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We model the dynamics of formation of intercellular secretory lu-
mens. Using conservation laws, we quantitatively study the balance
between paracellular leaks and the build-up of osmotic pressure in
the lumen. Our model predicts a critical pumping threshold to ex-
pand stable lumens. Consistently with experimental observations
in bile canaliculi, the model also describes a transition between a
monotonous and oscillatory regime during luminogenesis as a func-
tion of ion and water transport parameters. We finally discuss the
possible importance of regulation of paracellular leaks in intercellu-
lar tubulogenesis.

osmoregulation | membrane pumps | lumens | tissue mechanics

E pithelial lumens are ubiquitous in organs. They originate
from cavities or tubes surrounded by one (seamless lu-
men) or multiple cells (1). Ions and other bioactive molecules
are secreted into the cavities and, if the lumen is open, flow
with the physiological medium. The creation of the lumens
orginates from several classes of morphogenetic events (1). In
the case of closed lumens (such as acini, blastocytes, canali-
culi), ion secretion into the forming cavity creates an osmotic
pressure. This results in the passive transport of water into
the lumen (most often mediated by aquaporins), which consti-
tutes a major driving component for lumen expansion. This
osmotic pressure hypothesis was experimentally proposed in
the 1960s (2—4). The expansion is mechanically restrained by
periluminal tension. In the case of multicellular lumens (eg:
cysts (5-7)), tension results from the contraction of the cells
surrounding the lumen. In the case of the intercellular domain,
the tension arises from the cortical actin layer surrounding the
cavity (8).

Fig. 1a illustrates a lumen separating adjacent membranes
between two primary rat hepatocytes (liver cells). The contact
area between both cells presents an intercellular cleft of around
30-50 nm (9) that accommodates transcellular proteins, ad-
hesion proteins and peptidoglycans. The development of the
lumen occurs within 5 to 6 hours. In vivo, closed lumens even-
tually merge into a network of tubules called canaliculi (2um
diameter and 500 pm long). We recently showed that the
shape of these lumen is controlled by the balance of osmotic
pressure and anisotropic cortical tension (10). Hepatocyte
doublets can be used as meaningful simplified surrogates to
study lumen formation (8, 11, 12). In this instance functional
canaliculi grow as spherical caps spanning part of the intercel-
lular space. The simple geometry of the system constitutes an
appealing case for quantitative studies.

However, this process is rather generic for many kinds of
lumen such as Ciona Notochord lumen (1, 13, 14) or kidney
lumens(15). Fig. 1b-c also shows that the steady shape of the
lumen depends on the secretory activity, which is boosted by
the addition of Ursodeoxycholic acid (UDCA). The growth
of the lumen can either be monotonous (Fig. 1c) or pulsatile

www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

(Fig.1d) depending on the periluminal tension and secretory
activity. A steady secretion in a closed lumen implies the con-
comitant existence of leakage. Its nature is likely paracellular
(through the nanometer cleft between cells). In the case of mul-
ticellular lumen, a few models and experimental studies have
considered the role of leaks (originating either from the rupture
of cell-cell contacts (7) or permeation across the endothelial
layer (16)) during the growth of the lumen. For intercellular
lumens, however, the morphogenetic consequences of the leak
modulation by the paracellular cleft property have hardly been
investigated, either experimentally or theoretically.

Here, we provide a theoretical quantitative study on the
balance between secretory activity, leak and mechanics that
determines canaliculi nucleation and growth. Our minimalistic
description of lumen expansion identifies the physiologically
relevant range of parameters required to establish a stable
intracellular cavity and dictate its dynamical properties.

Modeling Assumption

We consider the lumen as two symmetrical contractile spheri-
cal caps (Fig. 2) with a radius of curvature R and a contact
angle 6 at the lumen edge. The lumen elongates parallel to
the cell-cell contact over a distance r; and its apex height is
h. The remaining paracellular adhesive cleft has a thickness
e. As the lumen develops, the dimension of the spherical caps
vary but the cell contact remains fixed with a total size L.
We established the expressions of the conservation laws in the
lumen and in the cleft accounting for this geometry. All results
are in the scaled units of the model (See SI appendix, Table
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Fig. 1. a:Structured illumination image of a typical bile canaliculi creating a lumen
between two hepatocytes (scale bar 2 um) . b: Increase of projected area of canaliculi
at steady state upon continuous bile secretion stimulation by different dose of UDCA
(Ursodeoxycholic acid) (n=20 for each dose).c: Linear growth of the canaliculi (dotted
line:individual cell, bold line:average) under reduced contractility condition (1 M
blebbistatin) d: Sustained Oscillatory dynamics under native contractility conditions.
Bile canaliculi projected area are normalized by their size at t=0

S1) as well as in "international units" based on the estimations
derived in SI Appendix (2).

We study the lumen growth dynamics resulting from the bal-
ance between ¢ the active and passive ion transport across
membranes both in the lumen and in the cleft; i7 the passive
transport of water along transmembrane osmotic and hydro-
static gradients; i the paracellular leakage originating from
osmotic gradients and hydrostatic gradients along the cleft; v
the mechanical balance controlled by actomyosin contractility.
For the sake of simplicity, we considered only one type of
anion/cation pair with identical transport properties. These
simplified assumptions lead us to consider only ion, water and
momentum conservations (i.e, force balance).

Mechanical balance. In the lumen the hydrostatic pressure
§P is uniform at the time scales considered here. Laplace’s
law must be satisfied everywhere across the lumen surface.
The force balance in the lumen then reads:

20
oP = T [1]

Where o is the cortical tension resulting from the sum of the
plasma membrane tension and the active tension of the actin
cortex. In general, the effective tension could be inhomoge-
neous and anisotropic (17). For example, in the late stages of
Ciona Notochord lumen growth, or during the tubulation of
canaliculi, the departure from a hemispherical shape results
in inhomogeneous curvature radii, which is indicative of het-
erogeneous tension distributions (1, 13, 14). However, here
we only consider an homogeneous cortical tension, consistent
with the assumption that the lumen shape is a spherical cap.

In the cleft, Laplace’s law must be modified to account for
membrane adhesion (mediated by Cadherin for example (18))

0P = k(e —eg) — 0.Ve, (2]

eo is the cleft thickness in the absence of a difference in hy-
drostatic pressure. This is mainly controlled by the cadherin

2 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX
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Fig. 2. Schematic for lumen at the interface of two adjacent cells.A: Definition of
the geometrical parameters of the problem. b: Definition of the active and passive
fluxes of lon and water fluxes across and along the paracellular cleft.C: definition of
the mechanical parameters of the problem. Close up on the intercellular cleft region
containing adhesive molecules, peptidoglycans and other transmembrane proteins d:
Definitions of the transport parameters.

pceI|

ions ,volume, paracellular

surface density, as well as the repulsive interaction between the
membranes. The parameter k is an effective elastic modulus
that accounts for any deviation of the cleft from eg, accounting
for tension in the cadherins and deformation of the membranes.
In SI Appendix (2) we estimate that a few tens of nanometer
away from the interfacial region, between the lumen and the
cleft, equation 2 results in a homogeneous cleft thickness that
hardly deviates from eg. In the rest of the paper equation 2
will be replaced by a homogeneous cleft thickness e. In the
first order approximation §P = k(e — eg).

The force balance at the intersection of the lumen with the
cleft is the generalized Young-Dupré equation

ccos=c—-—E=¢5, 3]

where 6 is the contact angle (see Fig. 2), E is the adhesion
energy per unit area, & corresponds to the "apparent tension"
corrected for the adhesion energy. The force balance is thus
given by the set of equations 1 and 3.

lon conservation. In the lumen, ion transport occurs by trans-
membrane fluxes, as well as by leakage at the lumen edges.
The number of ions flowing through the membrane per unit
of time and unit of area, has two distinct origins. First, an
"active" flux per unit area J; is generated by pumps and trans-
porters. We assume that the flux has a constant value due to
a constant surface density of the relevant pumps.

Tons are also passively transported across trans-membrane

Dasgupta et al.

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248


www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
https://doi.org/10.1101/294264
http://creativecommons.org/licenses/by-nc-nd/4.0/

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
2901
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

bioRxiv preprint doi: https://doi.org/10.1101/294264; this version posted April 4, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

channels. In this case, the flux is proportional to the chemi-
cal potential difference. It reads A;kpT In 2e¢iL where peeir, p
are the ion density in the cell cytoplasm and in the lumen
respectively. The transport coefficient A; is set by the surface
density of the relevant channels. By convention all fluxes are
positive when ions are secreted into the lumen.

The conservation of the total number of ions, N, in the lumen
then reads

surface term edge term

dN

—

p7 [47rR2(1 — cos 0)} (AikpT In % + Ji) = [2mm] iC,
[4]
The edge term j.7¢ corresponds to the ion flux from the lumen
into the cleft. It is determined self consistently by continuity
conditions with the expression of the ion flux inside the cleft.
In the cleft, the ion density equilibrates within less than a
few microseconds across the cleft thickness e (on the order of
a few tens of nanometers). Hence, only the ion flux compo-
nent along the cleft should be considered. The difference in
ion concentration in the lumen, as compared to the external
medium, generates a diffusive flux —eDVp along the ion con-
centration gradient. D is the diffusion coefficient of ions. We
neglect all convective contribution to the flux based on the
small dimensions of the cleft. Under these assumptions, and
after integration over the constant thickness e, the local and

time dependent conservation of ions inside the cleft reads

negligible

9(pe)
ot

~DA(ep) = 2(A\ikpT In % + i) - [5]

where )\; is the passive transport coefficient for ions through
the membrane into the cleft. j; is the active pumping of ions.
The factor of 2 in the source term accounts for the presence of
membranes from both cells. In SI Appendix (2) we show that
that the term %ﬁ?
growth and will further be neglected.
solution of equation 5 at r = r;.

is negligible on the time scale of lumen
§i7¢ in BEq. (4) is the

Volume conservation. In view of the absence of an active bio-
logical transport of water, the change in volume results solely
from passive fluxes. Due to water incompressibility, the rate of
volume change is proportional to the flux of water. The passive
contribution from transmembrane water permeation is pro-
portional to the water chemical potential difference and reads
—Av (6P — ém). 6P (resp o) is the difference in hydrostatic
(resp osmotic) pressure between the lumen and the cytosol.
The surface density of aquaporins determines the transport
coefficient Ay. The osmotic pressure difference is related to
the ion density difference by 7 = 2kpr(p — peen). The factor
2 in this expression reflects the equivalent treatment of anions
and cations. The conservation of volume in the lumen then
reads

edge term

dv —_——N—

i —Av [471'R2(1 — cos 9)] (6P — om) — [2nl) ji >, [6]

surface term

The volume leak ji/_>c from the lumen into the cleft is deter-

mined by continuity of the expression of the volume flux in
the cleft at the lumen/cleft interface.

Dasgupta et al.

In the cleft, the rapid equilibration of the hydrostatic
pressure across the cleft justifies the lubrication approximation
to estimate the hydrodynamic contribution of volume change
by —kvVP . Note that, due to protein crowding at the
paracellular cleft, kv is necessarily smaller than the Poiseuille
limit % where 7 is the viscosity of the intercellular fluid. The
local volume conservation in the cleft then reads

negligible

~~
Ode

ot

The permeation coefficient Ay can, in principle, differ in the
cleft compared its value in the lumen. For the sake of sim-
plicity, we use the same value. From here on, and for similar
reasons as for ion flux, the time derivative of the thickness can
be neglected based on the time scale we consider for lumen
expansion (see SI Appendix (2)).

—V.(kvVP) = =2X\y (0P — o7). [7]

Strategy to solve the equations. The complete set of equations
that we solve is provided in SI Appendix (4). To solve the
equations, we assume that the parameters of the cytosol and
of the external media are constant and homogeneous. We also
assume that the variation in ion concentration dp, is small
compared to the concentrations themselves.

Separating the time scales between lumen dynamics (minutes
to hours) and the equilibrium of fluxes in the cleft (sub seconds)
simplifies the problem. Cleft equations (3,5,7) are solved in
the quasistatic regime. The ion density in the cleft readily
stems from Eq. (5). We then use it as a source term in Eq. (7).
The solution of Eq. (7) leads to the value of ji=¢, which can
in turn can be used in Eq. (4) and Eq. (6). We thus reduce
the problem to three coupled equations that we formally solve
using Mathematica. SI Appendix Table S1 summarizes the
various parameters of the problem and we give their ranges in
adimensional and real values in SI Appendix (1).

Existence of Steady states

At steady state, the dynamical equations above simplify as
follows. We name R, rs and 65 the lumen dimensions at
steady state.

Steady state mechanical balance. The Young-Dupré relation
takes the simple form

Y E

g 1= (8]
oo oo

cosfs =

In this expression oy is the steady state tension, and 65 is thus
a constant determined by the tension and adhesion energy at
steady state. We take it equal to % following experimental
observations (10).

Steady state ion conservation . Assuming azimuthal symmetry,
the ion conservation in the cleft (eq.5) can be linearized at
the first order in polar coordinates as:

_ 53%%(7“%5/}(7")) +6p(r) = dpi . (9]

With the continuity equations at the cleft edges being:

=]

{ 5p(r) = Jp at the lumen-cleft edge
op(r)| _, =

Opest at the cleft-external medium edge
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op; = 2’;:;’%7; acts as a source term and compares pumping
P

activity to passive ion transport. It corresponds to the ion
concentration which would be observed in the cleft if there was
a simple balance between pumps and channels. It characterizes
the "pumping efficiency". Note that since dp; is a constant,
Eq. (9) admits a simple although cumbersome solution in terms
of modified Bessel functions, which we give in SI Appendix

(3)-
Dpceur

& = kTN,
concentration is screened from the edge effects to reach the
constant value set by dp;. When L —r; > &; (i.e long cleft and
small lumen), the leaks at both edges of the cleft are decoupled
from the central part of the cleft the ion density of which only
depends on dp;. Additionally, if ép; > dp then, the ion flux
jl7¢ corresponds to an ion source for the lumen. When the
lumen is large (i.e L — 7 ~ &;), the leaks at both edges of the
cleft couple to the lumen to create a paracellular concentration
gradient . If §p > Oper: the ion flux j17¢ corresponds to a
sink for the lumen which takes the simple expression, in the

limit (L —r; << &):

is the typical length over which the ion

e De(p;.um - pfzzt)
¢ L—mr '

Q

[10]

In the lumen the ion conservation (4) then simplifies as:

2R, (1 — cos05)(6p — 8p;) 263(%5P)| (11]

r=r;

where (2§ p)‘ N takes the expression derived from the expres-

sion dp derived in SI Appendix (3). For the sake of simplicity
we assume here that the pump activity in the cleft equals that
of the lumen.

Steady state volume conservation . In the cleft Eq. 7 can be
simplified in a similar way and writes:

_glo 2<5P(r)) +0P(r) = 6.

ror " ar 12

with the continuity of the hydrostatic pressure at both edges
imposing :

{ SP(r) —r,
5P| =

r=L

6 Piym at the lumen-cleft edge

0 Pey+ at the cleft-external medium edge

The solution is also tractable analytically (see SI Appendix
(3)).
om = 2kgTép is the source term from osmotic origin.
§&v = /55— is another screening length, comparing the ef-
ficiency of the hydrodynamic leak to aquaporin transport.
When L —r; > £y, the lumen and the external medium are
decoupled. In particular when L — r; > £y and &; then the
hydrostatic pressure in the cleft away from the edges is entirely
imposed by the pumps and equals 2kgTép;.
Whenever the cleft length is longer than both screening lengths,
it acts as a volume source for the lumen. In the opposite case
(i.e L —r; ~ &v) provided that Pezt < Pium , the cleft con-
tributes to a volume leak out of the lumen that simplifies
to

d—c A'L) (Plum - Pezt)
N —, 13
Jo A (13]

when (L —r << fv)

4 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

In the lumen, Eq 6 simplifies as

d
— 2kpTdp) = ga(aap)

oo

2Rs(1 — cos 98)(2R

- - 04

The right hand term is derived from Eq. 12 (see SI Appendix
(3)) and taking its value for ;.

This rescaling of the equations reveals that the relevant
parameters controlling the lumen are dp;, &, Evand 5. They
compare the strength of the various fluxes. They arise from a
combination of the more natural parameters pcei, kv,D, ji,
Ai, Av and 0, introduced in the first sections to characterize
the fluxes themselves. For all parameter values, the solutions

(b)

0.75 1 0

T 1
Stable

(@) 0 p;mM
0 025 05

0 p,mM
025 05 0.75 1

08

0.6

1:£=0.1§,=0.1
2:£=0.15,=0.5
3:£=0.5,=0.5

04

02

0 1 2 3

dp; (><108) n.. dp; (x10%) n.u.
Fig. 3. a: The steady state size of the lumen as a function of pumping efficiency
displays an unstable and a stable branche represented in blue and red respectively
(§v = &; = 0.5). The dashed arrows represent the direction of variation of lumen
radius for any deviation from its steady state value. There is no stable state lumen at
low enough pumping efficiency § p;. Any lumen of any size would shrink off. Above a
critical dp;, any small lumen above the unstable branch will grow to finally reach a
larger steady lumen size. b: variation of the steady lumen size as a function of lumen
efficiency for different screening lengths £y and &;.

for the steady state lumen radius are qualitatively similar to
the one described in Fig.3. For a given leak (characterized
by the values of & and &) there exist a critical value of the
ion pumping activity (characterized by dp;), below which no
lumen can exist.

Low enough pumping activity cannot compensate the leaks.

Independently of its original volume, the lumen shrinks
and disappears. When the pump activity is higher, the
solution displays two branches.The lower branch is unstable
and theoretically corresponds to the creation of a lumen

through the nucleation of a small sized cavity inside the cleft.

The instability of this solution can be checked directly on
dynamical equations, but it can also be understood with the
following argument.

Steady state lumens described by lower branches are small
(L —7rs > &andéy) . A small increase in lumen size leads to
a rise in the incoming fluxes, which is due to an increase in
lumen surface. However, in this limit the paracellular fluxes
are hardly affected by the change in size due to the screening
of the leak. Moreover, the osmotic pressure increases, whereas
the Laplace term decreases due to tension. Here, the chemical
potential balance fails, which leads to further growth. All
contributions lead to further volume increase. Although
predicted by the model, this solution is likely to be obscured
in reality by the more complex biological and molecular
organization needed to start lumen formation.

The upper branches correspond to stable solutions for larger
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lumens (L — rs ~ & and &v). If the lumen grows, the
incoming fluxes also grow. However Eq. (10) and Eq. (13)
show that in this limit, the paracellular fluxes diverge as
the lumen size approaches the size of the junction. This
non linear dependence of the paracellular leak in this limit,
enables the a stablity of the state. The sensitivity to the
edge distance is thus governed by the screening lengths &;
and &y. Fig.3b shows that small screening lengths (curve
1) result in stable lumens spanning practically the whole
cell-cell contact for all pumping activities. Conversely, large
screening lengths (curve 3) confine lumens to smaller sizes
above a critical pumping activity. One could thus speculate
that the ability of lumens from adjacent cell pairs to merge
is determined by their ability to reach the cell edges, and is
hence controlled by the leak properties of the paracellular cleft.

Lumen dynamics

The balance between different fluxes not only determines the

steady states of the lumen, but also affects lumen dynamics.

Fig.1c-d shows that lumen growth can be either monotonous
or pulsatile, depending on pumping efficiency. Our model
suggests that changing the balance between leaks and ion
secretion can induce a transition between both behaviors. The
periodicity of the experimental pulsations are of the order
of tens of minutes. Consequently, we assume a quasi-static
mechanical equilibrium in the cleft. We solve equations 4-2 as
described in SI Appendix (5). The time dependent variables of
the problem are the radius of curvature R(¢), the contact angle
0(t) and the difference of ion concentration in the lumen with
respect to the cytosol dp(t). The lumen shape and volumes
can be deduced by simple geometric relations. The cortical
tension o must account for the lumen expansion. In situations
where the change per unit time of relative cortex area becomes
"large", then one must account for a viscous term as a dominant
contribution to the periluminal stress. This results in an areal
strain rate dependent effective tension. A characteristic time
7. delineates these two behaviors. In an active gel description
of the cortex the effective tension can be written as (19):

IO OFY
o(t) =00 |1+ 7( Rd(t) + 2(1017 cosO(t))) 13

. dii(t) 45 sin o(t)\ .

where the quantity (5 + ¥ g0yy) is a measure of

the deformation rate, which we take to be equal to the relative

time variation of the lumen area. The static value of the

tension oo is set by imposing a value of & to 0. All other

coefficients are assumed constant. The dynamical equations
are expressed in SI Appendix (4).

To exemplify the type of behavior predicted by the model,
we fixed the screening length to &y = 0.49, and &; = 0.50 and
we solved the dynamical equation at different values of the
pumping efficiency dp;. We set the initial conditions for the
lumen height R(t), 0(t) , dp(t), o(t) just above the unstable
branch of the lumen steady state (SI Appendix Table 2). In
our model this would correspond to a lumen growing from its
nucleation size. However the final behavior of the dynamics
does not depend on initial conditions. Fig. 4 shows that at
lower pumping efficiency, the steady state of the lumen in
reached monotonically with a mild overshoot in the contact

angle and lumen height. At larger pumping efficiency, the
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Fig. 4. Dynamical behavior of the normalized lumen height h(t)/L, junctional
extension r;(¢t) /L and angle 6(t) /= are shown as a function of normalized time
t/ T (lower abscissa) and time in hours (upper abscissa), where T = 2 x 10~% n.u.
is the cortex time (assumed 1000 s). Changing pump efficiency dp; shows three
different characteristic behavior- (a) Overdamped evolution towards steady state at
8p; = 1.0 x 10% n.u. (b) Underdamped evolution towards steady state at §p; =
1.35 x 10® n.u. and (c) Sustained oscillations §p; = 1.38 x 10%n.u.. The numerics
has been obtained for values of &y, = 0.49, §&; = 0.50, A, = 1lnu, A =
AikBTT/peenn L = 1.1 x 108 n.u., 00 = 107 n.u., §peet = —2 x 10° n.u., and
Pcell = 109 n.u..

steady state is reached after damped oscillations. At large
pumping efficiency the oscillations are sustained. An ani-
mation of lumen dynamics in each scenario can be found in
Supplementary Videos 1-3. The existence of the oscillations
originates from the nonlinearity of the equations, in particular
from the divergence of the leak close to the contact edge. How-
ever we could not trace one specific parameter alone that was
primarily responsible for setting the behavior. In SI Appendix
(3) we derive an analytical solution in the transition regime in
the limit for large enough lumens (L —1r; << &, L—1; << &v)
and for small deviations from steady state values of the vari-
ables. In the simplified equations, terms analogous to inertia,
friction and force could be introduced (respectively a,b and ¢
in SI Appendix (3)); their expressions intricately involve all
model parameters. However, the cross over limits between
the different dynamic behaviors is set by the parameter 7,
which reflects the dependence of cortical tension on strain rate.
Using a constant tension, our numerical solutions do not show
any oscillatory behavior within the physiological range of the
parameters we explored.

We then calculated the time variation of the lumen concen-
tration (Fig. 5). In all cases the concentration of the lumen
decreases as the lumen grows. It oscillates in phase opposition
with the lumen radius in the oscillatory regime. Note however
that the total amount of ions dp X V' increases with the lumen
size. The cortical tension varies during the formation of the
lumen, increases during the growth phase, and equals o¢ for
the steady states. It oscillates in phase with the lumen radius
in the oscillatory case. The inner hydrostatic pressure of the
lumen calculated from Laplace’s law decreases as the lumen
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Fig. 5. Dynamical behavior of the normalized lumen ion-density §p(t)/dp;, lumen
tension o (t) /o0, and hydrostatic pressure % for different pump efficiency
dp; are shown as a function of time ¢ /7 (lower abscissa) and time in hours (upper
abscissa), where 7 = 2 x 10~ 8 n.u. is the cortex time (assumed 1000 s). Changing
pump activity shows three different characteristic behavior- (a) Monotonous over-
damped evolution towards steady state at 6p; = 1.0 X 10® n.u. (b) Underdamped
evolution towards steady state at p;, = 1.35 X 10% n.u. and (c) Sustained oscilla-
tions 6p; = 1.38 x 108 n.u.. All parameters used for obtaining the numerics are the
same as those mentioned in Fig. 4.

grows and oscillates in phase opposition with the lumen radius
in the oscillatory regime. Our model thus predicts that as
the lumen grows the effective periluminal tension grows due
to an induced viscous stress. It is qualitatively different from
a mechanosensitive feed back that would lead to an active
reinforcement of the cortex. Additionally, as the lumen grows
the inner pressure decreases. This is the opposite of the "Star-
ling’s law" like interpretation of a lumen growing under an
increasing inner pressure, leading to a final contraction that
expels the inner fluid. Whereas this later scenario is possi-
ble in fully sealed lumen, our model demonstrates that the
same dynamical behavior can also be recapitulated in leaking
lumens.

Discussion

The situation of a cavity with constant ion secretion and a
fixed cortical tension is intrinsically unstable. A steady state
can only be achieved upon three non exclusive conditions: size
or time dependent cortical tension, size or time dependent ion
secretion, and/or leaks. The two first conditions are likely
to involve specific biological feedback. The incidence of leaks
is far less intuitive to understand. The model we propose
quantitatively explores the effect of paracellular leakage in
the case of intercellular lumen formation. We account for the
specific dependence of the leak

on the dimensions of the paracellular cleft, and we show
that, in the case of a bicellular lumens, the leak can play a
critical role in controlling lumen size, dynamics and composi-
tion. The model provides a good qualitative agreement with
the experimental phenotypes of canaliculi.

6 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

An important prediction of the model is the existence of screen-
ing lengths &;,&v. The screening lengths compare longitudinal
fluxes along the cleft that are mediated by osmotic potential
differences and hydrostatic pressure, to the transmembrane
fluxes that occur orthogonal to the cleft and are mediated by
channels. When transmembrane transport outweighs paracel-
lular transport, the screening lengths are small. Curve 1 on
Figure 3 shows that in this case the lumen can grow close to
the edges (rs ~ L). In contrast, in the case of a large screening
length (curve 3) the lumen hardly reaches the cell edge inde-
pendently of pump activity. The lumen composition, i.e its ion
concentration, is also affected by the screening length values.
Figure 6a shows that when the distance of the lumen to the cell
edge is larger than the screening length the luminal ion concen-
tration is of the same order as Jp;; the equilibrium value for a
close lumen. As the lumen grows towards the contact edges,
paracellular leaks increase, leading to a decrease in ion den-
sity, and hence, of the osmotic pressure as well as hydrostatic
pressure. However, Figure 6b, shows that the osmotic pres-
sure decreases considerably less than the hydrostatic pressure.
This results in lumens with a much higher ion concentration
than what is needed to balance Laplace pressure, should the

lumen be closed. Our simplifying assumptions minimize the
@) (b)
1= N 100
0.8 = \\2\ B
= x
£ 061 N\ \\ = 10 |
= T~ < 3
SO 0.4 ™~ 3 Ps) /
. \\ \\ g L — J
. 1 _—
0
0 02 04 06 08 1 0 025 05 075 1
r/L r/L

Fig. 6. a: Comparison of steady state ion density in the lumens of various sizes with
the expected concentration (§p;). £&; = 0.1 for all curves. For curves (1) €&, = 0.1,
Curves (2) &, = 0.2, Curves (3) £, = 0.5. b: comparison of the lumen osmotic
pressure to the Laplace pressure as a function of lumen size for different screening
lengths.

specific biological details that have yet to be accounted for
to perform a quantitative comparison with experimental data.
In particular, tight junctions act as diffusive barriers for differ-
ent classes of ions across claudin pores(20, 21). For the sake
of simplicity we account for their activity as a steady factor
included in the hydrodynamic resistance of the paracellular
cleft. As the tight junctions mature their contribution to
the paracellular leak might become dominant over the simple
evaluation, which is based on a hydrodynamic process. In par-
ticular, ion flux selectivity, which enhanced junction stability
and mechanosensitivity of tight junctions, may then play a
role in the homeostasis of lumens.

We also show that a time dependent cortical tension is
necessary to create an oscillatory behavior. In our model,
the origin of cortical tension reinforcement stems from cortex
dynamics. As previously mentioned, mechanosensitive mecha-
nisms might reinforce cortex contractility by increasing the
actomyosin activity in a stress dependent manner. However,
as shown in Figure. 5 the hydrostatic pressure decreases as
the lumen grows, and it is not clear where the mechanosensing
reinforcement of the cortex would come from within the
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frame of this model. Although lipid trafficking by endo and
exocytosis (1) is important for lumen growth, our model
indirectly accounts for it as a non limiting factor of the lumen
expansion. Assuming a non limiting rate supply of lipids by
vesicular transport, their contribution to cortical tension and
thus lumen morphology is negligible. We also do not account
for vesicular export of bile in cholestasis cases corresponding
to a liver specific problem that would reduce the generality of
our description. We indeed propose that the leak dependent
growth of lumens can be extended to understand, at the
tissue scale, the direction of growth of the cavities. In the case
described here, the lumen edge can only asymptotically reach
the contact edge due to the divergence of the paracellular leak
when r; approaches L. Consider now a single lumen with equal
pumping efficiency but embedded in a group of cells rather
than a cell doublet. One can qualitatively assume that the
resistance to paracellular flux will depend on the total length
of paracellular cleft between the lumen edge and the external
medium. L would then be much larger than the actual size
of a single cell-cell contact. In such a case, our model would
predict that the lumen radius can extend further than a single
cell length and consequently could bridge with other adjacent
lumens. Maintaining the same assumptions, the problem
of lumen now depends on the structure of the tissue. This
more intricate study lies beyond the scope of this work un-
derstood as a foundation more elaborate analyses in the future.
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