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Abstract 

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with substantial 

heterogeneity in clinical presentation with an urgent need for better stratification tools for clinical 

development and care. In this study we used a crowdsourcing approach to address the problem of 

ALS patient stratification. The DREAM Prize4Life ALS Stratification Challenge was a 

crowdsourcing initiative using data from >10,000 patients from completed ALS clinical trials and 

1479 patients from community-based patient registers. Challenge participants used machine 

learning and clustering techniques to predict ALS progression and survival. By developing new 

approaches, the best performing teams were able to predict disease outcomes better than currently 

available methods. At the same time, the integration of clustering components across methods led 

to the emergence of distinct consensus clusters, separating patients into four consistent groups, 

each with its unique predictors for classification. This analysis reveals for the first time the 

potential of a crowdsourcing approach to uncover covert patient sub-populations, and to accelerate 

disease understanding and therapeutic development.  
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Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder which causes the death of 

motor neurons that control voluntary muscles. The loss of motor neurons leads to progressive 

muscle weakening and paralysis and on average patients will survive only 3-5 years from symptom 

onset1. Despite being known for over 150 years, we only have limited understanding of the 

biological mechanisms underlying ALS and existing therapeutic options merely extend survival 

by a few months2,3. One of the biggest challenges in ALS treatment and research today is the well-

established heterogeneity of the disease4,1; ALS patients can have widely different patterns of 

disease manifestation and progression, and genetic analyses suggest heterogeneity of the 

underlying biological mechanisms as well5,6,7,8. This heterogeneity has detrimental effects on 

clinical trial planning and interpretation, as it might mask drug effects3, on attempts to uncover 

disease mechanisms, and on clinical care, as it increases uncertainty about prognosis and makes 

treatment course planning challenging. Thus, successfully stratifying ALS patients into clinically 

meaningful sub-groups can be of great value for advancing the development of effective treatments 

and achieving better care for ALS patients.  

Early classification systems for ALS patients were based on clinical presentation of the disease 

and were intended for ascertainment of an ALS diagnosis, but were limited in their ability to 

predict disease prognosis or suggest underlying disease mechanisms9,10,4. More recent attempts of 

ALS patient classification focused on prediction of clinical outcomes but were often limited by 

small sample sizes lacking the highly needed detailed characterization of patient 

subgroups11,12,13,14. In the current study, we sought to use the power of state of the art machine 

learning algorithms applied to a large-scale, clinically detailed database of ALS patients to uncover 

and characterize clinically significant subpopulations of ALS patients.     
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To address the need for a large, diverse and clinically relevant dataset, we used two complementary 

data sources. The first was data from ALS national or regional registers from Ireland and the 

Piemonte and Valle d'Aosta region in Italy, collected as part of standard clinical visits and 

representing ALS community data. The second dataset was ALS clinical trial data, from the Pooled 

Resource Open-Access ALS Clinical Trials platform (PRO-ACT, www.ALSdatabase.org/), an 

open-access database containing harmonized and de-identified data of over 10,000 ALS patients 

from 23 completed clinical trials15.  

The PRO-ACT database was established in collaboration between Prize4Life (Haifa, Israel) and 

the Neurological Clinical Research Institute (NCRI) at Massachusetts General Hospital (Boston, 

MA, USA) with the purpose of advancing ALS research through ‘big data’ initiatives. The PRO-

ACT database was previously used for a crowdsourcing computational challenge: The 2012 

DREAM-Phil Bowen ALS Prediction Prize4Life challenge (The ALS Prediction Challenge)16. 

The ALS Prediction Challenge invited participants to develop computational algorithms that could 

predict ALS disease progression based on data collected during the first three months of clinical 

observation. The best performing algorithms developed for the challenge were able to achieve a 

prediction accuracy that would allow a 20% reduction in the number of patients needed for a trial16 

and are currently being tested for use in clinical trials17,18.  

Building upon the success of the earlier prediction challenge, the 2015 DREAM ALS Stratification 

Prize4Life Challenge (The ALS Stratification Challenge) was a crowdsourcing initiative that 

sought to extend the scope of prediction algorithms by inviting participants to stratify the ALS 

patient population into distinct clusters and develop separate predictive models for each 

subpopulation. The ALS Stratification Challenge included both disease progression and survival 

as predicted outcome measures and using either clinical trial or community registries data. This 
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was designed to increase the relevance and applicability of predictive models to a broader patient 

population, to flush out any differences between the general patient population and the clinical 

trial population and to uncover clinical markers with high predictive value which are not collected 

as part of current routine clinical practice. Thus, the challenge was divided into four sub-challenges 

in which participants predicted either disease progression or survival while using data from either 

PRO-ACT or ALS registries. A prize of $28,000, collected through a crowdfunding effort, was 

divided equally between best performers of the four sub-challenges. 

In this publication we describe the results of the challenge including analysis of the best performing 

algorithms’ performance and methods as well as findings regarding patient sub-populations and 

relative importance of different predictive features obtained from cross-model assessment. 

 

Results 

Challenge design 

The ALS Stratification Challenge was developed and ran through a collaboration between the 

nonprofit organizations Dialogue for Reverse Engineering Assessments and Methods initiative 

(DREAM, http://dreamchallenges.org/) and Prize4Life (www.prize4life.org.il) using the Sage 

Bionetworks Synapse platform (www.synapse.org). The challenge was based on two datasets: (1) 

ALS clinical trials data collected through the PRO-ACT database, and (2) community-based ALS 

clinical data collected through ALS registries. Both datasets contained longitudinally sampled 

demographic and clinical information with some additional genetic (specific mutation) and family 

history data in the registries and detailed laboratory tests in PRO-ACT (See Supplementary 

material part 1 and 2 for detailed description of both datasets and the challenge description as given 

to participants, respectively). 
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The challenge was divided into four sub-challenges: (1) Predicting disease progression or (2) 

survival probability using PRO-ACT data and (3) predicting disease progression or (4) survival 

probability using ALS registries data. Challenge participants were asked to use patients’ data from 

the first 3 months of records to predict disease progression at 12 months or probability of survival 

at 12, 18 & 24 months. Disease progression was defined as the slope of the ALS Functional Rating 

Scale (ALSFRS or ALSFRS-R) between 3 and 12 months (see online methods). The challenge ran 

between June and October 2015 and drew 288 registrants, eventually leading to final submissions 

by 30 teams (88 individual participants) from 15 countries (see Supplementary material part 3 for 

participant survey).  

 

Approach to performance assessment 

To avoid overfitting of algorithms19, two datasets were used for each sub-challenge, a training 

dataset accessible to participants in full, and a validation set, which was only available to the 

challenge organizers and was used to evaluate the prediction accuracy of submitted algorithms at 

the end of the challenge. For the PRO-ACT sub-challenges, data from the publicly available PRO-

ACT database was used as the training set, and a separate set of data from six additional clinical 

trials which were not previously publicly available, was used for validation. The registry data, 

which was never before made publicly available, was divided randomly (split evenly across the 

two registries) into training and validation sets. 

The accuracy of disease progression predictions was assessed by the combination of three different 

metrics: concordance index (CI), Pearson’s correlation coefficient (PCC) and root mean squared 

deviation (RMSD). The evaluation of survival prediction accuracy was based on the CI scores for 

the three survival probability predictions (probability of survival at 12, 18 & 24 months) and 
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confirmed by a time-ROC analysis. The three scores for each sub-challenge were transformed into 

z-scores that were then combined to obtain a ranking of the submitted algorithms (see online 

methods). Performance was also compared to two baseline algorithms which were based on the 

top performing prediction algorithms submitted to the 2012 ALS prediction challenge16, adapted 

to the requirements of the new challenge (see Supplementary material part 4). 

Clustering patients into subgroups was not mandated, but participants were encouraged to use 

clustering to enhance performance. The challenge introduced an additional requirement that 

predictions are to be made based on a limited number of clinical features. The requirement for 

limiting the number of features was highlighted by our clinical advisors to facilitate the application 

of predictive algorithms in natural clinical setting13. A preliminary analysis indicated the benefit 

from clustering (in terms of improved prediction accuracy) tends to increase when the number of 

features is restricted, and this effect plateaued at around 6 features (see Supplementary material 

part 4). Thus, participants were asked to write algorithms that first selected the most informative 

features (up to 6 features), and in a second step used only the data from these selected features to 

make progression or survival predictions (Figure 1). To enforce the separation between these two 

steps as well as to completely hide the validation set we required participants to implement their 

algorithms in Docker containers (https://docs.docker.com/) executed on the IBM Z cloud 

(https://www.ibm.com/it-infrastructure/z/capabilities/enterprise-security). This way, we could run 

the algorithms in a secured environment where the participants could not see the validation data 

or other jobs running. 
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Figure 1: Outline of algorithms design. Algorithms used either PRO-ACT or ALS registries 

data, and first (1) applied various data pre-processing methods, such as data imputation, 

aggregation, quantization and more. Next, (2) algorithms could cluster the patient population into 

any number of sub-groups and (3) select the most informative features for each cluster (up to a 

maximum of 6 features). Then (4) a “predictor” component had to use values of the selected 

features to predict either disease progression or survival for any given patient. In the scoring of the 

challenge, the algorithms made predictions for patients that were not part of the original datasets 

available for algorithms training, and the accuracy of these predictions was assessed.  

 

 

Comparative assessment of prediction methods  

In general, the top performing teams in each sub-challenge (except for the registry progression 

sub-challenge) significantly outperformed the best baseline algorithm (Figure 2, See 

Supplementary material part 5 for full results). Random forest was by far the most commonly used 

prediction method, with overall very good results. It was the method used by the best performing 

team in the registry progression sub-challenge and by most algorithms ranked between the 2nd 

and 8th places across all four sub-challenges (Figure 2a). Another successful method included a 

Gaussian process regression model with an arithmetic mean kernel, which was the best performing 

for the two survival challenges but did not perform so well for the progression challenges. 
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Figure 2:  Overview of the performance of submitted and baseline algorithms across the four 

sub-challenges. Submissions were assessed by Z-scores combining RMSD, concordance index 

and Pearson’s correlation for the progression sub-challenges and three concordance indices for the 

survival sub-challenges. Grey boxes denote the performance of the best-performing baseline 

algorithm (left and right boundary of the box represent intervals of its performance ± the 

bootstrapped standard deviation). Teams that achieved the top three scores in any sub-challenge 

are indicated by colored symbols and shown by the same symbol in all sub-challenges. The 

underlying method is indicated (RF=random forest, GBM=generalized boosting model, Cox=Cox 

model, GR=Gaussian regression). Submissions based on random forests, the most frequently used 

method, are denoted by symbols with dashed outlines. 

 

 

The performance of the top teams, as was observed in other crowdsourcing challenges20,21, varied 

substantially even if the same machine learning method was used, and depended to a large extend 

on data pre-processing, especially feature selection and representation of time-resolved features. 

Here, the best performing teams followed the successful logic of the previous ALS prediction 

prize16, where time-resolved information was represented by a combination of simple summary 
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statistics (for instance minimum, maximum and average of the feature values). Due to the 

restriction of 6 features used for the prediction of a patient’s outcome, teams also needed to devise 

a suitable feature selection strategy. This was achieved by evaluating the contribution of the 

complete set of selected features (as opposed to selecting them one by one), for example through 

evaluating sets of features by their combined information gain or by aggregating their weight along 

the paths of all trees in a random forest. 

Survival predictions deserve special consideration, as one team (same in both survival sub-

challenges) out-performed other participants substantially. Survival predictions are particularly 

challenging due to the right-censored outcome variable survival time: data can be terminated by 

either patient death or by trial drop out. The standard Cox proportional hazards model, routinely 

used to explore the dependency between clinical features and survival, ignores such censored 

cases, which likely deteriorates performance. In the current challenge, Yuanfang Guan 

circumvented this problem via a novel strategy of incorporating Kaplan-Meier curves into 

Gaussian regression models. This defined the outcome variable more precisely, which led to a 

more adequate training of regression models (here: Gaussian process models) explaining the 

algorithm’s superior prediction performance. In line with these results, the strategy outperformed 

a standard Cox model by 20% accuracy22. 

Notably, for the sub-challenges running on the PRO-ACT database, the best performing algorithms 

significantly outperformed the winning method from the first challenge16. This is even more 

noteworthy given that the validation set was not randomly divided from the training set, but 

actually included the more difficult and realistic criteria of application of the algorithms to a data 

comprising of six new never used before trials.  
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Predictive clinical features  

The challenge’s requirement of using only up to six features for prediction encouraged participants 

to identify the most informative features for the prediction of disease progression or survival. We 

assessed the number of times each feature was used for prediction across all submitted algorithms 

and identified the features most frequently used within and across the different sub-challenges 

(Figure 3).  

 

Figure 3:  Overview of the 

features used by 

the algorithms. For each 

subchallenge, the listed 

probability shows how often the 

corresponding feature is used by 

the algorithms. The features are 

ranked-ordered by 

this probability, averaged across 

all sub-challenges where darker 

colors denote lower 

probabilities). Cases where a 

given feature was not used at all 

for a given sub-challenge are 

shown in grey (probability 0). 

Features that are recommended 

to be assessed by clinicians more 

often to aid prognosis are 

marked in bold. 
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The most frequently used features for all sub-challenges were those that are well described in the 

literature as being strongly related to ALS prognosis: time from disease onset and total ALSFRS 

score23,24,25. Age and gender were also frequently used but were more informative for predicting 

survival rather than disease progression, in line with literature22, 23,24, 26,27,28. While age and gender 

were generally predictive in this data as well, they were not specifically more predictive for one 

particular subgroup of patients, and therefore less relevant for stratification, while still not 

deterring from its overall importance as a predictor. Bulbar function is also known to be 

particularly informative for clinical outcome prediction24,25,26 and ALSFRS questions 1 and 3 

(bulbar functions) were selected more frequently compared to any other functional domains across 

all sub-challenges. Interestingly, ALSFRS question Q2 (salivation) was rarely used, in line with 

previous works indicating this question might be less well correlated with total ALSFRS scores 

and/or disease progression, due to effective available treatment options29.  

Data availability was another important factor for feature selection. For example, while weight or 

BMI, is known to correlate with ALS prognosis30,31 and was frequently selected for predictions for 

the PRO-ACT dataset, it was recorded in only <10% of the cases in the registry data, making it 

unusable for predictions (Fig. 3). The potential predictive benefit of features not routinely collected 

in clinical practice was also observed with respect to features evaluating breathing capacity. Given 

that loss of breathing function is the main cause of death for ALS patients32, it is not surprising 

that breathing-related features, primarily Forced Vital Capacity (FVC) were commonly used for 

predictions in both PRO-ACT sub-challenges. However, in the registry data, where FVC data was 

not available and breathing was only assessed by the ALSFRS scale breathing-related questions 

were less frequently used for prediction. This suggests that clinicians could potentially gain better 

insight into individual patient prognosis by incorporating a few rather accessible measures into 
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routine clinical monitoring. Features whose recording can result in better predictability are shown 

in bold in Figure 3. Indeed, since the challenge ran, clinics involved in the Italian registry used in 

this challenge have been careful to add measurements of patient weight, BMI and respiratory 

functions. 

  

Clinically relevant patient clusters 

In this challenge we used a crowdsourcing approach to explore different stratification schemes for 

ALS patients and use them to identify clinically significant patient sub-populations. Such sub-

populations can be of great value for understanding the ALS pathology, improving clinical care 

and planning better, more efficient clinical trials. We were also hoping to learn whether clustering 

could help improve the performance of prediction algorithms, especially when applied to 

heterogeneous patient populations (i.e., registry data) when the number of available clinical 

features is limited.  

Most challenge participants chose not to incorporate a clustering component in their prediction 

algorithm, and overall, we did not observe any consistent advantage (in terms of improved 

prediction accuracy) for clustering in any of the evaluation metrics. The main goal of clustering, 

however, was not necessarily to impact prediction accuracy, but to reveal, across a large variety of 

methods, consistent clusters of patients that could uncover clinically significant ALS patient 

subpopulations. This sort of analysis can only be accomplished in the context of a large communal 

effort that allows comparison of independently generated algorithms working on sufficiently large 

datasets, as was the case in this challenge. To identify consistent clusters, we assigned patient pairs 

with scores reflecting how often they appear together in the same cluster across all different 

algorithms and used the resulting connectivity matrix as input to correlation-based k-means 
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analysis (see online methods and Supplementary material part 6). The resulting clusters reflected 

groups of patients that consistently and significantly tend to be clustered together across different 

clustering schemes and algorithms.  The different clustering methods led to substantially different 

results, for instance, in the registry progression and survival subchallenges the numbers of clusters 

varied from 2 to 131 and from 2 to 159, respectively.  

 

 

 

Figure 4: Overview of the consensus clustering. (a) Outline of consensus clustering method: the 

tendency of patients to co-cluster was assessed across cluster-sets generated independently by the 

different solvers (I). The resulting connectivity matrix (II) was then used as input for obtaining 

consensus clusters by k-means (III). Finally, False discovery rates (FDRs) were estimated by 

ANOVA to assess, which features were differentially distributed between consensus clusters (IV). 

(b) Graph-based clustering of the connectivity matrix for the PRO-ACT progression sub-

challenge. Nodes in the graph represent patients that are colored based on their k-means cluster, if 

they correspond to the 50% of patients closest to their respective cluster centroid. Edges denote 

pairs of patients with a significant chance of being co-clustered. (c) We compared features (names 

starting with Q/R are ALSFRS component scores from the original or revised scale, respectively) 

between pairs of clusters (columns in heatmap) by t-tests/FDRs. Different colors within heatmap 

rows indicate values that are significantly different between clusters (FDR < 5%) on the scale from 

the lowest (blue) to highest (red). Notable results are listed in Panel b. 
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An important result of this analysis was that the patients of each of the four sub-challenges could 

be easily clustered into in a consistent small set (3-4) of visually discrete consensus clusters (Figure 

4). In both sub-challenges based on PRO-ACT, patients within consensus clusters were 

significantly more strongly connected than expected by chance (pairs of patients co-clustered 

significantly with FDR<5% are depicted as edges in Figure 4b). The stronger clustering effect in 

the PRO-ACT vs. the registry sub-challenges is likely a reflection of sample size (10,000+ vs. 

~1,500 patients, respectively).  

Overall, consensus clusters could be broadly regarded as classifying patients as slow progressing 

("red"), fast progressing ("blue"), early stage ("purple") or late stage ("green"). We chose to focus 

on clinical characteristics of the PRO-ACT progression sub-challenge, since these consensus 

clusters reached the highest level of statistical significance, but similar clusters were found across 

all sub-challenges.  

One cluster, the "red" or "slow progressing" cluster included patients who, despite having 

experienced symptoms for a relatively long time (2.2 years from disease onset, on average) still 

maintained relatively high functional capabilities (average ALSFRS-R scores of 40.25 at the 

beginning of the clinical observation period), with functional impairments mostly limited to limbs 

(either legs or arms) and little bulbar or respiratory involvement. Accordingly, these patients had 

slow disease progression (annual average loss of -0.48 on the ALSFRS-R scale). These are the 

patients with the best prognosis for ALS and therefore noteworthy to assess closely as they might 

aid clinicians in predicting favorable disease progression. First, only few (3%) of these "slow 

progressing" patients had bulbar onset. While bulbar onset had been frequently correlated with 

poorer prognosis22-24, this cluster analysis suggests that bulbar patients will rarely be classified as 

a slow progressing disease presentation. A second important observation is low creatinine levels 
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(average of 67 mcmol/L in the first three month of data collection, compared to a normal desired 

range of 74.3-107mcmol/L). Creatinine was reported in the previous challenge16, as a predictor of 

disease progression and these results suggest that it might also serve as a predictor of this special 

case of patients with improved prognosis.  

A very similar cluster was observed in the analysis of clusters derived from the PRO-ACT survival 

sub-challenge, with patients living with ALS for an average of 1.5 years while displaying little 

functional decline (average total ALSFRS_R score 39.4), largely intact breathing functionality 

(FVC 94.4% of normal on average) and an ALSFRS progression rate of -0.72points/months. 

To characterize clusters and the involved patients for clinical relevance, we compared all pairs of 

clusters (using ANOVA and t-test, resulting in multiple-testing corrected false discovery rates or 

FDRs) to assess which features had values specifically different between the clusters (Figure 4c). 

We also examined the correlation between feature values and clinical outcome (progression rate) 

in each cluster to identify features which were important for prediction in some clusters but not in 

others. Based on the clusters clinical features analysis, the two features unique for this "slow 

progressing" cluster were urine creatinine and segmented neutrophils (Figure 4b-c). Both of these 

features are therefore potential biomarkers of slow progression in ALS. Neutrophils were indeed 

found to be connected to ALS progression in some studies33,34 but not others35 and the stratification 

to sub-groups might shed further light on these results.  

Another cluster that was superficially similar but in fact quite different was the "purple" or "early 

stage patients". In our pair-wise comparison of features across clusters, the "early stage" and "slow 

progression" clusters ("purple" and "red" clusters respectively) were similar in having high 

ALSFRS and FVC scores in the first 3 months of assessment, indicating little functional 

impairment (Figure 4b-c).  However, the distinctive feature of patients in the “purple” cluster was 
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the fact that they were early in their disease, on average ~10 months from symptom onset. Thus, 

the largely preserved functional state of this patients could be attributed to their early disease stage, 

rather than a slow progression rate. Indeed, with time these patients became fast progressors (-0.93 

ALSAFRS-R points decline monthly on average) and had marginally lower than normal creatinine 

levels (72.25 mcmol/L on average on the first three months of data). Curiously, urine creatinine 

was correlated with disease progression (r2=0.467 p=0.01, see Supplementary material 7 for 

figures) only for this cluster, suggesting again that urine creatinine might be useful predictor of 

disease progression already early in the disease. The relationship between Urine creatinine and 

serum creatinine and with both to muscle breakdown is not straight forward36. 

A third "green" cluster of "late stage” patients included patients that were clinically  late in their 

disease (although not late chronologically- on average 1.7 years from disease onset), who were 

severely disabled in all functional domains (average ALSFRS-R score of 29 points at the beginning 

of the clinical observation period) and were displaying early signs of breathing dysfunction 

(average FVC 77%) and shorter survival time (1.5 years on average).  

These patients had a significant correlation between their ALSFRS "trunk" score (questions about 

dressing and hygiene and turning in bed) and disease progression (r2=0.314, p=0.001), which 

might be indicative of their advanced disability status. The comparison of feature values across 

clusters revealed two features which were uniquely predictive only for this cluster: Slow Vital 

Capacity (SVC), and measurements of "trunk" ALSFRS scores (Figure 4c, examples are available 

in Supplementary material part 7). These two classifiers should be taken into consideration 

clinically as they might be stronger indicators that the patients are reaching the final stages of their 

disease. The "trunk" score indeed represents complex functions that require the combined efforts 

of upper and lower motor neurons, and is therefore more clearly impaired later in the disease. SVC, 
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while highly correlated with FVC, might became predictive later in the disease when respiratory 

function diminishes. They could also be used for clinical trial exclusion criteria to improve patient 

survival throughout the trial. Indeed, SVC was recently suggested as an indicator of respiratory 

failure in ALS37.  

The last cluster, "blue" or "fast progressing” patients, represents the most critical patients, who 

have been experiencing symptoms for only 10 months on average, but were already significantly 

impaired in all functional categories (average ALSFRS-R score of 35.75) at the beginning of the 

clinical observation period. These patients continue to have a very fast disease progression rate 

(ALSFRS progression slope of -1.05points/month) and on average die 662 days after the start of 

clinical observation, amounting to an overall average survival of only 2.7 years from disease onset. 

This is the population of the most urgent need and merits a closer investigation. Half of the patients 

in this cluster had bulbar onset (compared to 20% bulbar onset across all patients) and were more 

likely to have lower scores in all ALSFRS_R functional domains (leg, hand, trunk, bulbar and 

respiratory functions) and to have significant weight loss over the 1-year observation period 

(average of 5kg lost per year).  

Importantly, a similar yet more severe cluster was observed in the PRO-ACT survival data, with 

patients showing diminished disease states (initial ALSFRS-R of 24 ALSFRS points) and survival 

(average of 443 days from trial onset). When clustering for survival, it was noticeable that women 

are more likely to be fast progressors (53% women compared to 40% in the general patient 

population), even beyond their higher likelihood to have bulbar onset (32% of women).  This 

cluster of patients with the poorest prognosis was also found in the registry consensus clustering 

for both the progression and the survival data, with short survival times, fast progression and high 

rate of bulbar onset patients. 
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There were also features that stood in our pair-wise comparison because they were significantly 

different between almost all pairs of clusters. Unsurprisingly the most discriminative feature was 

time of onset (which was significantly different between the "red", "blue" and "green" clusters). 

However, equally discriminative were also ALSFRS question 1 (speech) and our combined 

measure mouth, averaging ALSFRS questions 1-3 (speech, swallowing and salivation), 

highlighting again the important role of bulbar function in discriminating ALS consensus clusters. 

  

Discussion 

Disease heterogeneity, and particularly large unexplained variance in disease progression rate and 

survival, is a hallmark feature of ALS disease38. The range of ALS clinical course includes patients 

such as Lou Gehrig, who perished within 2-3 years of symptoms onset, to patients such as Stephen 

Hawking, who has been living with the disease for several decades. The hypothesized existence of 

distinct subgroups of ALS patients and their importance for ALS research and clinical care were 

highlighted in recent years by clinical trials in which only a subset of patients responded to the 

tested treatment3,39. Despite some recent advances from genetic studies40,41, there is currently no 

generally accepted stratification scheme for ALS patients, and more importantly, there no way of 

using stratification information for tailoring survival and disease progression estimates specifically 

to individual patients. The ALS Stratification Challenge was a global crowdsourcing effort aimed 

to develop new tools and insights for understanding patient subpopulations as they relate to ALS 

disease progression and survival. Thirty teams from around the world submitted algorithms to the 

challenge, with the winning solutions outperforming currently available prediction algorithms.  

The ALS Stratification Challenge followed the success of the previous ALS Prediction challenge16, 

and adapted versions of the best performing algorithms from the previous challenge were used as 
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baseline methods against which the new algorithms were evaluated. The current challenge 

included additional data and design features that made its resulting algorithms more robust and 

more relevant for clinical application, including the use of community-based data, the limitation 

on the number of features used for prediction, and the prediction of survival as well as disease 

progression. The current challenge added another requirement highly relevant to the application 

for future clinical trials: the validation of algorithms on a dataset derived from completely 

independent clinical trials.  We used the prediction and stratification algorithms submitted to the 

challenge to suggest a new stratification scheme for ALS patients which includes detailed 

characterization of patient sub-populations as well as highlighting the most relevant clinical 

features for classification and outcome prediction for each patient group. 

The current challenge invited participants to develop prediction algorithms either based on clinical 

trial data (from the PRO-ACT database) or from ALS registries containing data collected through 

ALS clinics. While PRO-ACT data might be particularly useful for developing prediction 

algorithms to be used in clinical trials, registry data should be more clinically relevant and include 

a more accurate and complete representation of the entire patient population42. This is the first time 

that registry data was made publicly available, and the design of the challenge enabled us to 

directly compare performance of prediction algorithms when applied to PRO-ACT vs. registry 

data. The smaller volume of available data in the registries dataset, both in terms of number of 

patients and of number of clinical features recorded per patient, combined with the increased 

heterogeneity of patients43, made prediction more challenging and overall registry prediction 

algorithms achieved lower levels of prediction accuracy. We suggest a number of clinical features 

(Fig. 3), such as FVC and weight, which could be added to routine clinical assessment to 

potentially improve prediction accuracy and aid clinicians in predicting individual patient 
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prognosis. Conversely, a number of features that could be found exclusively in the registries data, 

including common genetic mutation data and detailed onset site assessments, were both highly 

informative for prediction and should be considered for incorporation into ALS clinical trial 

screening or baseline assessment. 

We examined the features most often chosen for prediction by the different challenge participants 

to see what features had the highest predictive power. This analysis revealed several features, 

already well reported in the literature, such as age, gender22-24 and respiratory capacity.22,29,44,45,46 

which were strong predictors of survival, but were less informative for predicting disease 

progression, whereas other features, including limb motor function ALSFRS-R scores (hands and 

legs function) and specific ALS staging scores47 were more informative for predicting disease 

progression rather than survival. Creatinine, already suggested before as a measure predictive of 

ALS prognosis16,29,48,49,50 was also found to be predictive in this challenge, and interestingly this 

was specific for patients early in their disease. Segmented neutrophils were also suggested by our 

analysis as a relevant novel predictor, specifically for slower progressing patients, while SVC and 

ALSFRS "trunk" scores were associated with outcomes only specifically for patients later in their 

disease.  

The main goal of this challenge was to uncover clinically meaningful subgroups of ALS patients, 

a challenging task since no known “gold standard” exists for ALS patient stratification. In this 

study we applied a “bottom-up” approach to patient stratification: we did not make any a-priory 

assumptions regarding patient sub-populations, but instead defined patient clusters by a 

“consensus vote” based on participants’ submitted algorithms. Challenge participants were free to 

base their clustering on any subset of the available clinical data, choose any type of clustering 

method and any number of clusters. While clustering was not directly related to any immediate 
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benefit in algorithms’ prediction accuracy, it did reveal consistent patterns of patient classification 

that are of great potential interest. We suggest that these clusters could be used to identify 

subgroups of patients to guide further research of disease mechanisms and the planning of 

individual patient care programs and ALS clinical trials. Given the covert nature of ALS patient 

stratification, only a large-scale crowdsourcing effort, where different and independent teams 

apply diverse methods on a similar and large enough dataset can uncover such an underlying 

population structure free from a priory assumptions. 

This communal approach indeed revealed a few sub-groups of patients which not only tended to 

cluster together across different algorithms but also displayed similar characteristics across 

different sub-challenges - clusters which may be the basis for a new stratification framework for 

ALS patients. Overall, we observed four patient groups: slow progressing patient and fast 

progressing patients, as well as patients with an average progression rate which were either early 

or late in their disease at the beginning of the recorded clinical observation period. The wealth of 

lab tests available in the PRO-ACT dataset also uncovered a few clinical tests characteristic to 

each of these subgroups (urine creatinine and segmented neutrophils), but it is currently unclear to 

what extent these could be used as predictive markers for patient stratification or are merely a 

reflection of the patients’ medical condition. However, our results do suggest that a few easy tools, 

such as early testing for FVC and creatinine could improve prediction of individual patient 

prognosis, for example, helping to differentiate slow and fast progressing patients as early as 

possible in their diseases.  

Overall, these results suggest a novel stratification scheme for ALS, with relevant classifiers and 

group-specific predictors, and it would be highly interesting to further prospectively assess its 

benefit for clinical care and clinical trials. As most clinical trials enroll patients with high functions, 
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they might over-represent patients from the "early" patient" and "slow progressing" cluster and 

under-represent the other two cluster of patients. It would also be interesting to assess whether the 

predictors revealed here can uncover new insights about disease mechanisms. 

To summarize, the ALS Stratification Challenge and subsequent analysis provided us with 

algorithmic tools and insights about stratifying ALS patients and uncovered meaningful sub-

groups of patients. Patient stratification is always a challenge, and even more so for rare diseases 

with substantial heterogeneity where effective stratification can advance clinical development 

substantially. Stratification is also highly needed for clinical care, to allow more personalized 

treatment. The tools and insights presented in this study can offer a first attempt for improvement 

in clinical trial development, selection and interpretation, accelerating the development of a much-

needed treatment for a dire aliment such as ALS. 
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Supplementary information 

We provide additional method description and results (ALS Stratification Supplement.pdf), the 

solver-provided descriptions of submitted algorithms (Challenge writeups.pdf) as well as data on 

solver predictions, the cluster analysis and assessment scripts (stratification.zip, see readme files 

contained there for details). 
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Online Methods: 

 

Datasets 

The challenge made use of two datasets: data collected during clinical trials (PRO-ACT) and data 

collected during routine visits to ALS clinics (ALS registries). Both datasets included both static 

and time resolved measurements covering a wide range of data types and clinical measurements 

(full data dictionaries for both datasets can be found in the supplementary material). The time in 

which measurements were taken was noted in days relative to clinical trial onset or to first clinic 

visit available on records (time “delta”). Data was provided to challenge participants in tabular 

form. Each line represented the measurement of a single feature for a single patient at a particular 

time point Outcome measures (ALSFRS slope for progression and survival) for the training 

datasets were provided to challenge participants in separate tables.       

PRO-ACT: The Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) Database was 

formed in 2011 by Prize4Life in collaboration with the Neurological Clinical Research Institute 

(NCRI) of Massachusetts General Hospital, the Northeast ALS Consortium, and with funding from 

the ALS Therapy Alliance. PRO-ACT contains data collected during phase II/III ALS clinical trial, 

volunteered by PRO-ACT Consortium members. Data from 17 clinical trials (Atassi et al 2014) 

was used for the previous prediction challenge [Kueffner et al, 2015] and later made publicly 

available via the PRO-ACT web platform (www.ALSdatabase.org). This data was used for 

algorithms’ training in the current challenge. Data from 6 additional clinical trials (Cudkowicz et 

al 2013, Cudkowicz et al 2014, Gordon et al 2007, Kaufmann et al 2009, Sorenson et al 2008, 

Swati et al 2010), never before made publicly available, was homogenized to comply with PRO-

ACT data format standards and used for algorithms’ validation and assessment. Similar to the 
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design of the previous challenge, the data used for validation was randomly subdivided into a test 

set (leaderboard data, 400 patients) and a validation set (1,488 patients). Challenge participant 

could submit versions of their code to be tested on the test set (limited to once per week per team 

to avoid overfitting) with the results published on a public leaderboard which served to provide 

feedback to participants. After the challenge was completed all submitted algorithms were assessed 

using the validation set data (Table 1).  

ALS registries data: Community-based data, never before publicly released, used in this challenge 

was collected through two ALS registries: 1) The Irish National ALS Register including data 

collected from ALS clinics in Ireland. 2) The Piemonte and Valle d'Aosta Register for ALS, 

including data collected from ALS clinics in Piemonte and Valle d'Aosta region of Italy. Data from 

the two registries was merged, harmonized and converted to the same format as the PRO-ACT 

data. Data was divided into a training (986 patients) and a validation (493) set. Stratification of 

data ensured a similarly proportional representation of patients from the Irish and Italian cohorts 

but was otherwise done randomly. Due to the small number of patients available in this dataset 

there was no test set (leaderboard data) available to challenge participants.  

 

Definition of predicted outcome measures - “gold standard” calculation 

Disease progression: ALS disease progression was defined as the slope of the total ALSFRS score, 

similar to the definitions used in the 2012 prediction challenge [Kueffner et al. 2015]. 

Briefly,  ALSFRS was calculated as:  

 

𝐴𝐿𝑆𝐹𝑅𝑆(𝑡() − 𝐴𝐿𝑆𝐹𝑅𝑆(𝑡+)
𝑡( − 𝑡+
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Where t1 and t2 were the time points at the first and last clinic records in the relevant time period 

92-365 days in which total ALSFRS scores were recorded. Whereas time data in the both challenge 

datasets was given in days, it was converted to months for the calculation of ALSFRS slope, 

according to the following: t(months)= (t(days)/365) *12). Patients had to have at least two clinical 

records in the relevant time period for their data to be used for validation (see Table 2). Participants 

were required to write algorithms that would predict ALSFRS slope between 3 and 12 months, 

based on data collected in the first three months of clinical records.   

Survival: Survival was defined as time until death or until tracheostomy surgery (the introduction 

of invasive breathing tube- time where without intervention the patient was unlikely to survive), 

whenever this information was available. For patients who had no time of death logged on the 

clinical records the time of the last clinical visit was recorded in the survival records with a status 

indicating they were alive.  

Patients whose final records were on or before day 90 (from onset of clinical trial or of clinical 

records) were excluded from the survival analysis (see Table 2). Challenge participants were 

required to write algorithms that predicted the likelihood of survival for each patient at three time 

points; 12, 18 and 24 months from the onset of clinical records.   

 

Predictions assessment and scoring scheme 

All methods for performance assessment were based on evaluating how close the algorithms’ 

predictions were compared to the gold standards, averaged across all patients. We used three 

different evaluation metrics to assess submitted algorithms’ performance in the disease progression 

sub-challenges. Two methods, the root mean square deviation (RMSD) and Pearson’s correlation 

(PCC) were used and described in the previous ALS prediction challenge (Kueffner et al., 2015). 
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In the current challenge we added a third evaluation metric: the concordance index (CI), which 

evaluates the similarity of ranks between predicted and actual ordered lists of measurements. The 

concordance index was the only metric used to evaluate performance in the survival prediction 

sub-challenge, since it is commonly used in survival analysis and is best suited for assessing 

censored data [Noren et al., 2016]. When there is no censored data or ties, the c-index between a 

predicted list of survival times of 𝑛 patients, 𝑃𝑟𝑒𝑑 = 	 {𝑝+, 𝑝(, … , 𝑝7}, and the actual survival times 

for the same 𝑛 patients, 𝐴𝑐𝑡𝑢𝑎𝑙	 = 	 {𝑎+, 𝑎(, … , 𝑎7}, is calculated as: 

 

𝐶𝐼 = 	
2

𝑛(𝑛 − 1)Aℎ(𝑖, 𝑗)
EFG

 

where, 

 

ℎ(𝑖, 𝑗) = H
1, if	K𝑎E > 𝑎G	&	𝑝E > 𝑝GN	𝑂𝑅	K𝑎E < 𝑎G	&	𝑝E < 𝑝GN
0, if	K𝑎E > 𝑎G	&	𝑝E < 𝑝GN	𝑂𝑅	K𝑎E < 𝑎G	&	𝑝E > 𝑝GN

 

  

Please see supplementary data on details accommodating for the possibilities of ties and censored 

data.  

The three performance assessment (or three CI values, in the case of survival prediction) were 

combined using Z-score transformation. We generated 100,000 random sets of predictions for each 

of the four sub-challenges, by randomply assigning “gold standard” progression or survival values 

to patients. We then calculated the RMSD, PCC and CI scores for each of these random shuffles, 

and used the resulting three sets of 100,000 values to calculate the mean and standard deviation 

(SD) of each of the three scoring metrics. These mean and SD values were used to calculate the Z-

scores for the three assessment metrics for each of the submitted algorithms, given by:  
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𝑧STUVW = 	 (𝑠𝑐𝑜𝑟𝑒 − 	𝑚𝑒𝑎𝑛)/𝑆𝐷 

𝑧S]U^W = 𝑧_` + 𝑧b__ − 𝑧cdef,				𝑧SgVhEhi] = 𝑧+( + 𝑧+j + 𝑧(k 

 

Outcomes of the survival sub-challenges were further validated by a receiver operating 

characteristic analysis (time ROC analysis). For the purpose of the challenge, time ROC was 

calculated using the R-package timeROC (https://cran.r-

project.org/web/packages/timeROC/timeROC.pdf). On the plus side, the timeROC analysis 

incorporated the three survival time frames to be predicted (12, 18, 24 months), and performance 

is thus specific to the time frame in contrast to the analysis via CI, where the same set of predictions 

would evaluate the same irrespective to the time frame. However, the CI is better suited to 

represent the right censured nature of the survival data. The rank ordering of submitted algorithms 

for both survival sub-challenges was very similar when comparing the outcomes of the combined 

z-transformed CI index and the time ROC analysis. Results of the time ROC analysis could be 

found in the supplementary material.  

 

Consensus clusters and determination of discriminating features  

For each subchallenge, we integrated the teams’ clusterings into a consensus clustering. First, we 

created a square patient x patient co-clustering matrix M where each matrix element mi,j 

contained a normalized score that expressed how often the corresponding patients i  and j appear 

together in a single cluster across all team submissions. The normalized score takes the size of 

the teams’ clusters into account such that two patients clustered together in a smaller cluster 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/294231doi: bioRxiv preprint 

https://doi.org/10.1101/294231


receive a larger weight. The scores mi,j were calculated as the sum of contributions (eq. 1), across 

all submissions s, where patients i and j appear together in the same cluster: 

 

𝑚E,G = 	∑ log ^
_p	

SEqW_S
Ss+ 	𝑖𝑓	𝑖, 𝑗	𝑖𝑛	𝑡ℎ𝑒	𝑠𝑎𝑚𝑒	𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑖𝑛	𝑆; 0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 

 

where p is the total number of patients in the given sub-challenge and cs is the number of patients 

in the cluster of submission s that includes both i and j (to normalize by cluster size).  

We next determined the statistical significance of mi,j values, i.e. to determine whether patients i 

and j are clustered together more often than expected by chance. We randomly assigned patients 

into clusters of the same size as contained in the original submissions, and repeated this random 

sampling process 100 times. We then calculated mi,j scores for each set of randomly assigned 

clusters, giving us 100 mi,j scores for each i, j patient pair. We used these permuted mi,j value to 

calculate a false discovery rate for any given mi,j score derived from the participants’ 

submissions data, by assigning:  

 

𝐹𝐷𝑅(𝑖, 𝑗) = 	
100 ∗ 𝑁^WVy ∗ 𝑁zVgW

𝑁{i]SW
 

 

where Nperm is the number of permutations , Ntrue and Nfalse refer to the number of scores 

computed from submitted and permuted data, respectively, that were less or equal than the given 

score. This approach to FDR calculation was adapted from significance analysis of microarrays 

(Tusher et al., 2001) and described in detail in previous work (Marozava et al., 2014). 

Subsequently a FDR threshold of 5% was applied to identify significantly pairs of patients that 

significantly tend to be clustered together.  
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A graph of significant pairs was then plotted using the graphviz software package in order to 

visually determine a plausible number of clusters k. To generate the final patient clusters, we 

performed k-means clustering for k clusters based on the matrix M using average linkage and 

Pearson’s correlation metric. Thus, the correlation metric calculates the distance between 

patients i and j by comparing the corresponding rows, denoted as mi. and mj., in the matrix M. 

This analysis identified three consensus clusters for both survival and the registry progression 

sub-challenges and four clusters for the PROACT progression sub-challenge.  

 

Detection of features differentially distributed across patient groups 

After finding a small number of consensus clusters of patients for each sub-challenge, we 

determined the features that discriminate between consensus clusters by statistical tests. Values 

of longitudinal variables (e.g., ALSFRS) were averaged across time, and we looked at average 

values of two different time periods consistent with the challenge’s overall design: 0-3 months 

and 3-12 months. We applied one-way analysis of variance (ANOVA) to continuous features 

(e.g. age of onset) and Fisher’s exact test to discrete features (e.g. site of onset). This leads to two 

matrices, C and D, capturing the values of the continuous and discrete features, respectively.  

Rows in these matrices correspond to the features, columns to the patients. In addition, each 

feature vector (containing the values for that feature across the p patients) was randomly 

permuted a hundred times and statistical tests were applied to the 100 randomized datasets to 

compute FDRs (analogous to the description above) separately for the results from Fisher’s exact 

test and ANOVA.  

We then regard the relative ranks from the ANOVA and Fisher as new test values. From these, 

we compute FDRs now across discrete and continuous features together. By this integrated 
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statistical assessment we obtained FDR values for all features. Features were deemed statistically 

significant across all clusters if they exhibited FDR values of <5%. See below pseudo code for 

details. 

Subsequently, t-tests were applied to identify all pairs of clusters where ANOVA determined that 

continuous features exhibited significantly differential values (FDR < 5%). The same 

permutations were applied to the feature vectors as above, such that we were able to transform t-

test p-values into false discovery rates analogously. As before, we regard a feature as statistically 

significantly different between two clusters if such a comparison resulted in an FDR <5%. FDRs 

do not need multiple testing correction as it is already built into the permutation test. Note that 

we applied the ANOVA “trick” here: pairwise comparisons were only performed (and thus 

subject to multiple testing correction) for features with overall significance across all clusters. 

This leads to a less severe multiple testing correction and accordingly to a more sensitive test for 

the pairwise comparisons in contrast to the case were pairwise comparisons would have been 

performed and corrected for all features. 

We then transformed the pairwise comparisons for each feature into cluster specific levels l in 

order to create a heatmap. If a comparison between a pair of clusters (a,b) is significant, and the 

given feature displays higher values in a as compared to b, we applied l(a)=l(a)+1 and l(b)=l(b)-

1. After all pairwise comparisons are integrated this way, the scale of all features was linearly 

transformed into a range between [-1 ... +1]. Thereby, the heatmap clearly displays for each 

feature the distinguishable cluster levels. 
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Pseudo code analysis of differentially distributed features The pseudocode in the left panel 

illustrates the computation of the ANOVA test statistic a at the example of the continuous 

features in C. The design g specifies the mapping of patients to clusters. A permuted test is 

calculated by shuffling values in rows of the matrix C 100 times, computing their associated test 

statistics a’ and pushing their relative ranks and the relative ranks of a separately into arrays r’ 

and r, respectively. The backslash notation denotes the removal of an element, i.e. in a’=a’ \ 

max(a’), the entry with the highest value is removed from a’. Analogously, the FISHER test statistic 

f is calculated for the discrete features in D (pseudo code in the right panel). Finally, FDRs are 

calculated by comparing the relative ranks from the true statistics r vs. the relative ranks from 

the permuted statistics r’ across discrete and continuous features (lower panel).  

tot = 101*size_d 
rank = 0 
for i=1 to size_d do 
    fi = FISHER(g, di.) 
    for j=1 to 100 do 
        di. = shuffle(di.) 
        f’i,j = FISHER(g, di.) 
    end 
end 
for fi in num_sort(f) do 
    while max(f’)>fi do  
        rank = rank+1 
        push r’, rank / tot 
        f’ = f’ \ max(f’) 
    end 
    rank = rank+1 
    push r, rank / tot 
end 

tot = 101*size_c 
rank = 0 
for i=1 to size_c do 
    ai = ANOVA(g, ci.) 
    for j=1 to 100 do 
        ci. = shuffle(ci.) 
        a’i,j = ANOVA(g, ci.) 
    end 
end 
for ai in num_sort(a) do 
    while max(a’)>ai do  
        rank = rank+1 
        push r’, rank / tot 
        a’ = a’ \ max(a’) 
    end 
    rank = rank+1 
    push r, rank / tot 
end 

 

tp = fp = 0 
for ri in num_sort(r) do 
    while min(r’)<ri do  
        fp = fp+1 
        r’ = r’ \ min(r’) 
    end 
    tp = tp+1 
    FDRi = fp / (tp*100) 
end 
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