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We introduce a new stochastic model for metastatic growth, which takes the form of a branching stochas-
tic process with settlement. The moving particles are interpreted as clusters of cancer cells while station-
ary particles correspond to micro-tumors and metastases. The analysis of expected particle location, their
locational variance, the furthest particle distribution, and the extinction probability leads to a common
type of differential equation, namely, a non-local integro-differential equation with distributed delay. We
prove global existence and uniqueness results for this type of equation. The solutions’ asymptotic behav-
ior for long time is characterized by an explicit index, a metastatic reproduction number R0: metastases
spread for R0 > 1 and become extinct for R0 < 1. Using metastatic data from mouse experiments, we
show the suitability of our framework to model metastatic cancer.

Keywords: branching processes, birth-jump processes, cancer metastasis, integro-differential equations,
reproduction number.

1. Introduction

Metastasis is the leading cause of cancer related deaths. It is the process by which cancer spreads from
a primary site to distant secondary sites. Because of its implication in over 90% of all cancer-related
deaths (Gupta and Massague, 2006; Valastyan and Weinberg, 2011), it is recognized as one of the hall-
marks of cancer (Hanahan and Weinberg, 2011). The metastatic cascade (Gupta and Massague, 2006;
Valastyan and Weinberg, 2011; Riggi et al., 2018) provides a mechanistic description of the process,
viewing it as an ordered sequence of biological events. Growth of the primary tumor leads to local inva-
sion of surrounding normal tissue. Such local invasion eventually encounters a vessel of the lymphatic
or circulatory system. Individual cancer cells — or small clusters of cells — can enter these vessels
(intravasate), thereby gaining access to rapid transport throughout the body. If these circulating cells
survive their journey and exit the vessel at some distant site (extravasate), they may be able to establish
a micrometastasis. Evasion of local defenses and adjustment to the hostile foreign environment can see
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the micrometastasis grow into a macrometastasis. Further growth may eventually lead to a secondary
tumor.

The stochastic nature of metastasis makes experimental studies difficult, meaning that a thorough
understanding of the process is lacking. While some of the steps in the metastatic cascade are well
understood — for example, growth and invasion of primary tumors are well studied both experimentally
and theoretically (see the reviews in Riggi et al. (2018); Scott et al. (2013)) — understanding of others
remains elusive. Travel to, and establishment at secondary sites are particularly poorly understood, with
many theoretical investigations ignoring these aspects altogether. Though recent results (Kaplan et al.,
2005) have led to novel theories that metastasis may be more intricately orchestrated than previously
thought (Shahriyari, 2016; Rhodes and Hillen, 2019), the process is still believed to be largely stochastic.

Based on these observations, we introduce a new stochastic framework for metastatic spread in the
form of a branching stochastic process with settlement. This model captures simultaneously temporal
and locational dynamics. Stationary tumors emit, or shed, small clusters of cells into the vasculature
at random times. These shed cells can then move randomly through the body, modeled by a spatial
stochastic process. The moving clusters — also known as circulating tumor cells/clusters (CTCs) — can
settle randomly according to a given rate. If the CTCs successfully settle, they may establish a secondary
tumor, which itself may shed new CTCs into the blood stream. Both moving and stationary groups of
cancer cells die, each at their own rate.

In contrast to existing stochastic metastasis models, our framework accounts for both travel between
primary and secondary sites and establishment at the secondary sites. Hartung and Gomez (2014) pro-
pose a stochastic model with secondary metastatic emission as a cascade of Poisson point processes and
link it to the deterministic model introduced by Iwata et al. (2000). Differently from us, Hartung and
Gomez (2014) model only the size development over time and not the location.

From a probabilistic viewpoint, our model represents a branching process with general dynamics and
including settlement and death of particles. Branching Brownian motion has been analyzed for more
than fifty years, starting with seminal work (Ikeda et al., 1968; McKean, 1975) on the fundamental link
between branching Brownian motion and the Fisher-Kolmogorov-Petrovsky-Piscounov equation. Since
then branching Brownian motion has been intensively studied in its own right (Biggins et al., 1991;
Kimmel and Axelrod, 2015). In statistical mechanics, branching Brownian motion is used for models of
spin glasses (Bovier, 2016). In biology, branching processes have been applied in a range of areas such
as molecular biology, cellular biology, and human evolution (Haccou et al., 2005; Jagers, 1975; Kimmel
and Axelrod, 2015). Recently, branching processes have been found useful in simulating semi-linear
partial differential equations (Henry-Labordere et al., 2014, 2017). To the best of our knowledge, this
paper is the first to introduce branching processes with settlement and study their applications in the
context of cancer metastasis.

For the branching stochastic process with settlement, we prove a characterization of the following
key quantities: the expected location F of metastases, their locational variance V , the distribution H of
the furthest invading metastasis, the metastatic extinction probability Q, and the ratio of moving versus
stationary cancer cell groups. We show that each of the first four quantities — F,V,H, and Q — satisfies
a non-local integro-differential equation with distributed delay. These non-local differential equations
are of the same type for all cases and are non-linear in some cases. Generalizing the renewal equation,
integral equations for age-structured branching processes were already derived in Kimmel (1982), where
a connection to dynamical systems and control was made. In our paper, the integral equations employ
spatial non-local terms and distributed delays, and also have a close connection to dynamical systems.
From their derivations, we obtain existence of solutions to the integro-differential equations specific to
F,V,H, and Q, but we go beyond this, and present a detailed analysis of a general type of such non-local
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integro-differential equations, including positivity, and local and global existence of solutions.
We also provide a simple classification of the asymptotic behavior of branching stochastic processes

with settlement. We identify a metastatic reproduction number R0, which is explicitly given in terms
of the rates of metastatic shedding, settlement, and death. For completeness, we present its derivation
in two ways: from general results for two-type branching processes and from a stability analysis for
differential equations. In particular, we provide a global stability result of extinction of metastases for
R0 < 1 and growth for R0 > 1. By parametrizing the model on experimental mouse metastatic data,
we numerically explore the resulting metastatic pattern and confirm the suitability of our framework to
model metastatic cancer.

The remainder of this paper is organized as follows. Section 2 introduces the model, presents the
results and relates the stochastic model to integro-differential equations. In Section 3, we analyze this
type of integro-differential equations in more detail and characterize their asymptotic behavior using
the metastatic reproduction number. Section 4 shows how our framework can be applied in the context
metastatic cancer while Section 5 concludes and discusses possible extensions.

2. Branching stochastic processes with settlement

We define the branching stochastic process with settlement as follows: We start with one tumor that
is located at locational position 0. We assume that the tumor sheds individual cells and small groups
of cells into the circulatory system. It is believed that such CTCs are most responsible for metastasis
formation (Friedl and Mayor, 2017). Hence, in this model, we focus on the shedding of cell clusters.
At a random time ν , the primary tumor emits a cell cluster, which starts moving randomly. We model
the movement of this cell cluster by a d-dimensional stochastic process (B(t))t>0 with cumulative dis-
tribution function G(t,x) = P[B(t) 6 x] for x ∈ Rd and t > 0. Here and in the following, inequalities
between vectors are understood element-wise: y 6 x for x,y ∈ Rd if yi 6 xi for all i = 1, . . . ,d. We as-
sume that for every fixed t, G(t, .) is absolutely continuous so that there is a density function g(t, .) with
G(t,x)=

∫
(−∞,x1]×···×(−∞,xd ] g(t,y)dy for all x∈Rd . An example for (B(t))t>0 is a d-dimensional Brown-

ian motion, in which case g is the multivariate normal density function g(t,y) = 1√
(2π)d t detΣ

e−
1
2t y>Σ−1y

for a positive-definite covariance matrix Σ , but our framework allows for more general spatial processes
(B(t))t>0. The primary tumor stays at the same location until it dies. We assume that the shedding time
ν is exponentially distributed, ν ∼ Exp(µ) for some parameter µ > 0, using the convention that ν = ∞

if ν ∼ Exp(0). Our approach to model the shedding time and other random times (introduced below)
by exponential distributions is motivated by the memoryless property, which characterizes the exponen-
tial distribution: assuming that the tumor is big enough, cell clusters are shed randomly approximately
at a constant rate, which implies an exponential distribution for the shedding time. Moreover, our as-
sumption of exponentially distributed times between events (shedding and establishment) is supported
biologically by the successful confrontation of Hanin et al.’s stochastic model to clinical data (Hanin
et al., 2016).

After an additional random time τ (namely, at time ν + τ), the cell cluster settles down and forms a
metastasis. We assume that τ is exponentially distributed, τ ∼ Exp(λ ) for some parameter λ > 0. When
the cell cluster has settled down, it requires time to grow into a metastasis until it is able to shed cell
clusters on its own. We model this time again with an exponential distribution with parameter µ > 0.
Established metastasis and the primary tumor will continue to emit further cell clusters after a time
which is exponentially distributed with the same parameter µ > 0, independently of the other random
variables and processes. Cell clusters that are moving are destroyed at a rate δ1 > 0 while stationary
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FIG. 1. Illustration of a one-dimensional branching stochastic process with settlement. Color figure online.

tumors die at a rate δ2 > 0, again independently of the other particles, the movement and the growth.
The process is repeated ad infinitum. Figure 1 illustrates our model.

A key benefit of studying a d-dimensional stochastic process is that we can extend the notion from
cell clusters and metastases, whose movements are restricted to a system of blood and lymphatic vessels,
to particles in a d-dimensional space. Indeed, the branching stochastic process with settlement is also
relevant to other applications such as seed dispersal, epidemic spread, and forest fire spread (Martin
and Hillen, 2016). In those cases, particles would refer to plant seeds, infectious agents, and burning
branches, respectively. Hence “particle” can have very different meaning. In this paper, our focus is on
CTCs for moving particles and metastases for stationary particles.

We denote by N(t) the number of particles born before time t. Their positions at time t are Xi(t)
for 1 6 i 6 N(t) where we enumerate the particles by their birthdates. For fixed t and i, N(t) and Xi(t)
are random variables with values in N and Rd , respectively. We denote by M(t) the number of particles
alive at time t. We are interested in the following quantities:

• expected location F(t,x) = E
[

∑
N(t)
i=1 1Xi(t)6x

]
: the expected number of particles located in the set

(−∞,x1]×·· ·× (−∞,xd ] at time t,

• locational variance V (t,x) = Var
[

∑
N(t)
i=1 1Xi(t)6x

]
: the variation in the number of particles located

in (−∞,x1]×·· ·× (−∞,xd ] at time t due to randomness,
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• furthest particle distribution H(t,x) = P[maxi=1,...,N(t) Xi(t)6 x]: the probability that all particles
are located in (−∞,x1]×·· ·× (−∞,xd ] at time t,

• survival probability Q(t) = P[M(t)> 0]: the probability that there is at least one particle alive at
time t,

where we use the convention that 1Xi(t)6x is zero for all x and times t after the death time of particle i.
We set H(t,x) = 0 for all x if no more particle exists at time t.

2.1 Characterization via integro-differential equations

We use the above branching stochastic process with settlement to find a common type of equation for
the expected location F , the variance V , the distribution of the furthest particle H and the survival prob-
ability Q.

THEOREM 2.1 Consider the branching stochastic process with settlement defined above. The quantities
F,V,H,Q satisfy

Ft(t,x) = −δ2F(t,x)+µe−(λ+δ1)tG(t,x)

+λ µ

∫ t

0

∫
Rd

F(t−u,x− z)g(u,z)e−(λ+δ1)u dzdu, (2.1)

Vt(t,x) = −δ2V (t,x)+µe−(λ+δ1)th(t,x)

+λ µ

∫ t

0

∫
Rd

V (t−u,x− z)g(u,z)e−(λ+δ1)u dzdu, (2.2)

with

h(t,x) = G(t,x)+ e(λ+δ1)t δ2

µ
F2(t,x)

+λ

∫ t

0

∫
Rd

F2(t−u,x− z)g(u,z)e(λ+δ1)(t−u) dzdu,

Ht(t,x) =
[
µe−λ t(1− e−δ1t(1−G(t,x)))− (µ +δ1)

]
H(t,x)

+λ µH(t,x)
∫ t

0

∫
Rd

H(t−u,x− z)g(u,z)e−λu dzdu, (2.3)

Q′(t) = −
(

δ2 +µe−(λ+δ1)t
)

Q(t)+µe−(λ+δ1)t

+λ µ(1−Q(t))
∫ t

0
Q(t− s)e−(λ+δ1)s ds. (2.4)

Before we present the proof of Theorem 2.1 in Section 2.3, we bring the above four equations (2.1)–(2.4)
into a common form using a convolution notation. We encounter integral kernels that depend on one
variable and on two variables. We use the same convolution symbol for both cases; given two kernels
k1(t,x) and k2(t) and two test functions f (t,x) and g(t), we denote

k1 ∗ f (t,x) :=
∫ t

0

∫
Rd

f (t−u,x− z)k(u,z)dzdu
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k2 ∗g(t) :=
∫ t

0
g(t−u)k(u)du.

Then we combine equations (2.1)–(2.4) in the compact form

ft =−q f + p+(r1 + r2 f ) k ∗ f , (2.5)

where we identify parameters and functions as shown in Table 1.
In Section 3, we will analyze the general type (2.5) of non-local integro-differential equation with

distributed delay and show positivity as well as local and global existence of solutions using a fixed-
point argument. For the qualitative analysis, we encounter an index R0, which can be understood as the
metastatic reproduction number:

R0 =
λ

δ1 +λ

µ

δ2
. (2.6)

The fist factor λ/(δ1 +λ ) denotes the settlement rate divided by the sum of the settlement rate and the
death rate during movement. It describes the odds of being still alive while settling. The second factor in
(2.6), µ

δ2
, which refers to stationary particles, can be explained similarly, but here the effect of births of

new particles needs to be considered. Indeed, when the ratio between shedding rate µ and total change
rate δ2 +µ (stationary deaths and shedding) is summed over all potential offsprings of the particles, we
obtain

∞

∑
j=1

(
µ

δ2 +µ

) j
=

∞

∑
j=0

(
µ

δ2 +µ

) j
−1 =

1
1−µ/(δ2 +µ)

−1 =
µ

δ2
,

regaining the second term in (2.6).
Before we go into the details, we paraphrase the results, assuming µ > 0 and λ > 0:

• Integro-differential equations: Under suitable assumptions (A1), defined later, the solutions
to the above integro-differential equations (2.1)–(2.4) exist as mild solutions globally in time,
whereby the two probabilities H and Q are bounded by 1. See Theorem 3.1 for global existence
and uniqueness to the general type (2.5) of non-local integro-differential equations.

• Asymptotic properties: The asymptotic behavior is characterized by R0:

– R0 < 1: The expected number of particles shrinks exponentially and the particles die out
asymptotically with certainty.

TABLE 1 Parameter values for the different cases of expected location F, locational variance V , distribution
of the furthest particle H and survival probability Q, using the abbreviation qH(t,x) = µ + δ1− µe−λ t(1−
e−δ1t(1−G(t,x))).

Case r1 r2 q(t,x) p(t,x) k(u,z)

F 1 0 δ2 µe−(λ+δ1)tG(t,x) λ µe−(λ+δ1)ug(u,z)
V 1 0 δ2 µe−(λ+δ1)th(t,x) λ µe−(λ+δ1)ug(u,z)
H 0 1 qH(t,x) 0 λ µe−λug(u,z)
Q 1 −1 δ2 +µe−(λ+δ1)t µe−(λ+δ1)t λe−(λ+δ1)u
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– R0 > 1: The expected number of particles grows exponentially and the asymptotic survival
probability is given by 1−1/R0 ∈ (0,1).

– R0 = 1: The particles die out asymptotically with certainty while their number explodes on
a set with vanishing probability so that their expected number converges to a finite limit

1+λ/δ2
δ2/µ+λ/δ2

.

See Lemma 3.3 for a threshold result of the survival probability Q and Corollary 3.1 for the
asymptotic behavior of the expected particle number E[M(t)].

Note that the survival probability in case R0 > 1 equals 1−1/R0, which corresponds to the critical
immunization threshold in common models for infectious diseases (Hethcote, 2000). As we will explain
in Section 3.2, the asymptotic properties can be seen as a compact characterization in terms of R0 for
the extinction-survival dichotomy of two-type branching processes.

REMARK 2.1 While we have assumed an exponential distribution for the shedding time, an equation
for the expected location and other key quantities can also be derived considering a general distribution
for the shedding time, but at a price of making the equation (and thus its potential analysis) much
more complicated. Assume that the shedding times are independent and have a continuous probability
distribution with density α . Similarly to the proof of Theorem 2.1, one can generalize (2.1) and show
that the expected location F satisfies

Ft(t,x) =−δ2F(t,x)+G(t,x)e−(λ+δ1)tα(0)+F(t,x)α(0)

+
∫ t

0

∫
Rd

F(t−u,x− z)g(u,z)λe−(λ+δ1)uα(0)dzdu

− e−δ2t
α(t)106x +

∫ t

0

(
e−(λ+δ1)sG(s,x)+F(s,x)

)
e−δ2(t−s)

α
′(t− s)ds

+
∫ t

0

∫ s

0

∫
Rd

F(s−u,x− z)g(u,z)dzλe−(λ+δ1)u dueδ2(t−s)
α
′(t− s)ds.

In the case of an exponential distribution, we have α ′ = −µα and the above two last lines equal to
−µF(t,x), leading to the simpler integro-differential equation given in (2.1).

2.2 Instantaneous relocation

In many biological situations, the time scale of movement is very different from the time scale of repro-
duction or death. Most mammals, for example, explore their environment on a daily basis, while they
reproduce once per year or less. And even cells in tissues can travel relative large distances in minutes,
while typical cell cycles are about 8–12 h or longer. Hence on the macroscopic time scale of birth and
death, relocation appears to be instantaneous. To model this situation, we consider the limit λ → ∞ in
(2.5). When individuals are moving, they will jump immediately to a new location with density func-
tion of the distances travelled given by g(0,x). We will then ignore the time in g(0,x) and simply use a
spatial relocation density g(x).

For fixed t, we consider a common term in (2.5)

lim
λ→∞

∫ t

0

∫
Rd

f (t−u,x− z)g(u,z)λe−(λ+k1)u dzdu =
∫
Rd

f (t,x− z)g(0,z)dz.
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Using integration by parts yields∫ t

0

∫
Rd

f (t−u,x− z)g(u,z)λe−(λ+k1)u dzdu

=− λ

λ + k1
e−(k1+λ )t

∫
Rd

h0(x− z)g(t,z)dz︸ ︷︷ ︸
→0 for λ→∞

+
∫
Rd

f (t,x− z)g(0,z)dz

−
∫ t

0

∫
Rd

ft(t−u,x− z)g(u,z)
λ

λ + k1
e−(λ+k1)u dzdu︸ ︷︷ ︸

→0 for λ→∞ by monotone convergence

.

Applying this scaling to the four equations (2.1)–(2.4) from Theorem 2.1 and using g(x) instead of
g(0,x), we find

Ft(t,x) = −δ2F(t,x)+µ

∫
Rd

F(t,x− z)g(z)dz, (2.7)

Vt(t,x) = −δ2V (t,x)+µ

∫
Rd

V (t,x− z)g(z)dz, (2.8)

Ht(t,x) = −(µ +δ1)H(t,x)+µH(t,x)
∫
Rd

H(t,x− z)g(z)dz, (2.9)

Q′(t) = (µ−δ2)Q(t)
(

1− µQ(t)
µ−δ2

)
. (2.10)

The equations for the instantaneous relocation case (2.7)–(2.9) are linear integral equations as they have
been studied in the classical literature (Krasnoselskii, 1964). They are also of the form of birth-jump
processes as introduced by Hillen et al. (2015). Hence the branching stochastic process with settlement
appears as a generalization of birth-jump processes.

The metastatic reproduction number (2.6) becomes in this case

lim
λ→∞

R0 =
µ

δ2

The survival probability Q satisfies a logistic differential equation (2.10), which can be analyzed quickly.
If R0 < 1, then the origin is asymptotically stable, and solutions converge to 0: metastasis dies out. If
R0 > 1, then Q converges to a limit

lim
t→∞

Q(t) = 1− 1
R0

.

If R0 = 1, then Q(t) = Q(0) is constant.
This also corresponds to the classical result for the asymptotic extinction probability of a birth-death

process; see, for example, Section 4.4 of Durrett (2012). Indeed, in the limit λ → ∞, the number of
particles evolves according to a Markov chain starting at 1 and with jump rates q(i, i+ 1) = µi and
q(i, i−1) = δ2i when there are i particles.

2.3 Derivation of the integro-differential equations (proof of Theorem 2.1)

The main idea to derive equations (2.1)–(2.4) from Theorem 2.1 is to use a renewal argument based on
the recursive structure of branching stochastic processes with settlement. Since this goes similarly for
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the different functions, F,V,H, and Q, we give a detailed proof in the case of F and mention afterwards
how to start the proofs for V , H and Q, with the subsequent analysis being done analogously to that of
F . We start by conditioning on time ν of the birth of the second particle, which means writing

F(t,x) = E

[
N(t)

∑
i=1

1Xi(t)6x

]
=
∫

∞

0
E

[
N(t)

∑
i=1

1Xi(t)6x

∣∣∣∣∣ν = s

]
µe−µs ds. (2.11)

In the event {ν > t}, the birth of the second particle happens only after time t so that at time t either
only the first particle exists, which is located at zero, or no particle at all exists if the first particle has
died before time t. We denote by A2(t) the event that the first particle has not died before time t, which
has probability P[A2(t)] =

∫
∞

t δ2e−δ2s ds = e−δ2t . For s > t, we have

E

[
N(t)

∑
i=1

1Xi(t)6x

∣∣∣∣∣ν = s

]
= E

[
1A2(t)1X1(t)6x

∣∣ν = s
]
= e−δ2t

106x.

On the other hand, in the event {ν 6 t}, the second particle was born before time t if the first particle
was then alive. We need to distinguish two cases on {ν 6 t}. The first case is when the second particle
has not yet settled down at time t. This happens when ν+τ > t and then the distribution of ∑

N(t)
i=1 1Xi(t)6x

conditional on ν = s and the first particle being alive at time s is equal to the sum of 1A1(t−s)1B(t−s)6x

and ∑
N(t−s)
i=1 1Xi(t−s)6x, where B(t− s) is an independent stochastic process at time t− s (movement of

second particle) with A1(t− s) the event that the second particle born at time s is alive at time t. The
term ∑

N(t−s)
i=1 1Xi(t−s)6x arises because we can start again at time ν = s in the same way as at time zero

thanks to the recursive structure and the memoryless property. The probability of the first particle being
alive at time s is e−δ2s while the survival probability of the second particle is

P[A1(t− s)] =
∫

∞

t−s
δ1e−δ1u du = e−δ1(t−s).

Therefore, we have for s6 t and u > t− s that

E

[
N(t)

∑
i=1

1Xi(t)6x

∣∣∣∣∣ν = s,τ = u

]

= e−δ2s−δ1(t−s)E
[
1B(t−s)6x

]
+ e−δ2sE

[
N(t−s)

∑
i=1

1Xi(t−s)6x

]
= e−δ2s−δ1(t−s)G(t− s,x)+ e−δ2sF(t− s,x).

For the other case where ν+τ 6 t, the second particle has already settled down before time t and behaves
in the same way at ν + τ as the first particle did at time 0, but with starting point B(τ) and conditional
on being then still alive. Therefore, the distribution of ∑

N(t)
i=1 Xi(t) conditional on ν = s, τ = u and the

first particle being alive at time s is then equal to the sum of independent copies of the random variables
1A1(u) ∑

N(t−s−u)
i=1 1Xi(t−s−u)+B(u)6x and ∑

N(t−s)
i=1 1Xi(t−s)6x. This yields for s+u6 t that

E

[
N(t)

∑
i=1

1Xi(t)6x

∣∣∣∣∣ν = s,τ = u

]
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= e−δ2s−δ1uE

[
N(t−s−u)

∑
i=1

1Xi(t−s−u)+B(u)6x

]
+ e−δ2sE

[
N(t−s)

∑
i=1

1Xi(t−s)6x

]
= e−δ2s−δ1uE

[
F
(
t− s−u,x−B(u)

)]
+ e−δ2sF(t− s,x)

= e−δ2s−δ1u
∫
Rd

F
(
t− s−u,x− z

)
g(u,z)dz+ e−δ2sF(t− s,x).

Combining the terms, we obtain

F(t,x) =
∫

∞

0
E

[
N(t)

∑
i=1

1Xi(t)6x

∣∣∣∣∣ν = s

]
µe−µs ds

= e−δ2te−µt
106x +

∫ t

0

(
e−δ2s−δ1(t−s)G(t− s,x)

+ e−δ2sF(t− s,x)
)
e−λ (t−s)

µe−µs ds

+
∫ t

0

∫ t−s

0

(
e−δ2s−δ1u

∫
Rd

F(t− s−u,x− z)g(u,z)dz (2.12)

+ e−δ2sF(t− s,x)
)

λe−λu du µe−µs ds

= e−(µ+δ2)t106x +
∫ t

0

(
e−(λ+δ1)sG(s,x)+F(s,x)

)
µe−(µ+δ2)(t−s) ds

+
∫ t

0

∫ s

0

∫
Rd

F(s−u,x− z)g(u,z)dzλe−(λ+δ1)u du µe−(µ+δ2)(t−s) ds.

We deduce by differentiating with respect to t that

Ft(t,x) =−(µ +δ2)F(t,x)+G(t,x)e−(λ+δ1)t µ +F(t,x)µ

+
∫ t

0

∫
Rd

F(t−u,x− z)g(u,z)λe−(λ+δ1)uµ dzdu,

which shows that F satisfies (2.5) for the choices mentioned in Table 1.
The proof for the integro-differential equations of V , H and Q go analogously. For V , we start by

decomposing it as

V (t,x) = Var

[
N(t)

∑
i=1

1Xi(t)6x

]
= E

[(
N(t)

∑
i=1

1Xi(t)6x

)2]
︸ ︷︷ ︸

=: F̃(t,x)

−

(
E

[
N(t)

∑
i=1

1Xi(t)6x

]
︸ ︷︷ ︸

=F(t,x)

)2

.

This implies Vt(t,x) = F̃t(t,x)− 2F(t,x)Ft(t,x) so that the integro-differential equation of V follows
from such equations for F and F̃ . Similarly to (2.11), we write

F̃(t,x) = E

[(
N(t)

∑
i=1

1Xi(t)6x

)2]
=
∫

∞

0
E

[(
N(t)

∑
i=1

1Xi(t)6x

)2∣∣∣∣∣ν = s

]
µe−µs ds,

H(t,x) = P
[

max
i=1,...,N(t)

Xi(t)6 x
]
= P

[
Xi(t)6 x for all i = 1, . . . ,N(t)

]
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= E

[
N(t)

∏
i=1

1Xi(t)6x

]
=
∫

∞

0
E

[
N(t)

∏
i=1

1Xi(t)6x

∣∣∣∣∣ν = s

]
µe−µs ds,

Q(t) = P[M(t)> 0] =
∫

∞

0
P[M(t)> 0|ν = s]µe−µs ds.

The subsequent steps for F̃ , H and Q go analogously to the analysis done for F by using decompositions
similar to (2.12).

3. Analysis of the integro-differential equations

In this section, we first prove existence and uniqueness results for the integro-differential equations
(2.5). We then analyze the mean numbers of moving and stationary particles, where we already see
that R0 has a threshold of 1 that distinguishes between metastatic growth or decay. This result for R0 is
derived in two ways: from a stability analysis of differential equations and, alternatively, from general
results for two-type branching processes.

3.1 Local and global existence

For the general type (2.5) of integro-differential equations, we make the following assumptions:
Assumptions (A1):

• We assume r1 > 0, r2 ∈ R,

• q(t,x)> δ > 0 is uniformly bounded and Lipschitz continuous in t and x.

• For each T > 0 p(t,x) > 0 is uniformly bounded on [0,T ] by P, absolute continuous in x and
continuous in t.

• For the cases F,H,V : k(u,z)> 0 is continuous in x and satisfies for some constant K > 0 that∫ t

0

∫
Rd

k(u,z)dzdu < K.

• For the case Q: k(u)> 0 satisfies for some constant K > 0 that∫ t

0
k(u)du < K.

• The initial condition f0(x) = f (0,x)> 0 is bounded in L∞
(
Rd
)
.

3.1.1 Mild solutions To prove local existence and uniqueness, we consider T > 0 and use as phase
space

X = L∞
(
0,T ;Rd)

with the essential supremum norm || · ||∞. To find a mild formulation of (2.5), we define an integrating
factor

W (t,s,x) = exp
(
−
∫ t

s
q(u,x)du

)
(3.1)
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where the x-dependence arises only in the case of f = H. Since q is Lipschitz continuous and q > 0 we
have that W (t,s,x) is a non-negative evolution family with 0 <W (t,s,x)6 1 for all 06 s6 t 6 T . We
use the variation of constant formula to formally solve (2.5) as

f (t,x) = f0(x)W (t,0,x)+
∫ t

0
W (t,s,x)

[
p(s,x)+(r1 + r2 f ) k ∗ f (s,x)

]
ds, (3.2)

with f (0,x) = f0(x), which is our mild formulation.
Based on the various interpretations of f as probability or variance, we are interested in non-negative

solutions.

LEMMA 3.1 Assume (A1) and let f ∈X be a mild solution of (2.5).

1. Then f (t,x)> 0 as long as the solution exists.

2. If f (t0,x0) = 0 for a point (t0,x0), then this implies that

f0(x0) = 0 and p(t,x0) = 0 for all 06 t 6 t0. (3.3)

3. If in addition p(t,x)> 0 for all (t,x) ∈ (0,T )×Rd then f (t,x)> 0 for all (t,x) ∈ (0,T )×Rd .

Proof.

1. Consider any time t0 such that f (t,x)> 0 for all 06 t 6 t0 and all x ∈ Rd . Define

Ω
0 := {x ∈ Rd : f (t0,x) = 0}.

Then at each of the points (t0,x), x ∈Ω 0, we have the following signs of the terms in (2.5):

f (t0,x) = 0,
p(t0,x) > 0,∫ t0

0

∫
Rd

k(u,z) f (t0−u,x− z)dzdu > 0,

r1 + r2 f (t0,x) = r1 > 0,

hence from (2.5), we find ∂

∂ t f (t0,x)> 0 for all x ∈Ω 0, and the solution does not decay further.

2. Taking a point (t0,x0) with f (t0,x0) = 0, we find from the mild formulation (3.2) that

0 = f0(x0)W (t0,0,x0)+
∫ t0

0
W (t0,s,x0)(p(s,x0)+ r1k ∗ f (s,x0))ds, (3.4)

where all terms are non-negative. Hence (3.3) follows.

3. If p > 0, we see that (3.4) is not possible, hence f > 0.

�

PROPOSITION 3.1 Assume (A1). Then there exists a time T > 0 and a unique mild solution f ∈X
which satisfies (3.2).
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Proof. Given a function f̃ ∈X , we define an iteration operator A : f̃ → f where f is the unique solution
of

ft =−q f + p+(r1 + r2 f̃ ) k ∗ f̃ . (3.5)

Using the integrating factor (3.1) we solve (3.5) as

f (t,x) = f0(x)W (t,0,x)+
∫ t

0
W (t,s,x)

[
p(s,x)+(r1 + r2 f̃ ) k ∗ f̃ (s,x)

]
ds. (3.6)

Step 1: Given an initial condition f0 ∈X with norm ‖ f0‖X = M0. We show that for each constant
M > 0 there exists a time T1 > 0 such that A : BM( f0)→ BM( f0) for all T 6 T1, where BM( f0) ⊂X
denotes the closed ball of radius M in X with center f0. Consider f̃ ∈ BM then f̃ has norm

‖ f̃‖X 6M0 +M.

From (3.6) we find

f (t,x)− f0(x) = (W (t,0,x)−1) f0(x)

+
∫ t

0
W (t,s,x)

[
p(s,x)+(r1 + r2 f̃ ) k ∗ f̃ (s,x)

]
ds.

Since W (t,0,x)< 1 for all t > 0, we can ignore the first term and estimate

‖ f (t, .)− f0‖∞ 6 tP+ r1Kt
∥∥ f̃
∥∥

X
+ |r2|Kt

∥∥ f̃
∥∥2

X
,

which implies that

‖ f − f0‖X 6 T
(

P+ r1K‖ f̃‖X + |r2|K
∥∥ f̃
∥∥2

X

)
6 T

(
P+ r1K(M0 +M)+ |r2|K(M0 +M)2) .

To ensure ‖ f − f0‖X 6M, we need

T
(
P+ r1K(M0 +M)+ |r2|K(M0 +M)2)6M,

which is true for all
T 6 T1 :=

M
P+ r1K(M0 +M)+ |r2|K(M0 +M)2 .

Hence, for T 6 T1, we have A : BM( f0)→ BM( f0).

Step 2: We show that A is a contraction for T 6 T2 for some T2 > 0.
Given f̃ , g̃ ∈ BM( f0) with f̃0(x) = g̃0(x) = f0(x). Then from (3.6), we find

‖ f (t, .)−g(t, .)‖∞ 6

∥∥∥∥∫ t

0

((
r1 + r2 f̃

)
k ∗ f̃ − (r1 + r2g̃) k ∗ g̃

)
ds
∥∥∥∥

∞

6 r1

∥∥∥∥∫ t

0
k ∗
(

f̃ − g̃
)

ds
∥∥∥∥

∞

+ |r2|
∥∥∥∥∫ t

0

((
f̃ − g̃

)
k ∗ f̃ + g̃

(
f̃ − g̃

))
ds
∥∥∥∥

∞

6 r1Kt
∥∥ f̃ − g̃

∥∥
X

+ |r2|Kt
∥∥ f̃
∥∥

X

∥∥ f̃ − g̃
∥∥

X
+ |r2|Kt

∥∥ f̃ − g̃
∥∥

X
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= Kt
(
r1 + |r2|

∥∥ f̃
∥∥

X
+ |r2|

∥∥g̃
∥∥

X

)
‖ f̃ − g̃‖X .

Hence

‖ f −g‖X 6 KT
(
r1 + |r2|

∥∥ f̃
∥∥

X
+ |r2|‖g̃‖X

) ∥∥ f̃ − g̃
∥∥

X

6 KT (r1 +2|r2|(M0 +M))
∥∥ f̃ − g̃

∥∥
X
.

Then A is a contraction for all

T < T2 :=
1

K(r1 +2|r2|(M0 +M))
.

Step 3: For T < min{T1,T2} the Banach fixed point theorem applies, and A has a unique fixed point in
X , which satisfies the mild formulation (3.2). �

The local existence times T from the above proof depend on the norm of the initial condition, hence
we cannot simply repeat the argument to obtain global existence. Nevertheless, we show next that
solutions are global.

3.1.2 Global existence

THEOREM 3.1 The unique mild solutions from Proposition 3.1 exist for all times. The probabilities H
and Q are globally bounded by 1 (as solutions of their corresponding integro-differential equation).

Proof.

• For the cases F and V we have r2 = 0, hence (2.5) becomes a linear equation in f . We estimate

‖ f (t, .)‖∞ 6 ‖ f0‖∞ + tP+ r1K
∫ t

0
‖ f (s, .)‖∞ ds

and Gronwall’s lemma implies that ‖ f (t, .)‖∞ grows at most exponentially, hence proving global
existence.

• In the case Q the parameter r2 =−1 is negative. Hence in the global estimate, we can remove the
quadratic term. Again Gronwall’s lemma applies and global existence follows. To show that the
survival probability Q is bounded by 1, we assume that Q(t0) = 1 and Q(t)< 1 for all 06 t < t0,
or t0 = 0 and Q(0) = 1. Then at t0 we find from (2.4) that

Qt(t0) = −
(

δ2 +µe−(λ+δ1)t0
)

Q(t0)+µe−(λ+δ1)t0

+λ µ(1−Q(t0))
∫ t

0
Q(t0− s)e−(λ+δ1)sds

= −δ2.

Hence Q decays near 1. In our specific application we have Q(0) = 1, hence Q decays initially
and as survival probability, Q(t) is non-increasing.

• A similar argument is applied for H. We assume that H(t,x)6 1 for all t 6 t0 and that there exists
a point x0 with H(t0,x0) = 1. Then at (t0,x0) we observe

Ht(t0,x0) =
[
µe−λ t0(1− e−δ1t0(1−G(t0,x0)))− (µ +δ1)

]
H(t0,x0)
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+λ µH(t0,x0)
∫ t0

0

∫
Rd

H(t0−u,x0− z)g(u,z)e−λu dzdu

6 µe−λ t0 − (µ +δ1)+µ(1− e−λ t0) =−δ1

and H(t0,x0) = 1 decays.

�

3.2 Metastatic reproduction number R0

To introduce the metastatic reproduction number, we reduce the above model by looking at the expected
numbers of moving and stationary particles. We denote by a(t) and b(t) the expected numbers of moving
and stationary particles, respectively. Moving particles die at rate δ1 and become stationary at rate λ

while new moving particles are born at rate µ from the stationary particles. This reasoning leads to

a′(t) =−(δ1 +λ )a(t)+µb(t). (3.7)

Formally, we can prove (3.7) analogously to the first part of the proof of Theorem 3.2. Similarly,
stationary particles die at rate δ2 and moving particles become stationary at rate λ , leading to

b′(t) =−δ2b(t)+λa(t). (3.8)

The differential equations for a and b form a linear system with coordinate matrix

A1 =

(
−(δ1 +λ ) µ

λ −δ2

)
. (3.9)

The matrix A1 has trace and determinant as

trA1 =−(δ1 +δ2 +λ ), detA1 = δ2(δ1 +λ )−λ µ.

The trace is negative, hence the origin is asymptotically stable for detA1 > 0 and unstable for detA1 < 0.
Using

R0 =
λ

δ1 +λ

µ

δ2
,

we find the following result:

LEMMA 3.2 Consider (3.7), (3.8).

• If R0 < 1 then (0,0) is globally asymptotically stable.

• If R0 > 1 then (0,0) is unstable (it is a saddle).

• If R0 = 1 then (0,0) is non-hyperbolic and we have a continuum of steady states in direction
(δ2,λ )

T .

Proof. For the first two statements note that we can write

detA1 = δ2(δ1 +λ )(1−R0).
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For the third statement we find that for R0 = 1 the vector (δ2,λ )
T is an eigenvector of A1 with eigenvalue

0. �
It should be noted that a(t)+b(t) = E[M(t)] with the formula for the expected total number E[M(t)]

of particles.
Using specific initial conditions (a(0),b(0)) = (0,1) we can explicitly solve equations (3.7), (3.8)

and we find the asymptotic ratio of moving versus stationary particles

lim
t→∞

a(t)
b(t)

=
δ2−δ1−λ +

√
(δ2−δ1−λ )2 +4λ µ

2λ
.

An alternative way to analyze the asymptotic number of particles is to relate our process to a two-
type branching process in discrete time and to use results available for such processes. The two types are
the moving and stationary particles. As explained in Section 2.3 of (Haccou et al., 2005) and Section 6.2
of (Kimmel and Axelrod, 2015), for multi-type branching processes, the asymptotic extinction-survival
behavior is characterized by the Perron root ρ (maximal eigenvalue that corresponds to an eigenvector
with positive entries) of the mean matrix M, which generalizes the mean reproduction in the one-type
case. The process is called subcritical if ρ < 1, critical if ρ = 1, and supercritical if ρ > 1. For our
model, the mean matrix is given by

M =

(
2µ+δ2

2µ+λ+δ1+δ2

µ

2µ+λ+δ1+δ2
λ

2µ+λ+δ1+δ2

2µ+λ+δ1
2µ+λ+δ1+δ2

)
=

1
2µ +λ +δ1 +δ2

(
2µ +δ2 µ

λ 2µ +λ +δ1

)
= 1+

1
2µ +λ +δ1 +δ2

A1,

where we recall A1 from (3.9). If v is eigenvector of A1 with eigenvalue α , then it is eigenvector of
M with eigenvalue 1+ α

2µ+λ+δ1+δ2
. Hence, M has an eigenvalue greater than 1 if and only if A1 has a

positive eigenvalue, which is the case if and only if R0 > 1, as explained before Lemma 3.2. Also note
that such an eigenvalue corresponds to an eigenvector(

trA1/2+
√

(trA1)2/4−detA1 +δ2
λ

)
,

which has positive entries. Therefore, the Perron root ρ of the mean matrix M is greater than one
(supercritical case) if and only if R0 > 1. Similarly, the critical case ρ = 1 and the subcritical case ρ < 1
are equivalent to R0 = 1 and R0 < 1, respectively.

3.3 Survival probability Q(t)

The survival probability Q is a special case of (2.5), where there is no spatial variable. In this case, (2.5)
becomes

Q′(t) =−δ2Q(t)︸ ︷︷ ︸
A

+(1−Q(t))µe−(δ1+λ )t
(

1+
∫ t

0
Q(s)λe(δ1+λ )s ds

)
︸ ︷︷ ︸

B

. (3.10)

where

A: death rate of original particle times the survival probability at time t. Note that this is the only
term if µ = 0 (no births), in which case, the survival probability equals Q(t) = exp(−δ2t).
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B: correction term because the birth of particles leads to a higher survival probability than in the
case µ = 0. If the original particle has offsprings, all of the original particle, the offsprings of the
original particle and further offsprings must die to extinct all particles, which is reflected in the
term B.

Based on (3.10), we can derive a second-order ODE for Q, namely,

Q′′(t) =
(
(δ1 +λ )

(
Q(t)−1

)
−Q′(t)

)
µe−(δ1+λ )t

(
1+

∫ t

0
Q(s)λe(δ1+λ )s ds

)
−δ2Q′(t)+µλQ(t)

(
1−Q(t)

)
=

(
Q′(t)

Q(t)−1
−δ1−λ

)(
Q′(t)+δ2Q(t)

)
−δ2Q′(t)+µλQ(t)

(
1−Q(t)

)
This equation can be transformed into a system of first-order ODEs as

Q′ = P, (3.11)

P′ =

(
P

Q−1
−δ1−λ

)(
P+δ2Q

)
−δ2P+µλQ

(
1−Q

)
.

We show the following result:

LEMMA 3.3 Consider system (3.11).

• If R0 < 1 then (0,0) is locally asymptotically stable.

• If R0 > 1 then (0,0) is locally unstable (it is a saddle).

Proof. The linearization of (3.11) at (0,0) is(
0 1

−δ2(δ1 +λ )+µλ −δ1−δ2−λ

)
.

This matrix has the same trace and determinant as the matrix A1 that we encountered in Lemma 3.2.
Hence for R0 < 1, the origin is locally asymptotically stable, and for R0 > 1, it is a saddle. �

3.4 Asymptotic behavior as t→ ∞

In this section, we study how the average number of particles and the survival probability behave in the
limit t→∞. We first provide an explicit formula for the average number of particles at an arbitrary time
t.

THEOREM 3.2 For µ 6= 0, and λ 6= 0 or δ1 6= δ2, the average number of particles alive at time t is given
by

E[M(t)] =
µ−δ2−α−

α+−α−
eα+t +

−µ +δ2 +α+

α+−α−
eα−t ,

where

α± =
−δ2−δ1−λ ±

√
(δ2 +δ1 +λ )2 +4(R0−1)δ2(λ +δ1)

2
. (3.12)

For µ = 0 or both λ = 0 and δ1 = δ2, the average number of particles at time t equals E[M(t)] =
(1+µt)e−δ1t .
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Proof. Similarly to the proof of Theorem 2.1, we find

E[M(t)] =
∫

∞

0
E[M(t)|ν = s]µe−µs ds

= e−(δ2+µ)t +
∫ t

0

(
e−δ2s−δ1(t−s)+ e−δ2sE[M(t− s)]

)
e−λ (t−s)

µe−µs ds

+
∫ t

0

∫ t−s

0

(
e−δ2s−δ1uE[M(t− s−u)]+ e−δ2sE[M(t− s)]

)
λe−λu du µe−µs ds

= e−(δ2+µ)t +
∫ t

0

(
e−(δ1+λ )s +E[M(s)]

)
µe−(δ2+µ)(t−s) ds

+
∫ t

0

∫ s

0
e−(δ2+µ)(t−s)−(δ1+λ )uE[M(s−u)]λ µ duds.

We deduce that

d
dt

E[M(t)] =−(δ2 +µ)E[M(t)]+µe−(δ1+λ )t +µE[M(t)]

+
∫ t

0
e−(δ1+λ )uE[M(t−u)]λ µ du

=−δ2E[M(t)]+µe−(δ1+λ )t +
∫ t

0
e−(δ1+λ )(t−u)E[M(u)]λ µ du,

d2

dt2 E[M(t)] =−δ2
d
dt

E[M(t)]− (δ1 +λ )
( d

dt
E[M(t)]+δ2E[M(t)]

)
+E[M(t)]λ µ

=−(δ2 +δ1 +λ )
d
dt

E[M(t)]+
(
λ µ− (δ1 +λ )δ2

)
E[M(t)],

which shows that E[M(t)] satisfies a linear ordinary differential equation, whose solution is of the form
E[M(t)] = c+eα+t + c−eα−t with

α± =
−δ2−δ1−λ ±

√
(δ2 +δ1 +λ )2 +4λ µ−4(δ1 +λ )δ2

2

=
−δ2−δ1−λ ±

√
(δ2 +δ1 +λ )2 +4(R0−1)δ2(λ +δ1)

2

if δ2 6= δ1 +λ or λ µ 6= 0. To find the constants c− and c+, we use the boundary conditions

E[M(0)] = M(0) = 1 and
d
dt

E[M(t)]
∣∣∣
t=0

= µ−δ2,

where we applied that at time 0 there is one particle which will be either eliminated (at rate δ2) or
doubled (at rate µ). This yields

c−+ c+ = 1 and α−c−+α+c+ = µ−δ2

which gives c− = µ−δ2−α+
α−−α+

and c+ = −µ+δ2+α−
α−−α+

. In the case λ = 0 and δ1 = δ2, we have

d
dt

E[M(t)] =−δ1E[M(t)]+µe−δ1t ,
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which satisfies
d
dt

(
eδ1tE[M(t)]

)
= µ,

hence E[M(t)] = (1+µt)e−δ1t . In the case µ = 0, we have d
dt E[M(t)] =−δ2E[M(t)] so that E[M(t)] =

e−δ1t . �
For µ 6= 0, and λ 6= 0 or δ1 6= δ2, we obtain from Theorem 3.2 that

E[M(t)]
eα+t =

µ−δ2−α−
α+−α−

+
−µ +δ2 +α+

α+−α−
e−
√

(δ2−δ1−λ )2+4λ µt

=
2µ−δ2 +δ1 +λ +

√
(δ2−δ1−λ )2 +4λ µ

2
√
(δ2−δ1−λ )2 +4λ µ

+o(1)

for t→ ∞ so that E[M(t)] has exponential growth with rate α+.
Note that α+ > 0 in (3.12) if and only if R0 > 1 and α+ < 0 whenever R0 < 1. Also note that α+ is

real for all R0 ∈ [0,1]. From this reasoning, we deduce the following result.

COROLLARY 3.1 E[M(t)] has the following asymptotic behavior: it . . .
equals (1+µt)e−δ1t if µ = 0 or both λ = 0 and δ1 = δ2,

grows exponentially at rate α+ if R0 > 1 and not case 1,
converges to 1+λ/δ2

δ2/µ+λ/δ2
if R0 = 1 and not case 1,

shrinks exponentially to 0 at rate α+ if R0 < 1 and not case 1.

In Lemma 3.3 we have already shown the corresponding threshold phenomenon for the survival
probability Q. In more detail, we can also compute the asymptotic value as t→ ∞.

LEMMA 3.4 The asymptotic survival probability is

lim
t→∞

Q(t) =


max

{
1− 1

R0
,0
}

if µ > 0 and λ > 0,

1 if {µ = 0 or λ = 0} and δ2 = 0,
µ

µ+δ2
if λ = 0 and δ1 = 0 and δ2 > 0,

0 otherwise.

Proof. We first observe that if δ2 = 0, then Q(t) = 1 for all t and hence limt→∞ Q(t) = 1 because the first
particle then lives forever. Now consider the case where δ2 > 0 and δ1 = λ = 0 so that (3.10) becomes

Q′(t) =−δ2 +
(
1−Q(t)

)
(µ +δ2), Q(0) = 1,

whose solution is Q(t) = µ+δ2e−(µ+δ2)t

µ+δ2
, which converges to limt→∞ Q(t) = µ

µ+δ2
. Let us now consider

δ1 +λ > 0 and δ2 > 0. Because M(t) = 0 implies M(s) = 0 for all s> t (after particles died out, there
will always be zero particles), we obtain

Q(t) = P[M(t)> 0] = 1−P[M(t) = 0]> 1−P[M(s) = 0] = Q(s)

for all s > t, which shows that Q is a non-increasing function. Since Q is also bounded from below by
0, it converges to some limit Q(∞) := limt→∞ Q(t). Using limt→∞ Q′(t) = 0 and taking limits in (3.10)
gives

0 =−Q(∞)δ2 +
(
1−Q(∞)

)
lim
t→∞

∫ t

0
Q(t−u)µλe−(δ1+λ )u du.
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From L’Hôpital’s rule, it follows that

lim
t→∞

∫ t

0
Q(t−u)µλe−(δ1+λ )u du = lim

t→∞

∫ t
0 Q(u)µλe(δ1+λ )u du

e(δ1+λ )t

= lim
t→∞

Q(t)µλe(δ1+λ )t

(δ1 +λ )e(δ1+λ )t

= Q(∞)
µλ

δ1 +λ
.

Therefore, Q(∞) satisfies the quadratic equation

0 =
(

µλ

δ1 +λ
−δ2

)
Q(∞)− µλ

δ1 +λ
Q(∞)2.

If λ = 0 or µ = 0, its solution is Q(∞) = 0 while otherwise, the solutions are zero or

Q(∞) =
µλ −δ2(δ1 +λ )

µλ
= 1− 1

R0
.

Note that Q(t) cannot cross the level 1− 1
R0

so that it will converge at 1− 1
R0

if this quantity is greater
than 0. �

4. Murine Metastatic Cancer Data

In this section, we apply the modeling framework developed above in the context of metastatic cancer
data for mice. We recall that moving particles correspond to CTCs while stationary particles corre-
spond to metastases. This interpretation requires an appropriate identification of the model parameters
from biologically reasonable estimates obtained from the literature. We then make a brief note on the
numerical implementation, followed by a presentation of the results themselves.

4.1 Murine data

Because of the scarcity of quantitative data for metastatic cancer in humans, the majority of the val-
ues discussed below have come from experimental models of metastasis in mice. Many of the studies
mentioned below follow a similar procedure (those in Cameron et al. (2000); Fidler (1970); Luzzi et al.
(1998); Sindelar et al. (1975) for example), and we provide a brief outline of their methods. Tumor-free
mice are injected with radio-labeled cancer cells (B16 melanoma (Fidler, 1970), M19 Fibrosarcoma
(Sindelar et al., 1975), B16F1(0) melanoma (Cameron et al., 2000; Luzzi et al., 1998)), and observed
and/or sacrificed at various time points ranging from 1 minute to 14 day post-injection. Organs of inter-
est (multiple organs (Fidler, 1970), lungs (Cameron et al., 2000; Sindelar et al., 1975), and liver (Luzzi
et al., 1998) are removed and analyzed for the number and location of cancer cells, cancer cell clusters,
and metastases. In addition to the radio-labeled cancer cells, the Chambers group (Cameron et al., 2000;
Luzzi et al., 1998) injected inert microspheres that become lodged within the microvasculature of the
target organ in order to accurately determine the change in cell numbers over time. Details of specific
experimental models can be found in the cited references.
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4.2 Modeling metastatic cancer

In order to apply our model to the metastatic dissemination of cancer, we must first carefully define
what is meant by ‘stationary’ and ‘mobile’ particles in this context. ‘Stationary’ particles will play the
role of established tumors capable of shedding mobile particles without exhausting themselves. ‘Mobile
particles’, therefore, will represent small clusters of individual cancer cells that are actively circulating
through the vasculature. This interpretation necessitates different scales for the two classes of particles,
with established tumors consisting of at least 108 cells — corresponding to a tumor volume of approx-
imately 1cm3 (Del Monte, 2009) — and CTCs consisting of anything between a single cell to several
dozen (Friedl and Mayor, 2017). Such a distinction requires careful attention when parameterizing the
model. Below we discuss our approach to address this concern.

First we consider the shedding rate, µ . Assuming that an established tumor consists of 108 cells
(Del Monte, 2009) and that the number of CTCs shed per day range between 0.0001%−0.01% of the
cells available within the established tumor (Weiss, 1990), we may choose µ ∈ [100,10000] particles
per day. For the simulations presented herein, we chose µ = 346 particles/day. This choice was made
in order to have an average of 10 established tumors by the end of 14 days (Sindelar et al., 1975)
(determined using the asymptotic expected ratio of moving to stationary particles from the comment
after Lemma 3.2).

Second, we estimate the stationary particle death rate, δ2. With the interpretation of a stationary
particle as an established tumor, δ2 corresponds to the rate of spontaneous tumor remission. We use
Jessy’s estimate of p = 10−5 (Jessy, 2011) for the probability of spontaneous remission and assume that
p = δ2/λ to obtain the value of δ2 reported in Table 2.

Third, we consider the rate of mobile particle settlement, λ . Experimental murine models of metas-
tasis suggest that nearly 80% of the CTCs shed from the primary tumor into the vasculature will survive
through the circulation and successfully extravasate at a secondary site (Cameron et al., 2000; Luzzi
et al., 1998). For the purposes of our model however, successful extravasation alone does not represent
‘settlement’. ‘Settlement’ in our model includes not only successful extravasation at a secondary site,
but survival and growth to a palpable secondary tumor as well. For this reason, we use the more sugges-
tive terminology ‘establishment’ instead of ‘settlement’. Moreover, we assume that the establishment
rate, λ , is related to the shedding rate, µ , via λ = µq where q denotes the probability (per cell) of es-
tablishment. The probability q has been estimated by several investigators to range between 0.0001 and
0.00001 (Chambers et al., 2002; Fidler, 1970; Luzzi et al., 1998; Sindelar et al., 1975). In the results
presented below, we have used the lower estimate of q = 0.00001 (Luzzi et al., 1998).

Fourth, we require an estimate for the mobile particle death rate, δ1. While approximately 80%
of cancer cells released into circulation will survive in the vasculature and successfully extravasate at a

TABLE 2 Model Parameters and the values used in presented simulations. See text for further details.

Parameter Description Value Units References

µ Shedding rate 346 particles/day Del Monte (2009);
Weiss (1990)

λ Establishment rate 0.0035 particles/day Luzzi et al. (1998)

δ1 Mobile death rate 7 particles/day
Chambers et al. (2002);

Fidler (1970);
Liotta and DeLisi (1977)

δ2 Stationary death rate 3.46×10−8 particles/day Jessy (2011)
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secondary location (Cameron et al., 2000; Luzzi et al., 1998), the fraction of these extravasated cells that
will grow and form a metastasis is very small (Cameron et al., 2000). Consequently, our estimate for the
mobile particle death rate must also include the death rate of successfully extravasated cells that do not
become metastases, and will be much larger than if we included only deaths during transit. Additionally,
the time that CTCs spend traveling through the circulation has been estimated to be between 1 and 3
hours (Luzzi et al., 1998; Sindelar et al., 1975). Therefore, assuming that ‘mobile particle’ means ‘CTC’,
we expect these particles to be short-lived. Combining these observations, and based on previous results
(Chambers et al., 2002; Fidler, 1970; Liotta and DeLisi, 1977), we chose to have 99.9% of all the CTCs
that are shed over the course of a day perish that day. Under this assumption, the mobile death rate
becomes δ1 = 7 particles/day.

Finally, we must choose a stochastic process, (B(t))t>0, to model the movement of mobile particles.
In the simulations presented below, we have modeled the movement of mobile particles as a scaled
one-dimensional Brownian motion of the form

B(t) = σW (t),

where (Wt)t>0 is a standard Brownian motion, and σ =
√

2D is the volatility, with D > 0 the effective
diffusivity — that is to say, the diffusivity estimated assuming that movement between tumor sites
is accomplished entirely by diffusion. In order to simulate the worst case scenario of full metastatic
colonization of a 16cm mouse after 14 days we choose D = 37cm2/day (see Figure 4). Whereas we
recognize that the transport of CTCs from a primary site to a distant secondary site through the vascular
system does not occur exclusively through diffusion, we have, for the sake of simplicity, chosen to
model vascular transport as a diffusive process. We leave as future work the development and inclusion
of more realistic models of spatial spread based on blood circulation mechanisms (see Section 5 for
further discussion).

4.3 Numerical results

Simulation of the model was done using a variant of the Gillespie algorithm (Erban et al., 2008; Gille-
spie, 1976). The key feature of this algorithm is its non-uniform time stepping which is ideally suited
for our model, as our model can see (for example) the total rate of mobile particle creation double upon
successful establishment of a secondary tumor because of the assumption of independence amongst the
stationary particles. Our implementation of Brownian motion is equivalent to a discrete-time random
walk with step sizes normally distributed with mean zero and variance 2D∆ t, where ∆ t > 0 is the time
step. For details concerning the simulation of Brownian motion using the Gillespie approach, consult
(Erban et al., 2008). The implemented algorithm assumes a finite spatial domain, whereas the theoret-
ical work presented in the previous sections does not. In order to simulate an infinite domain, we have
chosen the finite domain to be ‘sufficiently large’ so that there are no collisions between our mobile
particles and the domain boundaries within the time of interest. The meaning of ‘sufficiently large’
depends on the movement of the mobile particles. With the modeling choices outlined above, the spatial
domain [−75cm,75cm] divided into K = 1500 bins each of width 0.1cm was ‘sufficiently large’ for our
purposes, as demonstrated by the fact that no individual realization had particle-boundary collisions.
In Figures 2–4, we present the average results of 1000 distinct realizations of the stochastic model

simulated over a period of 14 days. Validation of our simulations is done in Figure 2 by comparing the
simulated results to the exact analytic solution derived in Theorem 3.2. The average percent error over
the 14 days simulated is 0.77%, with a maximum value of 2.43%. Further validation of the simulation
framework was done using the extinction probability, 1−Q(t), where Q(t) is the survival probability
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FIG. 2. Total number of particles (stationary and mobile) as a function of time. Comparison of the theoretical expected value from
Theorem 3.2 (black) and the average of 1000 realizations of the stochastic model (blue). Parameters as in Table 2. Color figure
online.

described by the ODE system (3.10), in which good agreement between the theoretical and empirical
trajectories was obtained (results not shown). We note that we have not compared the spatio-temporal
simulation results (Figures 3 and 4) to the integro-differential equation descriptions (2.1)–(2.3) due to
the difficulty in accurately simulating such models, and the development of efficient numerical methods
to accurately solve this type of equation is left as future work.

Figure 2 shows a comparison between the exact dynamics from Theorem 3.2 (black curve) and
the average dynamics over 1000 individual realizations of the stochastic model (blue curve). While
the simulations all begin with a single stationary particle, the expected number of particles increases
to approximately 50 within the first day. This rapid increase is due to the relatively high shedding
rate, resulting in the rapid creation of mobile particles. The slow-down upon reaching 50 particles
reflects the expected asymptotic ratio of moving to stationary particles (comment after Lemma 3.2)
which is approximately 48 with the parameters from Table 2. With the metastatic reproduction number
R0 ≈ 5×106� 1, we expect the total particle number to grow exponentially at rate
α+ ≈ 0.167 (Corollary 3.1). After an initial period of transience, we do see exponential growth, both in
the exact and simulated results.

Figure 3 illustrates the average spatio-temporal dynamics of the stochastic model. The left column
presents the full spatio-temporal dynamics of the stationary (top) and mobile (bottom) particles, while
the right column shows the spatial distribution of the stationary (top) and mobile (bottom) particles at
time t = 14 days. In no individual simulation did we see the original established tumor perish. This
result is not unexpected given the probability of a tumor perishing over the 14 days considered in our
simulations is 1− exp(−14δ2) = 4.48× 10−7. Consequently, we always have at least one stationary
particle located at position x = 0. This explains both the horizontal line in the top left plot (note the
difference in scales), as well as the tall bar at the origin in the top right plot. The histograms on the right
side of Figure 3 show relatively symmetric distributions of both stationary and mobile particles centered
around the origin. While the individual location of each particle is given by a normal distribution as a
result of the Brownian dynamics, the distribution of the aggregate particles (both stationary and mobile)
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FIG. 3. Average results of 1000 individual realizations of the stochastic model. Left column: spatio-temporal dynamics of the
stationary (top) and mobile (bottom) particles. The horizontal axis is time (in days) while the vertical axis denotes space (in m
from location of primary tumor). Number of particles indicated by the coloring (color figure online). Note the different scales in
the top plot. Right column: average spatial distribution of the stationary (top) and mobile (bottom) particles at the end of the 14
day simulations. Note the difference in scales from top to bottom. Parameters used as in Table 2.

is not normal. The reason is that shedding, settlement and death cause additional randomness. Even
when λ = 0 (no settlement) and δ1 = δ2 = 0 (no deaths) so that only one stationary particle sheds
moving particles, the distribution of the aggregate moving particles will not be normal. This can be seen
from (2.1), which becomes Ft = µG, hence the density of the aggregate moving particles in this case is
an integral of normal densities and not a normal density itself.

In order to more clearly see the interface between empty space and invading cancer cells, we have
taken the data in the left column of Figure 3, and simplified them to be either 1 if there was, on average,
at least 0.025 particles in that location across all 1000 simulations, or 0 otherwise. The results of this
simplification are presented in Figure 4. We can see that for stationary particles, it takes close to four
days before we see any significant establishment events. This result mirrors the observations made by
Cameron et al. (2000) that no metastases established in the first four days post-injection.

Following a rapid initial jump, the mobile particle boundary appears to invade at a more or less
constant speed. These mobile ‘boundary’ dynamics (Figure 4) are in stark contrast with the ‘interior’
dynamics (bottom left in Figure 3, in particular, the blue-teal interface) where the level sets form trian-
gular regions with edges whose slopes are increasing as we advance through time.

5. Conclusion and Discussion

We introduced and analyzed a branching stochastic process with settlement and we applied it to metastatic
cancer growth. The fact that the expected number F of particles, the variance V , the distribution H of the
furthest particle and the extinction probability Q satisfy the same type of integro-differential equation
with distributed delay (2.5) reveals the recursive structure of this process. Methods from differential
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FIG. 4. Manipulation of the plots from the left column of Figure 3 showing the areas that may be significantly affected by the
primary tumor and its metastatic spread. More specifically, areas that have, on average, at least 0.025 particles over all 1000
simulations are colored white. Areas in which this is not the case are colored black. The top shows results for stationary particles,
and the bottom for mobile particles.

equations theory become available to analyze the qualitative behavior of this stochastic process. A
recurring quantity was identified to play the role of a basic reproductive number, similar to epidemic
models (Hethcote, 2000), which we call the metastatic reproductive number

R0 =
λ

δ1 +λ

µ

δ2
.

For the mouse data that we analyzed as an example, we found R0 ∼ 106, which, of course, is huge.
This is expected, as cell lines for metastasis studies are chosen specifically to generate metastases effi-
ciently and reliably.

The value of R0 for a typical human cancer will be quite different, and we leave a detailed estimate
of R0 for human cancers for further studies. Still, we can already see the impact of various possible
treatment strategies. To shrink R0, we like to reduce the shedding rate µ and the settlement rate λ while
increasing the death rates δ1 and δ2 for moving and stationary particles, respectively. For example, the
death rate δ1 for CTCs could be increased through platelet inhibitors. Platelets are known to shield
cancer cells from the immune surveillance, and less platelets can make cancer cells more exposed and
more vulnerable (Coupland et al., 2012; Riggi et al., 2018; Shahriyari, 2016). The settlement rate λ

might be reduced through decreasing the availability of metastatic niches (Riggi et al., 2018). This
can be achieved through very simple means such as reduced pH-levels of tissue (Silva et al., 2009) to
very advanced means such as novel immunotherapies designed to disrupt the preparation of the pre-
metastatic niche (Kaplan et al., 2005). However, removing 90% of cancer sites would not change the
final outcome since the reproductive number is unchanged. A partial removal would significantly delay
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cancer spread, but metastasis would recur over time. Overall, the index R0 has the potential to become
a useful quantity in treatment planning.

We see various extensions and limitations of the model as we discuss now.

1. While we started with a stationary individual, we could have started with a particle that is moving
randomly, but this would make the analysis more difficult. Furthermore, if we know the function
F of our model, we can find the corresponding function F̃ in a model with randomly moving first
particle by

F̃(t,x) = E

[
N(t−min{τ,t})

∑
i=1

1Xi(t−min{τ,t})+B(min{τ,t})6x

]

=
∫ t

0
E

[
N(t−s)

∑
i=1

1Xi(t−s)+B(s)6x

]
λe−λ se−δ1s ds+

∫
∞

t
P[B(t)6 x]λe−λ se−δ1t ds

=
∫ t

0

∫
Rd

F(t− s,x− y)g(s,y)λe−(λ+δ1)s dyds+G(t,x)e−(λ+δ1)t ,

where B(min{τ, .}) is a random process describing the movement of the first particle up to time
τ , and the factor e−δ1s is the survival probability of the first particle at time s.

2. A classical related model is branching Brownian motion (Bovier, 2016), where all particles move
according to Brownian motion and there are no deaths, no settlements and births occur indepen-
dently at some exponentially distributed time ν ∼ Exp(µ). Similarly to the proof of Theorem 2.1,
it can be shown that the expected location function F̄ satisfies

F̄t(t,x) = Gt(t,x)+µG(t,x).

Note that this is different from our model even when assuming no deaths (δ1 = δ2 = 0) and no
settlement (λ = 0). Indeed, for δ1 = δ2 = λ = 0, F in our model satisfies Ft(t,x) = µG(t,x). The
reason for this difference to the case of branching Brownian motion is that, in our model with
δ1 = δ2 = λ = 0, there is always a particle located at zero, and only this particle emits further
particles.

3. In the one-dimensional, linear case with r2 = 0 and for constant decay rate q(t) = const., we can
use Fourier and Laplace transforms to find an explicit solution of the general type (2.5) of non-
local integro-differential equations. Let F ,F−1 denote the Fourier transform and its inverse and
let L ,L −1 denote the Laplace transform and its inverse, respectively. We use the hat f̂ to denote
the Fourier transform of a function and the tilde g̃ for the Laplace transform, i.e.

f̂ (ω) := F ( f (x))(ω), g̃(s) := L (g(t))(s).

Transforming (2.5) in the case of r2 = 0 and q(t) =const. leads to

s ˜̂f − f̂ (0) =−q ˜̂f + ˜̂p+ r1
√

2π
˜̂k ˜̂f

for an unknown function ˜̂f (s,ω) in Laplace-Fourier space. We can solve this algebraic equation
and find

˜̂f (s,ω) =
˜̂p(s,ω)+ f̂ (0)

s+q+
√

2πr1
˜̂k(s,ω)
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Hence the solution of (2.5) for r2 = 0 and q(t) = const. is:

f (t,x) = F−1L −1

(
˜̂p(s,ω)+ f̂ (0)

s+q+
√

2πr1
˜̂k(s,ω)

)
.

It has to be seen if this formula can shed valuable information about the branching stochastic
process with settlement.

4. The spatial transport and settlement of a real cancer in a human body is much more complicated
than assumed in our example. Here, as an example, we considered Brownian motion as spatial
process and a homogeneous settlement rate, λ . However, our framework is based on a spatial
process, (B(t))t>0, whose distribution could be more general and reflect more realistic body-wide
properties. Such a specification is a complex issue and left for future research.

5. It is well known that certain tumors tend to metastasize to certain organs, for example prostate
cancer preferentially metastasizes to the bone, and breast tumors often spread to the brain, bone,
liver, and lungs (Chambers et al., 2002). In this case, the settlement rate, λ , is no longer ho-
mogeneous, rather it depends on the location x. Moreover, this spatial dependency encodes the
locations of pre-metastatic niches (Kaplan et al., 2005). However, the branching stochastic pro-
cess with settlement would then lose its recursive nature, which was crucial in the proofs of our
results. Consequently, additional work must be completed before this intricacy can be included
into future iterations of the model.
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