genetic) signal for each phenotype; (3) to obtain area 

under the curve (AUC) estimates for binary categorisations of BMI, smoking, alcohol 

consumption, and college education; and (4) to identify if the phenotype, polygenic score, or 

DNAm predictor explained mortality risk and if they do so independently of one another. 

Linear regression models were used to explore aims (1) and (2). Ordinal logistic regression 

was used for the categorical smoking variable (never, ex, current smoker). Age and sex were 

considered as covariates, the phenotypic measure was the dependent variable, and the 

polygenic score or DNAm predictor were the independent variables of interest. Incremental 

R2 estimates were calculated between the null model and the models with the predictors of 

interest. An additive genetic and epigenetic model for BMI in the Lothian Birth cohort 1936 

has been reported previously, although a different DNAm predictor, based on unrelated 

individuals, was derived from the Generation Scotland data [36]. Receiver operating 

characteristic curves were developed for smoking status, obesity, high/low alcohol 

consumption, and college education and areas under the curve were obtained using the pROC 
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library in R [37](Aim 3). Finally, Cox proportional hazards survival models [38] were used to 

examine the associations with mortality listed under Aim 4. Sex was included as a covariate 

in all models.   
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Table 1: Summary of the Generation Scotland and Lothian Birth Cohort 1936 studies 

Generation Scotland Lothian Birth Cohort 1936 
  N Mean SD N Mean SD 
Age (years) 5,100 48.5 14.0 906 69.6 0.8 
Body Mass Index (kg/m2) 5,048 27.0 5.2 905 27.8 4.4 

  
  N Median Q1, Q3 N Median Q1, Q3 
Alcohol (units per week) 2,824 8 2, 15 906 5 0.5, 14 
Education (years)* 4,816 12-13 10-11, 16-17 906 10 10, 12 

  
  N %    N %    
Sex    
     Male 1,962 38.5 458 50.6 
     Female 3,138 61.5 448 49.4 
Smoking    
     Never smoked 2,531 73.3 424 46.8 
     Ex-smoker - - 379 41.8 
     Current smoker 924 26.7 103 11.4 
 

Sample counts are provided for age, sex and measures of body mass index, alcohol 

consumption, smoking and education years in both the Generation Scotland and Lothian 

Birth Cohort 1936 studies. Education was measured as an ordinal variable. 0: 0 years, 1: 1-4 

years, 2: 5-9 years, 3: 10-11 years, 4: 12-13 years, 5: 14-15 years, 6: 16-17 years, 7: 18-19 

years, 8: 20-21 years, 9: 22-23 years, 10: ≥24 years. 
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Table 2. Predicting LBC1936 phenotypes using methylation and genetic predictors for 

alcohol, BMI, smoking, and educational attainment  

Trait DNAm Score Polygenic Score DNAm + Polygenic 

BMI (kg/m2) 12.2% 10.3% 19.5% 

Alcohol (units per week) 12.5% 0.7% 12.9% 

Smoking (current/ever/never) 60.6% 2.8% 61.0% 

Educational attainment (years) 2.6% 4.0% 5.8% 

 

For each trait, the proportion of phenotypic variance explained is presented for DNAm score, 

polygenic score and combined DNAm + polygenic scores.
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Table 3. Cox model outputs for phenotypic, DNAm and polygenic predictors of alcohol, 
smoking, education and BMI. 

 

Trait Predictor HR 95% CI P 
Alcohol Phenotypic 1.02 0.90 – 1.16 0.73 

Epigenetic 1.16 1.02 – 1.33 0.02 
Genetic 1.03 0.90 – 1.17 0.68 

Smoking Phenotypic (ex-smoker) 1.76 1.28 – 2.42 4.5x10-4 
 Phenotypic (current smoker) 4.30 2.97 – 6.21 8.9x10-15 

Epigenetic 1.57 1.40 – 1.75 1.0x10-15 
Genetic 1.08 0.94 – 1.23 0.27 

Education Phenotypic 0.87 0.75 – 0.996 0.043 
Epigenetic 0.76 0.67 – 0.87 7.8 x 10-5 

Genetic 0.89 0.78 – 1.02 0.094 

BMI Phenotypic 1.23 1.08 – 1.40 0.001 
Epigenetic 1.09 0.95 – 1.24 0.23 

Genetic 1.18 1.03 – 1.35 0.016 
     

Alcohol Phenotypic 0.95 0.82 – 1.10 0.45 
 Epigenetic 1.19 1.03 – 1.38 0.02 
     
Smoking Phenotypic (ex- smoker) 1.44 1.01 – 2.05 0.042 
 Phenotypic (current smoker) 2.09 1.10 – 3.96 0.024 
 Epigenetic 1.31 1.08 – 1.60 0.006 
     
Education Phenotypic 0.90 0.79 – 1.04 0.15 
 Epigenetic 0.78 0.68 – 0.89 2.2x10-4 
     
BMI Phenotypic 1.21 1.06 – 1.39 0.006 
 Epigenetic 1.01 0.87 – 1.17 0.88 
  

 

Cox proportional hazards outputs are presented for phenotypic, DNAm, and polygenic 
predictors of alcohol, smoking, education, and BMI in LBC1936. Each trait was assessed 
separately. Multivariate results are shown below the dashed line, assessing DNAm scores and 
their phenotypic analogues. Phenotypic never-smokers were used as a reference group for 
phenotypic ex-smokers and current smokers 
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Table 4. Multivariate Cox model outputs for alcohol, education, and BMI in LBC1936  

 

 

Multivariate Cox proportional hazards outputs are presented for alcohol, education, and BMI 

in LBC1936 conditioned on both the trait of interest’s DNAm score and the smoking DNAm 

score.

Trait Predictor HR 95% CI P 
Alcohol Phenotypic 0.97 0.84 – 1.12 0.64 

Epigenetic 1.07 0.93 – 1.23 0.38 
Smoking DNAm 1.54 1.37 – 1.72 1.23 x 10-13 

Education Phenotypic 0.93 0.81 – 1.07 0.30 
Epigenetic 1.02 0.87 – 1.20 0.82 

Smoking DNAm 1.56 1.36 – 1.79 2.06 x 10-10 

BMI Phenotypic 1.28 1.12 – 1.47 3.0 x 10-4 
Epigenetic 1.02 0.88 – 1.18 0.79 

Smoking DNAm 1.64 1.46 – 1.84 < 2.0 x 10-16 
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Figure 1. DNAm and polygenic prediction of alcohol, BMI, smoking, and educational 

attainment  

Proportion of phenotypic variance explained (R2) is plotted for four traits: BMI, smoking, 

alcohol and education based on each trait’s polygenic score (blue), DNA methylation-based 

score (green) and additive genetic + epigenetic score (orange). 

 

Figure 2. Receiver operating characteristic analysis for DNAm predictors of alcohol, 

smoking, and BMI. 

Shown are receiver operating characteristic curves for predicting moderate-to-heavy vs non-

to-light drinkers, current smokers vs never smokers, obese vs non obese individuals, and high 

versus low-to-average education. Obese and non-obese are defined as BMI > 30 and 

≤30kg/m2; moderate-to-heavy and non-to-light drinkers defined as drinking >21 and ≤21 

units (men) or >14 and ≤14 units (women) of alcohol per week; highly educated individuals 

had >11 years of full-time education, compared to low-to-average education (≤11 years). 

 

Figure 3. Hazard Ratios for phenotypic, epigenetic (DNAm), and genetic (polygenic) 

predictors of mortality.   

Forest plots show hazard ratios for phenotypic, DNAm and polygenic scores for BMI, 

alcohol consumption, smoking and education. Effect sizes are per standard deviation with the 

exception of phenotypic smoking, for which never smokers are used as a reference group. 

Horizontal lines represent 95% confidence intervals. 
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